解不等式练习题_学生版
柯西不等式好题-学生版

1. 求证:ac+bd ≤22b a+柯西不等式的一般形式为:对任意的实数有及n n b b b a a a ,,,,,,2121或1ni ii a b=≤∑其中等号当且仅当nn b a b a b a === 2211时成立(当0=k b 时,认为).1,0n k a k <≤= 一、 证明不等式1. 已知正数,,a b c 满足1a b c ++= 证明 2223333a b c a b c ++++≥2. 设,121+>>>>n n a a a a 求证:011111113221>−+−++−+−++a a a a a a a a n n n3. 求证:()().22221122212221y x y x y y x x +++≥+++4.设a 、b 、c 为正数且各不相等。
求证:cb a ac c b b a ++>+++++9222 5.a 、b 为非负数,a +b =1,+∈R x x 21,求证:212121))((x x ax bx bx ax ≥++6.若a >b >c 求证:ca cb b a −≥−+−411 7.+∈R c b a ,,求证:23≥+++++b a c a c b c b a 8. 已知a 1,a 2,a 3,…,a n ,b 1,b 2,…,b n 为正数,求证:9. 设a ,b ,c 为正数,且a +b +c =1,求证:,121221⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∑∑∑===n i i n i i n i i i i b a b a10. 若n 是不小于2的正整数,试证:11. 设x 1,x 2,…,x n 都是正数(n ³2)且, 求证: 二、求解最值12. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=试求a 的最值 13. 设非负实数n ααα⋅⋅⋅21,满足,121=+⋅⋅⋅++n ααα求1213`122111_1−++++⋅⋅⋅+++++⋅⋅⋅++n n n nααααααααααα的最小值。
专题03 解一元一次不等式(组)及参数问题八种模型(学生版)

专题03解一元一次不等式(组)及参数问题八种模型【类型一解一元一次不等式模型】例题:(2022·陕西·模拟预测)解不等式3136x x-<-,并在如图所示的数轴上表示出该不等式的解集.【变式训练1】(2022·陕西·西安市西光中学二模)解不等式7132184x x->--,并把它的解集在如图所示的数轴上表示出来.【变式训练2】(2021·上海徐汇·期中)解不等式38236x x---≤,把解集在数轴上表示出来,并求出最小整数解.【变式训练3】(2022·福建·三明一中八年级阶段练习)解不等式:(1)2(41)58x x -≥-(2)261136x x +-≤【变式训练4】(2022·河南驻马店·八年级阶段练习)解下列一元一次不等式,并把它们的解集表示在数轴上:(1)2﹣5x <8﹣6x ;(2)53-x +1≤32x .【类型二解一元一次不等式组模型】例题:(2022·福建·三明一中八年级阶段练习)解不等式组52331132x xx x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集在数轴上表示出来:【变式训练1】(2022·广东·汕头市龙湖实验中学九年级阶段练习)解不等式组:1011122x x -≥⎧⎪⎨--<⎪⎩,并写出它的所有整数解.【变式训练2】(浙江省温州市2020-2021学年八年级上学期3月月考数学试题)解一元一次不等式组523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩,并把解集在数轴上表示出来.【变式训练3】(2022·广东揭阳·八年级阶段练习)解不等式组:12(1)2235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩,并把它的解集在数轴上表示出来.【变式训练4】(2022·湖南岳阳·八年级期末)(1)解不等式121132x x+++≥;(2)解不等式组:3242(1)31x x x -<⎧⎨-≤+⎩,并把它的解集在数轴上表示出来.【类型三一元一次不等式的定义时含参数问题】例题:(2021·全国·七年级课时练习)已知不等式||1(2)20n n x --->是一元一次不等式,则n =____.【变式训练1】(2022·山东·枣庄市第十五中学八年级阶段练习)已知()3426m m x --+>是关于x 的一元一次不等式,则m 的值为______.【变式训练2】(2021·黑龙江·肇源县超等蒙古族乡学校八年级期中)若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.【类型四一元一次不等式整数解中含参数问题】例题:(2022·上海·七年级期中)如果不等式2x ﹣3≤m 的正整数解有4个,则m 的取值范围是_____.【变式训练1】(2020·全国·八年级单元测试)已知不等式30x m -≤有5个正整数解,则m 的取值范围是________.【类型五一元一次方程组与不等式间含参数问题】例题:(2022·全国·八年级)关于x 的方程42158x m x -+=-的解是负数,则满足条件的m 的最小整数值是_____.【变式训练1】(2021·四川成都·八年级期末)已知关于x 的方程35x a x +=-的解是正数,则实数a 的取值范围是______.【变式训练2】(2021·全国·七年级课时练习)如果关于x 的方程2435x a x a++=的解不是负数,那么a 的取值范围是________.【变式训练3】(2021·全国·七年级课时练习)当m________时,关于x的方程222x m xx---=的解为非负数.【类型六二元一次方程组与不等式间含参数问题】例题:(2021·内蒙古呼和浩特·七年级期末)已知关于x、y的二元一次方程组231231x y kx y k+=+⎧⎨+=-⎩的解满足x+y<4,则满足条件的k的最大整数为____.【变式训练1】(2021·四川绵阳·x,y的二元一次方程组221x yx y k+=⎧⎨+=+⎩的解为正数,则k的取值范围为__.【变式训练2】(2021·江苏江苏·七年级期末)已知关于x,y的二元一次方程组231323x y mx y m+=+⎧⎨-=+⎩,且x,y满足x+y>3.则m的取值范围是___.【变式训练3】(2021·四川南充·七年级期末)已知关于x,y的方程组24223x y kx y k+=⎧⎨+=-+⎩,的解满足x﹣y>0,则k的最大整数值是______________.【变式训练4】(2021·甘肃·九年级专题练习)若关于x,y的二元一次方程组3331x yx y a+=⎧⎨+=+⎩的解满足x+y<2,则a的取值范围为_______.【类型七解一元一次不等式组中有无解集求参数问题】例题:(2021·内蒙古·包头市青山区教育教学研究中心八年级期中)关于x的不等式组352x ax a->⎧⎨-<⎩无解,则a的取值范围是_____.【变式训练1】(2022·广西贵港·八年级期末)若关于x的不等式组33235x xx m-<⎧⎨->⎩有解,则m的取值范围是______.【变式训练2】(2021·四川凉山·七年级期末)已知关于x的不等式组5122x ax x->⎧⎨->-⎩无解,则a的取值范围是_________.【变式训练3】(2021·河南南阳·三模)已知关于x的不等式组3xx m>⎧⎨≤⎩有实数解,则m的取值范围是____.【变式训练4】(2022·江苏南通·九年级阶段练习)如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则常数a的取值范围是______________.【类型八解一元一次不等式组中有整数解求参数问题】例题:(2021·宁夏中卫·八年级期末)不等式组,3x ax>⎧⎨<⎩的整数解有三个,则a的取值范围是_________.【变式训练1】(2021·安徽·马鞍山二中实验学校七年级期中)已知不等式组211x x a-<⎧⎨-≤⎩,只有三个整数解,则a 的取值范围是_________.【变式训练2】(2021·黑龙江佳木斯·模拟预测)不等式组2312x ax -⎧⎨-≤⎩<有3个整数解,则a 的取值范围是_____.【变式训练3】(2020·内蒙古·北京八中乌兰察布分校一模)关于x 的不等式组3x ax <⎧⎨≥⎩只有两个整数解,则a 的取值范围是_____.【变式训练4】(2022·湖南湘潭·八年级期末)已知关于x 的不等式组3010x a x -≤⎧⎨-≤⎩①②,有且只有3个整数解,则a 的取值范围是______________。
不等式学生版

研究性学习资料 不等式解法、- 3 - 题型1:解含绝对值的不等式1.解不等式:①|2x+51|≥21;②|4x-3|<212.设全集U={x||x -2|>1},A ={x||x +1|≤1},则C U A 等于 ( )A 、{x|x <-2或x >0}B 、{x|x <1或x >3}C 、{x|x <-2或0<x <1或x >3}D 、{x|1<x<3}3.若不等式|1-kx |<2的解集是{x |-1<x <3},则的k 为 ( )A 、-2<k<1B 、31-<k<1 C 、k=1 D 、k=-34.不等式721≤-≤x 的解集是( ) A.(3,9) B. ]1,5(- C. ]9,5[- D. ]9,3[]1,5[⋃-5.不等式|x -|2x -1||>1的解集为____。
题型2:解一元二次不等式1.解下列不等式:(1)02x x 2<--;(2)03x 2x 2>-+-;(3)21212≤-+≤-x x2.若不等式012>-+bx ax 的解集是}43|{<<x x ,则实数.__________,==b a题型3:解高次不等式一元高次不等式求解,一般是先分解为n 个一次式的积,运用数轴标根的方法求解,在标根时,对于“重根”情况的处理方法是“奇数次方一穿而过;偶数次方穿而不过”。
1. 解下列不等式(1)322150x x x --> (2)23(4)(5)(2)0x x x ++-< (3)()()22460x x --≤;题型4:解分式不等式(1)解分式不等式时,要注意先移项,使右边化为零,要注意含等号的分式不等式,分母不为零。
(2)0ax b cx d +>+转化为()()0ax b cx d ++>,也可转化为00ax b cx d +>⎧⎨+>⎩或00ax b cx d +<⎧⎨+<⎩的并集。
不等式小题的常见考法和应用(学生版)

不等式小题的常见考法与应用一、利用作差法、基本不等式比较大小1.已知a,b均为正实数.试利用作差法比较a3+b3与a2b+ab2的大小.2.若a>0,b>0,则比较a5+b5与a3b2+a2b3的大小.3.比较2x2+5x+3与x2+4x+2的大小.4.如果0<a<b<1,P=a+b2,Q=ab,M=a+b,那么P,Q,M的大小顺序是()A.P>Q>M B.M>P>Q C.Q>M>P D.M>Q>P 5.设a,b为非零实数,给出下列不等式:①a2+b22≥ab;②a2+b22≥⎝⎛⎭⎪⎫a+b22;③a+b2≥aba+b;④ab+ba≥2.其中恒成立的是________.(填序号)6.比较大小:x 2+2x 2+1________2.(填“>”“<”“≥”或“≤”) 二、利用不等式的性质、基本不等式证明不等式1.对于实数a ,b ,c ,下列命题中的真命题是( )A .若a >b ,则ac 2>bc 2B .若a >b >0,则1a >1bC .若a <b <0,则b a >a bD .若a >b ,1a >1b ,则a >0,b <02.(多选)若1a <1b <0,则下面四个不等式成立的有() A .|a |>|b | B .a <bC .a +b <abD .a 3>b 33.若a >b >0,c <d <0,e <0,求证:e a -c >eb -d .4.若bc -ad ≥0,bd >0,求证:a +b b ≤c +dd .5.已知a ,b ,c 均为正实数,且a +b +c =1.求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.已知a >0,b >0,且a +b =1a +1b ,求证:a +b ≥2.三、利用不等式求最值及范围1.(1)若x<0,求12x+3x的最大值;(2)若x>2,求1x-2+x的最小值;(3)已知x>0,y>0,且满足8x+1y=1.求x+2y的最小值.2.(1)当x>0时,求12x+4x的最小值;(2)当x>1时,求2x+8x-1的最小值.3.对∀x∈R,不等式mx2-mx-1<0,求m的取值范围.4.关于x的不等式(k-1)x2+(k-1)x-1<0恒成立,则求实数k的取值范围5.已知4x+ax(x>0,a>0)在x=3时取得最小值,则a的值为________.6.已知a>0,b>0,若不等式2a+1b≥m2a+b恒成立,则m的最大值等于________.7.已知:3<a+b<4,0<b<1,求下列各式的取值范围.(1)a;(2)a-b;(3)a b..四、已知0<a+b<2,-1<b-a<1,则求2a-b的取值范围.含参数的一元二次不等式的解法1.解下列不等式:(1)x2-5x-6>0;(2)(2-x)(x+3)<0.2.解关于x的不等式ax2-2≥2x-ax(x∈R).关于x的不等式x2-(3a-1)x+(2a2-2)>0.3.已知关于x的不等式ax2+bx+c>0的解集为{x|2<x<3},求关于x的不等式cx2+bx+a<0的解集..4.已知关于x的不等式x2+ax+b<0的解集为{x|1<x<2},求关于x的不等式bx2+ax+1>0的解集.。
不等式练习册-学生版

63
2
4. x x 1 2 x 2
2
3
2x 1 5. x 1 4
2x 1 x 1
7.
x
8
4x
1
4x 8 6. 3x 2 1
2x x 1
8. 3 2
x 1 4 2x
3
DAY4 用时_____分钟 答对_____道题
1. 2 x 2x 1
2
3
2. 4x 2 5x 7 1
14
学而思培优—用科技推动教育进步
4. 师徒二人分别组装 28 辆摩托车,徒弟单独工作一周(7 天)不能完成,而师傅单独 工作不到一周就已完成,已知师傅平均每天比徒弟多组装 2 辆,求:
⑴徒弟平均每天组装多少辆摩托车(答案取整数)? ⑵若徒弟先工作 2 天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车 辆数相同?
学而思培优—用科技推动教育进步
DAY1 用时_____分钟 答对_____道题
1、 2x<4x 6
2、 3x 7 4x 21
3、 3x 2 10 2(x 1)
4、 3(x 3) 2(2x 1) 6
5、 2x 1 5x 1 1
3
6
7、 x 4 1> x 2 x
5
2
6、 2x 1 5x 1
x 1 3
8.
2
x
1
5
DAY6 用时_____分钟 答对_____道题
1. x 1 1 x 4 3 5 15
2. x 1 [x 1 (x 1)] 2 222
3. x 1 x 2x 5
3
4
2x 0 5. 2x 3 0
1 x 1 1
7. 2
x 2(x 3) 0
基本不等式经典例题(学生用)

根本不等式 【2 】 常识点: 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x +≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+a bb a(当且仅当b a =时取“=”)若0ab ≠,则22-2abab a bb a b a b a +≥+≥+≤即或(当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)留意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的前提“一正,二定,三取等”(3)均值定理在求最值.比较大小.求变量的取值规模.证实不等式.解决现实问题方面有普遍的运用 运用一:求最值例:求下列函数的值域(1)y =3x2+12x 2 (2)y =x +1x技能一:凑项例 已知54x <,求函数14245y x x =-+-的最大值.技能二:凑系数例: 当时,求(82)y x x =-的最大值.变式:设230<<x ,求函数)23(4x x y -=的最大值.技能三: 分别换元 例:求2710(1)1x x y x x ++=>-+的值域.技能五:在运用最值定理求最值时,若遇等号取不到的情形,. 例:求函数2y =的值域.技能六:整体代换(“1”的运用)多次连用最值定理求最值时,要留意取等号的前提的一致性,不然就会出错.. 例:已知0,0x y >>,且191x y+=,求x y +的最小值. 技能七例:已知x,y 为正实数,且x 2+y 22=1,求x 1+y2 的最大值. 技能八:已知a,b 为正实数,2b +ab +a =30,求函数y =1ab的最小值. 技能九.取平方例: 求函数15()22y x <<的最大值. 运用二:运用均值不等式证实不等式例:已知a.b.c R +∈,且1a b c ++=.求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪⎝⎭⎝⎭⎝⎭ 运用三:均值不等式与恒成立问题例:已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值规模. 运用四:均值定理在比较大小中的运用:例:若)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是.。
高中数学试题-经典(超越)不等式(学生版)

经典(超越)不等式一、结论(1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链:e x >x +1>x >1+ln x (x >0且x ≠1)上述两个经典不等式的原型是来自于泰勒级数:e x=1+x +x 22!+⋯+x n n !+e θx(n +1)!x n +1;ln (1+x )=x -x 22+x 33-⋯+(-1)n x n +1n +1+o (x n +1);截取片段:e x ≥x +1(x ∈R )ln (1+x )≤x (x >-1),当且仅当x =0时,等号成立;进而:ln x ≤x -1(x >0)当且仅当x =1时,等号成立二、典型例题1(2023·陕西咸阳·校考模拟预测)已知a =25,b =e -35,c =ln5-ln4,则()A.a >b >cB.a >c >bC.b >a >cD.b >c >a2(2023·全国·高三专题练习)已知函数f (x )=e x -x -1.(1)证明:f (x )≥0;(2)证明:1+121+122 ⋯1+12n <e .三、针对训练举一反三一、单选题1.(2023春·浙江·高三校联考开学考试)设a=12022,b=tan12022⋅e12022,c=sin12023⋅e12023,则()A.c<b<aB.c<a<bC.a<c<bD.a<b<c2.(2023秋·江苏苏州·高三常熟中学校考期末)a=e0.2,b=log78,c=log67,则()A.a>b>cB.b>a>cC.a>c>bD.c>a>b3.(2023·云南曲靖·统考一模)已知a=e-2,b=1-ln2,c=e e-e2,则()A.c>b>aB.a>b>cC.a>c>bD.c>a>b4.(2023·全国·高三专题练习)已知a=e sin1-1,b=sin1,c=cos1,则()A.a<c<bB.a<b<cC.c<b<aD.c<a<b5.(2023·全国·高三专题练习)已知a>b+1>1则下列不等式一定成立的是()A.b-a>b B.a+1a>b+1bC.b+1a-1<e bln aD.a+ln b<b+ln a6.(2023·全国·高三专题练习)已知实数a,b,c满足ac=b2,且a+b+c=ln a+b,则()A.c<a<bB.c<b<aC.a<c<bD.b<c<a7.(2023·全国·高三专题练习)若正实数a,b满足ln a+ln b2≥2a+b22-2,则()A.a+2b=2+14B.a-2b=12-22 C.a>b2 D.b2-4a<08.(2023·四川南充·四川省南充高级中学校考模拟预测)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4二、填空题9.(2022春·广东佛山·高二佛山市顺德区容山中学校考期中)已知对任意x,都有xe2x-ax-x≥1+ln x,则实数a的取值范围是.三、解答题10.(2023·全国·高三专题练习)已知函数f x =e x-a.(1)若函数f(x)的图象与直线y=x-1相切,求a的值;(2)若a≤2,证明f(x)>ln x.。
方程与不等式训练300题(学生版)

2020-1六下双基训练300题方程与不等式六年级·寒假·学生版九层之台,起于累土【练习1.1】 简单的一元一次方程1. ()()43206711y y y y --=--2. ()254(3)2(1)x x x --+=-3. 37(1)32(3)x x x --=-+4. 12(1)4()2x x x --=-5. 4(4)35(72)y y +=--6. 7 2.5 2.536x x -=⨯+7. 12(23)3(21)a a -+=-+ 8. 93(1)6x x --=9. 63(32)6(2)x x x --=-+ 10. 7104(0.5)x x -=-+方程与不等式补充材料千里之行,始于足下11. 3(8)64(11)y y y -=-- 12. 13(8)2(152)x x --=-13. 2(10)52(1)x x x x -+=+- 14.223046m m +--=15. 43(20)67(9)x x x x --=-- 16. 2(21)2(1)3(3)x x x -=+++17. 43(23)12(4)x x x +-=-- 18. ()()335225x x -=--19. ()()()243563221x x x --=--+ 20. ()()()321531152x x x --+=+六年级·寒假·学生版九层之台,起于累土【练习1.2】 一元一次方程——去分母21. 21101211364x x x --+-=- 22. 212153x x +--=23. 3157146y y ---= 24. 212134y y -+-=-25. 341125x x -+-= 26. 1112222x x x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦27. 12233xx -=-+ 28.13216222x x x ⎛⎫--=+ ⎪⎝⎭方程与不等式补充材料千里之行,始于足下29. 21101136x x ++-= 30.211135x x +-=- 31. 121224x x+--=+ 32.42571510x x +--= 33. 124123x x ---= 34.213124x x--=- 35. 2123134x x ---= 36.3141136x x x ---=-六年级·寒假·学生版九层之台,起于累土37. 211135x x +-=- 38.+4122523x x x -+-=- 39. 25316412x x x ---+= 40. 2523163x x x +--=- 41. 431432x x -+-= 42.()()11212223x x x ⎡⎤--=+⎢⎥⎣⎦ 43. 141123x x --=- 44.5415513412y y y +--+=-方程与不等式补充材料千里之行,始于足下45. 121225x x ++-=- 46.()10532327x x x -++--=47. 7151322324x x x -++-=- 48.34113843242x x ⎧⎫⎡⎤⎛⎫--=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ 49. 248539x x -=- 50.3121134x x -+-= 51. 1122254x x x++--=+ 52.1328237x x x-+---=六年级·寒假·学生版九层之台,起于累土53. 248236x x ---=- 54.31322322105x x x +-+-=- 55. 225353x x x ---=- 56. 1212323x x x --+=- 57. 12136x x x -+-=- 58.3157146y y ---= 59. 131224x x+--=- 60.21101211364x x x -++-=-方程与不等式补充材料千里之行,始于足下61. 211011412x x x ++-=- 62.()()142113233x x x ⎡⎤+-=-+⎢⎥⎣⎦ 63. 312423(1)32x x x -+-+=- 64.49325532x x x ++--= 65. 4115(2)13212x x x +--+=-66. 113(23)(32)5(32)(23)32x x x x ---=-+-六年级·寒假·学生版九层之台,起于累土67. 22(31)253y y -=- 68.31242233x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦69. 21101211364x x x -++-=- 70.3213(1)(32)(1)45102x x x --+=-- 71. 431261345x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦72.121146x x ++-= 73. 211011412x x x ++-=- 74.111(15)(7)523x x +=--方程与不等式补充材料75. 2110121123644x x x-++-=-76.2383236x x x-+-=-77. 1010210147x x+--=78. ()()137464722x x-=+-79.12223x xx-+-=-80.3221211245x x x+-+-=-81. 13533236524x x⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭82.112132152yy-+-=六年级·寒假·学生版83. 343111243242x x⎡⎤⎛⎫--=+⎪⎢⎥⎝⎭⎣⎦84.111116412345x⎧⎫⎡⎤⎛⎫--+=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭85.43254xxx x---=【练习1.3】一元一次方程——去分子、分母中的小数86. 0.10.20.710.30.4x x---=87.1.5 1.51.50.30.1x x--=88.2130.20.5x x-+-=89.0.30.2 1.5570.20.5x x--+=方程与不等式补充材料90. 0.20.10.010.0150.30.04x x---=91.0.010.030.40.110.020.5x x-+-=92.30.412.50.20.5x x+--=-93.341.60.50.2x x-+-=94. 2 1.633180.30.63x x x-+-=95.341.650.2y y-+-=96. 4 1.550.8 1.230.50.20.1x x x----=+97.1.5210.30.2x x--=六年级·寒假·学生版98. 3 1.50.20.1840.20.09x xx--+=+99.0.12230.30.6x xx-+-=100.341.60.50.2x x-+-=101.10.2110.40.7x x+--=102.0.230.210.50.03x x--=103.3 1.140.20.160.70.40.30.06x x x----=104. 1.510.530.6x x--=105.0.10.020.10.10.30.0020.05x x-+-=方程与不等式补充材料106. 0.030.010.170.050.10.020.070.030.09x x x +-+-=107. 0.10.20.0226.57.50.010.02x x---=-108.30.70.310.80.4x xx+-=-109. 0.40.50.20.5110.060.232x xx+-⎛⎫-=+⎪⎝⎭110.2651430.030.30.02x x-+-=【练习1.4】一元一次方程——巧算(整体法、拆括号、裂项、凑分子)111. 11311377325235x x⎛⎫⎛⎫--=--⎪ ⎪⎝⎭⎝⎭112. ()()15201520153411131717x x x---+=六年级·寒假·学生版113. ()()()()1131121132x x x x +--=--+ 114. 31333447167x x x x ⎡⎤⎛⎫⎛⎫---=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 115. ()()1123233211191313x x x -+-+=116. ()()()()1120181120191120182019x x x x +--=--+ 117. 111123452345x x x x +++=+++方程与不等式补充材料118. ()()()()1111123201620162342017x x x x ++++++++= 119. 111133312222y ⎧⎫⎡⎤⎛⎫---=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭120.111246819753x ⎧⎫⎡⎤+⎛⎫+++=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭121. 2016122320162017x xx +++=⨯⨯⨯ 122. 1122320192020x xx+++=⨯⨯⨯123. 200613352003200520052007x x x x++++=⨯⨯⨯⨯六年级·寒假·学生版124.11 123234201720182019201820192020220192020 x x x x++++=-⨯⨯⨯⨯⨯⨯⨯⨯⨯125.3213201520162017x x x---++=126.201013201920092007x x x---++=127.2017130 1008620162014x x x---++=128.20181614125 357911x x x x x-----++++=方程与不等式补充材料129. 3x a b x b c x c ac a b------++= ()000a b c >>>、、 130.4x a b c x b c d x c d a x d a bd a b c------------+++= () a b c d 、、、均为正数【练习2.1】 较简单的二元一次方程131. 27325x y x y -=⎧⎨+=⎩132. 85765476x y x y +=⎧⎨-=⎩133. 293x y x y -=-⎧⎨+=⎩134. 53702370x y x y --=⎧⎨+-=⎩六年级·寒假·学生版135.5120311120x yy x-=⎧⎨-=⎩136.245x yx y+=⎧⎨-=⎩137.5210x yx y+=⎧⎨+=⎩138.25342x yx y-=⎧⎨+=⎩139.7423624x yx y+=⎧⎨-=⎩140.892317674x yx y+=⎧⎨-=⎩141.()()()()31445135y xx y⎧-=-⎪⎨-=+⎪⎩142.32222m nm n+=⎧⎨-=-⎩方程与不等式补充材料143.372513x yx y-=⎧⎨+=⎩144.25342x yx y-=⎧⎨+=⎩145.30327xx y-=⎧⎨-=⎩146.633594x yx y-=-⎧⎨-=⎩147.2114327x yx y+=⎧⎨+=⎩148.3(1)4(4)5(1)3(5)y xx y-=-⎧⎨-=+⎩149.()()()()4395211x y x yx y x y⎧+--=⎪⎨-++=⎪⎩150.()()()()337242233228x yx y⎧+=-+⎪⎨-+-=⎪⎩六年级·寒假·学生版【练习2.2】较复杂的二元一次方程组151.1234x yx y+=⎧⎪⎨+=⎪⎩152.1640.30.4 1.7x yx y⎧+=⎪⎨⎪+=⎩153.2320.40.7 2.8x yx y⎧+=⎪⎨⎪+=⎩154.35723423235x yx y++⎧+=⎪⎪⎨--⎪+=⎪⎩155.2()1346()4(2)16x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩156.2344143m n n mnm+-⎧-=⎪⎪⎨⎪+=⎪⎩方程与不等式补充材料157. 2153224111466x y x y ⎧+=-⎪⎪⎨⎪-=-⎪⎩158. 32212453231045x y x y --⎧+=⎪⎪⎨++⎪-=⎪⎩159. 252234m nm n ⎧-=⎪⎨⎪+=⎩160. ()()35724310413x y y x x y x y -+⎧+=-⎪⎪⎨---⎪=⎪⎩161. ()()()54723187323x y x y x y x y ⎧+-+=⎪⎪⎨⎪+--=⎪⎩162. 2164622372y x y x y x x y++⎧-=-⎪⎨⎪+=--⎩六年级·寒假·学生版163.1115212355x yyx+-⎧-=-⎪⎪⎨⎪+=-⎪⎩164.3223132x y x y-+==165.()5111562347 896x y y x x y---+++==【练习2.3】普通的三元一次方程组166.321x y zx y zx y-+=-⎧⎪+-=⎨⎪+=⎩167.324230140x yx zx y z=-⎧⎪-=⎨⎪++=⎩方程与不等式补充材料168.153241341013x y zx y zz-+=⎧⎪+-=-⎨⎪=⎩169.1225224x y zx y zx y++=⎧⎪++=⎨⎪=⎩170.3232443210x y zx y zx y z-+=⎧⎪+-=⎨⎪++=-⎩171. 235532z x yx y zx y z=+⎧⎪-+=⎨⎪+-=⎩172.52621212x yy zx z-=⎧⎪-=-⎨⎪+=⎩173.12232a b ca b ca b c++=⎧⎪+-=⎨⎪-+=⎩六年级·寒假·学生版174.3123325x y zx y zx y z+-=⎧⎪-+=⎨⎪+-=⎩175.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩176.102317328x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩177.42314235x y zx y zx y z--=⎧⎪++=⎨⎪+-=⎩178.4329253456218x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=⎩179.24+393251156713x y zx y zx y z+=⎧⎪-+=⎨⎪-+=⎩方程与不等式补充材料180.232623343239x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩181.3213272312x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩182.4239328a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩183.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩184.56812412345x y zx y zx y z+-=⎧⎪+-=-⎨⎪+-=⎩185.24393251156713x y zx y zx y z++=⎧⎪-+=⎨⎪-+=⎩六年级·寒假·学生版186.9202325x y zx y zx y z-+=⎧⎪++=⎨⎪--=⎩187.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩188.231332163510x y zx y zx y z++=⎧⎪+-=⎨⎪+-=⎩189.3423126x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩190.275323342y xx y zx z=-⎧⎪++=⎨⎪-=⎩191.344635511x y zx y zy z++=⎧⎪-+=-⎨⎪+=⎩方程与不等式补充材料192.42325560x y zx y zx y z-+=⎧⎪++=⎨⎪++=⎩193.52574313x yy zz x+=⎧⎪-=-⎨⎪+=⎩194.42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩195.2343327231a b ca b ca b c-+=⎧⎪-+=⎨⎪+-=⎩【练习2.4】有技巧的多元一次方程组196.78388737x yx y+=⎧⎨+=⎩197.231763172357x yx y+=⎧⎨+=⎩六年级·寒假·学生版198.199519975989199719955987x yx y+=⎧⎨+=⎩199.354x yy zx z+=⎧⎪+=⎨⎪+=⎩200.222426x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩201.1131x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩202.512x yy zz x+=⎧⎪+=-⎨⎪+=-⎩203. 2345238x y zx y z⎧==⎪⎨⎪+-=⎩方程与不等式补充材料204.::z1:2:32318x yx y z=⎧⎨-+=⎩205.:3:2:5:466x yy zx y z=⎧⎪=⎨⎪++=⎩206.323232y z x az x y bx y z c+-=⎧⎪+-=⎨⎪+-=⎩207.252821126x yy zz uu x+=⎧⎪+=⎪⎨+=⎪⎪+=⎩208.12323434545151212345x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪++=⎩209.12323434545151251532x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=-⎨⎪++=-⎪⎪++=⎩六年级·寒假·学生版210. 220240280+216023202640a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f +++++=⎧⎪+++++=⎪⎪+++++=⎪⎨++++=⎪⎪+++++=⎪+++++=⎪⎩【练习3.1】 一元一次不等式 211. ()25321x x --≥ 212. 8156x x -≥-213. ()()3129x x -≤+ 214. ()()32232x x x x ⎡--⎤>--⎣⎦215. 3(2)152(2)x x -+-<-- 216.121123x x -++<方程与不等式补充材料217. 21433x x -≥-- 218. 3453172y y y --≤-219. 6721251423x x x --+-+>+- 220.121180.50.25x x -++>221. 124816x x x xx ++++> 222.12123x x +-≥223. 2354124463x x x ---+->+ 224. ()()52186117x x -+<-+六年级·寒假·学生版225. ()332524y y +≤- 226.()311212423x ⎡⎤--≥⎢⎥⎣⎦227. 11111112332x x ⎛⎫⎛⎫-≥-- ⎪ ⎪⎝⎭⎝⎭228. ()21035127x x x ---≥-229. 531132x x +--< 230. 22252y y y ---≤- 231. 123x x-< 232.2352x x -≥+方程与不等式补充材料233. 212(12)13x x --≥- 234.8111122x x x ++-≤-235. 422(2)x x -≥+ 236.3122123x x---≤237. 214432x x -+-< 238. 3(2)12(1)x x +>---239. 111(2)(3)248x x ->-+ 240. 533(2)x x +≤+六年级·寒假·学生版241. 14232x x -+->- 242.2432x x -≥- 243. 11132x x --≥ 244. 7(4)2(43)4x x x ---<245. 5(2)86(1)7x x -+<-+ 246.1132x x --< 247. 21211362x x x +--->- 248.3(1)5182x x x +-->-方程与不等式补充材料249.18136x xx+-+≤-250. 15(31)10(42)6(63)39x x x---≥--251. 0.40.210.20.5x x+->-252. 51531x x+>-253. 22123x x+-≥254.2(1)12xx---<255. 2152246x x-+-≥-256.3(1)12384x x+-+<-六年级·寒假·学生版257.121133x xx-+-≤+258.0.2 1.20.120.130.30.05x x---≤-259.()0.20.10.2 0.030.010.70.310.030.50.15x x x-+--<+260. 0.40.90.030.0250.50.032x x x++-->【练习3.2】一元一次不等式组261.3312183(1)xxx x-⎧+≥+⎪⎨⎪+<+-⎩262.253(2)12135x xx+≤+⎧⎪-⎨+>⎪⎩方程与不等式补充材料263. 22531323213x xx x--⎧-≤⎪⎨⎪->-⎩264. 3(1)954x x +≤⎧⎨+>⎩265. 3(1)702423x x x -->⎧⎪-⎨>⎪⎩266. 2362523x x x x +≤+⎧⎪+⎨<+⎪⎩267. 21390x x >-⎧⎨-+≥⎩268. 33(3)21123x x x x +≤+⎧⎪-+⎨>-⎪⎩269. ()()1032561x x x +⎧>⎪⎨⎪+≥-⎩270. 3150728x x x ->⎧⎨-<⎩六年级·寒假·学生版271.312342x xx x-≤-⎧⎨-+>-⎩272.1232(3)3(2)6x xx x⎧->-⎪⎨⎪--->-⎩273.593(1)311122x xx x-<-⎧⎪⎨-≤-⎪⎩274.328212xx-<⎧⎨->⎩275.523(4)131722x xx x-≤+⎧⎪⎨-<-⎪⎩276.328654x--≤--<-277.2632145x xx x-≤-⎧⎪+⎨->⎪⎩278.121233(2)54x xx x--⎧≤⎪⎨⎪+>+⎩方程与不等式补充材料千里之行,始于足下279. ()32421152x x x x ⎧--≥⎪⎨-+≤⎪⎩280. 513(1)23722x x x x ->+⎧⎪⎨-≤-⎪⎩281. 2132(1)5x x +⎧<⎪⎨⎪-≤⎩282. 312128x x x -≤+⎧⎨-<⎩283. 222212x x x x+⎧≥⎪⎨⎪-<-⎩284. 313112123x x x x +<-⎧⎪++⎨≤+⎪⎩285. 521262(3)4x x x x -⎧->⎪⎨⎪-≤-⎩ 286. 2153712x x x ->⎧⎪⎨-+≤⎪⎩六年级·寒假·学生版九层之台,起于累土287. 2(21)342151132x x x x -≤+⎧⎪-+⎨-≤⎪⎩288. 3(2)8143x x x x +>+⎧⎪-⎨≥⎪⎩289. 267442152x x x x +>-⎧⎪+-⎨≥⎪⎩290. 43213(1)6x x x x-⎧+≥⎪⎨⎪--<-⎩291. ()()35223141x x x x -⎧≤-⎪⎨⎪-<+⎩292. 543132(32)3x x x ->⎧⎨--≤⎩293. 2153112x x x ->⎧⎪⎨+-≥⎪⎩294. 253259837(4)2(43)4x x x x x x x +≤+⎧⎪->+⎨⎪---<⎩方程与不等式补充材料千里之行,始于足下295. ()1231121286432x x x x x x +>+-⎧⎪⎪+≥+⎨-<-⎪⎪⎩296. 8156212(12)133(2)152(2)x x x x x x -≥-⎧⎪-⎪-≥-⎨⎪-+-<--⎪⎩297. 36451322253522x x x x x x +>+-⎧⎪⎪+>+⎨<-⎪⎪⎩298. 18136212113620.40.210.20.5x x x x x x x x +-⎧+≤-⎪⎪+--⎪->-⎨⎪+-⎪>-⎪⎩299. 427323653453x x x x x x ⎧⎪+>++≥+≤-⎨-⎪⎩300. ()()32232217223x x x x x x ⎧⎪->++≤+≥+⎨-⎪⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解不等式练习题
一、选择题
1.下列不等式中,与不等式
3
02x x
-≥-的解集相同的是( ) (A )(3)(2)0x x --≥(B )(3)(2)0x x -->(C )
203
x
x -≥-(D )lg(2)0x -≤ 2.不等式1
23x -<<解为( )
(A )102x -<<或x 31
> (B )-31<x <0或0<x <21
(C )x >31或x <-21 (D )-31<x <2
1
3.不等式(x +3)2(x -1)<0的解为( )
(A )x <1 (B )x <1或x ≠-3 (C )x <1且x ≠-3 (D )x >1且x ≠-3 4.不等式
21
13
x x ->+的解集为( ) (A )x <-3或x >4 (B ){x | x <-3或x >4}(C ){x |-3<x <4}(D ){x |-3<x <2
1} 5.
3x >-解集为( )
(A ){x | 1<x <5} (B ){x | 3<x ≤5} (C ){x | 1≤x <3或3<x <5} (D ){x | 1≤x <5}
6.不等式9x +2·3x +
1-16>0( )
(A ){x | x >2或x <-8} (B ){x |x >log 32} (C ){x | x >log 23} (D ){x | 0<x <log 32}
7.不等式03232x x x
x x >⎧⎪
--⎨>⎪++⎩
解集是( ) (A ){x | 0<x <2} (B ){x | 0<x <
2
5
} (C ){x | 0<x <6} (D ){x | 0<x <3} 8.不等式|x 2-4|<x +2的解集为( )
(A ){x | x <3} (B ){x | 1<x <3} (C ){x | -2<x <3} (D ){x | x >3或x <-2} 9.不等式|x +1|+|x -3|>5解集为( )
(A ){x |x <-
23或x >27} (B ){x |-23<x <27}(C ){x |x <-23} (D ){x |x >2
7} 10. 当0<a <1时,不等式log a (1-1
x
)>1的解集为( )
(A ){x |x >1或x <11a -}(B ){x |0<x <11a -}(C ){x |11a -<x <1}(D ){x | 1<x <1
1a
-}
11.设A ={x ||x -2|<3},B ={x ||x -1|>1},则A ∩B 等于( ) (A ){x | -1<x <5} (B ){x | x <0或x >2} (C ){x |-1<x <0或2<x <5} (D ){x | -1<x <0} 12.一元二次不等式x 2-7x +12<0, -2x 2+x -5>0, x 2+2>-2x 的解集分别是M 、N 、P ,则有( ) (A )N ⊆M ⊆P (B )M ⊆N ⊆P (C )N ⊆P ⊆M (D )M ⊆P ⊆N
13.抛物线y =ax 2+bx +c 与x 轴的两个交点为(-2,0),(2,0),则ax 2+bx +c >0的解集是( ) (A )-2<x <2(B )x >2或x <-2(C )x ≠±2(D )不确定,与a 的符号有关 14. 若不等式ax 2+8ax +21<0的解集是{x | -7<x <-1},那么a 的值是( ) (A )1 (B )2 (C )3 (D )4
15.不等式x 2-2x -3<0的解集为A,不等式x 2+x -6<0的解集为B,不等式x 2+ax +b <0的解集是A ∩B,那么a +b 等于( )
(A )-3 (B )1 (C )-1 (D )3 16.不等式(2―a )x 2―2(a ―2)x +4>0对于一切实数x 都成立,则( )
(A ){a |-2<a <2} (B ){a |-2<a ≤2} (C ){a |a <-2} (D ){a |a >2} 17.若二次方程2(kx -4)x -x 2+6=0无实根,则k 的最小整数值是( )
(A )-1 (B )2 (C )3 (D )4 18.不等式(1)(1)0x x +->的解集是( )
(A ){}
01x x ≤< (B ){0x x <且,1}x ≠-(C ){}
11<<-x x (D ){1x x <且,1}x ≠- 19.已知不等式|x -2|+|x -2|<m 的解集为空集,则实数m 的取值范围是( ) (A )m <1 (B )m ≤1 (C )m ≤
101 (D )m <10
1 20.关于x 不等式2
log 0a x x -<在开区间10,2⎛
⎫ ⎪⎝⎭
内恒成立,则a 的取值范围( )
(A )10,
16⎛⎫
⎪⎝⎭
(B )()10,1,16⎛⎫⋃+∞ ⎪⎝⎭(C )1,116⎡⎫⎪⎢⎣⎭(D )()1,11,22⎛⎫⋃ ⎪⎝⎭ 二、填空题 1.不等式22
6
1x x +-<的解集是__________________.
2.不等式lg(lg )0x >的解集是__________________.
3.312x -的解集是__________________.
4.
不等式625log (1log x >的整数解的个数是____________.
5.已知关于x 的不等式2ax b +<(其中a ≠0)的则解集{}
26x x <<,则ab =______. 二、解答题
1.解含绝对值的不等式.
(1)|3x +4|>0(2)|5x -3|<10(3)4
21x x
--≥(4)22544x x x -+≤- 2.解下列一元二次方程. (1)2x 2+x -3<0
(2)4x -x 2+12≥0
(3
)22330x x +-≤ (4)x 2-ax -2a 2<0.(其中a 为常数)
3.解下列分式不等式
(1)
501x x ->+ (2)21021x x +≤- (3)32043x
x ->+ (4)
32145x x ->+ (5)230443x x x ->-+ (6)4
3x x
-≥ 3.解下列无理不等式 (1
>(2
3x ≤-
(3
1x ≥+
(4
≥(5
)1x
<
(6
1x >-(其中a 为正常数)
4.解下列不等式
(1)20.254log (1)log (1)log (21)x x x ++->- (2)12
2
1
2log (5)log 0x x
+-+> (3)21
15
5250x x -++≥
(4)227(3)
1x x
x -->
4.一元二次方程x 2+4x -m =0的两个实根之积的平方不大于36,试求m 的取值范围. 5.若k 取何值时,不等式(k +1)x 2―2(k ―1)x +3(k -1)≥0对于任何x ∈R 都成立. 6.解下列不等式:
(1
)1
2
11+-<.
(2)0.20.234log log x x -<.
(3)
12
13
2log 2
x
+<. (4
)2log 1x
≥.
7.已知不等式22
(1)
(1)1
13
3
log log 1ax x x -+->-对任意实数(0,3)a ∈恒成立,求实数x 的取值范围.
8.解关于x 的不等式2231
(2)1(2)log 4log 12log (2)log log 3
n
n
x
x
x
n x
x a a a a a n -----+++-< ,其中
常数a >1,n 为正整数.
9.解关于x 的不等式322(22)x
x
x
x
λ-->-.
10.关于x
的不等式21531
log 1)log (6(22)0log x x a
x a x a
λ-⋅-+>-+
≥的解集中的元素有且只有两个,求a 的值.(a =2)
11.解关于x 的不等式log 32a x
x
a x <.。