4光电效应法测普朗克常数实验

合集下载

光电效应测量普朗克常量实验报告

光电效应测量普朗克常量实验报告

光电效应测量普朗克常量实验报告引言:光电效应是20世纪初物理学上的一大发现,这一现象被广泛应用于工业和科学研究中。

实验的目的是通过实验测量普朗克常量(h)。

普朗克常量是量子力学中最重要的常量之一,它是描述微观物理现象的基础。

实验原理:光电效应是指当金属表面受到光的照射时,金属表面上的自由电子可以被激发出来。

这种现象可以用经典物理学和量子力学来解释。

根据经典物理学,当光照射一个金属表面时,光子(光的波动粒子性质)会“撞击”金属表面上的电子,给它们提供一定的能量,如果这些电子获得的能量大于金属的解离能,那么它们就可以脱离金属表面成为自由电子。

而从量子力学的角度看,光子具有一定的能量和波长,对于金属来说,只有能量大于它的等效电离能才能将电子脱离金属表面,且脱离电子的动能与光子的能量差相等。

根据这两种解释,在光照射下,从金属表面脱离的电子数随着入射光的强度和频率而改变。

在实验中,可以通过改变光的频率来控制金属表面上脱离的电子数,进而测量普朗克常量。

另外,测量光电子的动能也是实验的重要指标之一。

实验器材:实验器材主要包括:汞灯、透镜、绿色滤波片(546 nm)和金属片。

在实验的过程中,我们需要依次将汞灯、透镜和绿色滤波片固定在一起,形成一个光源,将金属片放在光源前方,这样当光照射在金属片上时,就可以观察到光电子的逸出现象。

并使用一个数据采集器来测量电压和电流的变化,并通过计算来推导出普朗克常量。

实验步骤:1.首先将汞灯、透镜和绿色滤波片按照实验要求固定在一起,形成一个光源,在不同的电压下调整汞灯的强度,保证光线对金属片的照射强度在合适的范围内。

2.将金属片放置在光源前方,调整金属片的位置,使得光照射在金属片的表面上。

在不同的电压下,记录金属片释放出的光电子电流的变化情况。

3.保持光源的强度和金属片的位置不变,更换不同颜色的滤波片(即不同的波长),测量在不同波长下金属片释放出的光电子电流的变化情况。

4.通过分析实验数据,计算出光子的能量和波长,并推导出普朗克常量的数值。

光电效应法测定普朗克常数.

光电效应法测定普朗克常数.
U0
0

U0 ~ 曲线
4、存在截止频率:只有入射光频率 大于0 时, 才能产生光电效应,0称为截止频率。对于不同 的金属阴极,0值也不同。但这些直线的斜率都
相同。
5、瞬时效应:频率大于截止频率0的光一照到阴极
上,立即有光电子产生。
爱因斯坦光电效应方程
• 光束由光子构成,频率为ν的光束,光子能量为
光电效应法测定普朗克常数
聚光镜
光电管
测量放大器
溴钨灯
【实验目的】
一、进一步理解光的量子性和爱因斯坦光 电效应方程。
二、学习测量普朗克常数的方法。
三、掌握小型光栅单色仪和微电流计的调 节方法。
【实验原理】
一、光电效应和爱因斯坦方程 二、光电管的实际伏安特性曲线
一、光电效应和爱因斯坦方程
• GD为光电管,K为阴极, A为阳极,G为微电流计, V为电压表,R为滑线变 阻器。
4、将读数轮置于546nm(修正值)。取下光电管暗盒 盖,使其对准单色仪的出缝处。
5、调好测量放大器的零点位置。调节电位器旋钮,从
1V开始,缓慢改变电压,观察电流变化,记住电流 开始明显升高的电压值。然后,还是从1V开始,依 次读取电压和电流值,在电流升起点附近,增加测 量点的密度,以使作图精确。电流变成正值后,加
二、在坐标纸 上作出U0 —ν直线。要求: U0 取绝 对值,算出各波长对应的频率,做拟合直线, 在此直线上找到两点求斜率。
三、计算h的值,与公认值(h0=6.6261761034Js )比较算出相对误差。 四、写出误差分析,并作思考题:P126—4题。
表一 不同波长下电压和光电流数值
546nm
-0.1
19.2
-0.05
30.5

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告
通过光电效应实验测量普朗克常数。

实验仪器和材料:
1. 光电效应实验装置:包括一束单色光源、一个光电池、一个电压源、一个微安表和一个电阻箱。

2. 改变光源的波长的装置:包括一个光栅和一个转动装置。

3. 连接电路的导线和接线板。

实验原理:
光电效应是指当光线照射到金属表面时,金属表面的电子受到光的能量的激发,从而离开金属表面成为自由电子的现象。

实验中,使用光电池测量光电流和光电压,通过改变光源的波长,可以得到光电流和光电压与波长的关系,从而得到普朗克常数。

实验步骤:
1. 将实验装置中的光栅装置安装好,将一束单色光通过光栅分光,然后照射到光电池上。

2. 调整转动装置,改变光源的波长,记录下光电流和光电压的数值。

3. 重复步骤2,测量不同波长下的光电流和光电压数据。

实验数据处理和分析:
根据实验得到的光电流和光电压数据,可以绘制光电流与波长和光电压与波长的关系曲线。

通过分析曲线的斜率和截距,可以得到普朗克常数的估计值。

实验结果和讨论:
根据实验得到的光电流与波长和光电压与波长的关系曲线,可以通过线性拟合的方法得到斜率和截距。

根据普朗克方程,可以确定普朗克常数的估计值。

然后与理论值进行对比,讨论实验误差和改进方法等。

结论:
通过光电效应实验测量得到普朗克常数的估计值,并与理论值进行对比,验证了普朗克方程的正确性。

实验结果与理论值的差异可以通过改进实验装置和方法来减小误差。

该实验方法可用于教学中的实践教学和科学研究中的常数测量。

光电效应法测定普朗克常数实验报告(一)

光电效应法测定普朗克常数实验报告(一)

光电效应法测定普朗克常数实验报告(一)光电效应法测定普朗克常数实验报告简介本次实验旨在通过测量光电电流与光强度之间的关系,来确定普朗克常数的值。

实验步骤及结果1.将金属光阻电池置于黑暗室中,打开加热丝,加热至适当温度。

2.用可调节的高压直流电源将金属光阻电池的负电极与光电管的阳极相连,调整电压直至光电流不为零。

3.将光源调至不同亮度,分别记录不同光强度下的光电流值。

4.根据测得的数据,绘制光电流与光强度的图像,通过斜率的计算来确定普朗克常数的值。

经过实验,得到普朗克常数的值为6.629×10−34J⋅s。

实验分析1.实验结果与理论值相符合,证明光电效应法是一种有效的测定普朗克常数的方法。

2.实验中需要控制光源的亮度,否则测得的数据可能不准确。

3.在实验过程中,还需注意金属光阻电池的温度和电压的调节,以确保测量的准确性。

总结通过本次实验,我们成功地利用光电效应测定了普朗克常数的值,深入了解了相关的物理原理和实验步骤,并掌握了实验中的技巧和注意事项,这对我们今后的学习和科研工作都有很大的帮助。

4.实验误差分析在实验中,由于光电效应本身的动力学效应和金属电阻的存在,可能会导致一些误差,具体分析如下:•光电效应中电子的动能难以精确测量,这可能会导致数据误差。

•金属电阻会使得实际测得的电压与理论值之间存在差距,这也会对实验数据产生影响。

•光源的亮度可能在实验过程中不稳定,如有极小变化也会对实验产生影响。

5.改进方案为了减小误差,我们可以采取以下措施:•将实验环境尽可能地保持稳定,以减小光源亮度和金属电阻对实验数据的影响。

•在实验中要注意对电子动能进行更精确的测量,以确保数据的准确性。

•尽量使用高质量的电子器件,并根据实际情况进行适当的调整,以保证实验数据的可靠性。

6.结论通过实验,我们成功地利用光电效应测定了普朗克常数的值,对实验的步骤和注意事项有了更深入的了解,并对误差分析和改进方案有了更全面的认识。

近代物理实验四光电效应测普朗克常数

近代物理实验四光电效应测普朗克常数

近代物理实验四光电效应测普朗克常数实验四光电效应测普朗克常数实验⽬的:1、通过光电效应实验了解光的量⼦性。

2、测量光电管的弱电流特性,找出不同光频下的截⽌电压。

3、验证爱因斯坦⽅程,并测算普朗克常数。

实验器材:GD-IV 光电效应实验仪实验原理:1、光电效应历史进程; 2、实验原理图 3、爱因斯坦光电效应解释:A 、爱因斯坦⽅程:爱因斯坦认为从任⼀点发⽣的光不是简单的按麦克斯韦电磁学说中指出的那样以连续分布的形式把能量传播到空间,⽽是频率为v 的光以hv 为能量单位(光量⼦)的形式⼀份⼀份的向外辐射。

B 、爱⽒认为光电效应,是具有能量hv 的⼀个光⼦作⽤于⾦属中的⼀个⾃由电⼦,并将⾃⼰的全部能量都交给这个电⼦⽽造成的,若电⼦脱离⾦属表⾯耗费的能量为Ws 的话,则由光电效应打出来的电⼦的能为 E=Ws hv -或221mu=Ws hv - 01h:为普朗克常数:公认值为6.629×10-34J ·sec v :为⼊射光频率 m:电⼦的质量u:光电⼦逸出⾦属表⾯时的初速度ws 为受光线照射的⾦属材料的逸出功,即电⼦脱离⾦属束缚消耗的能量,从爱因斯坦⽅程显然看出,光⼦的能量hv 部分转化为电⼦脱离⾦属束缚所消耗的逸出功,另⼀部分为电⼦的运动动能,当不受其他空间电荷阻⽌时,此动能为最⼤动能。

⼊射到⾦属表⾯的光频率越⾼,逸出来的电⼦最⼤动能也越⼤,如图1: e: 截⽌电压:由于光电⼦具有最⼤的动能,即使阳极不加电压也会有光电⼦落⼊⽽形成电流。

甚⾄阳极相对于阴极的电位低时也会有光电⼦落到阳极,直到阳极电位低于某⼀数值时,此时的反向电场能完全阻⽌光电⼦到达阳极;当当所有光电⼦都不能到达阳极,光电流为零,此时相对于阴极为负的阳极电压称为光电效应的截⽌电压;此时显然有,兵eVs=221mu……02 图1D :阈频率:⾦属材料的逸出功Ws 是⾦属的固有属性,对于给定的⾦属材料Ws 是⼀个定值。

它与⼊射光的频率有关,令Ws=hv 0 03V 0阈频率。

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告一、实验目的1、了解光电效应的基本规律。

2、掌握用光电效应法测量普朗克常数的方法。

3、学习测量截止电压的方法,并通过数据处理得出普朗克常数。

二、实验原理1、光电效应当一定频率的光照射在金属表面时,会有电子从金属表面逸出,这种现象称为光电效应。

逸出的电子称为光电子。

2、爱因斯坦光电方程根据爱因斯坦的理论,光电子的最大初动能$E_{k}$与入射光的频率$ν$ 和金属的逸出功$W$ 之间的关系可以表示为:\E_{k} =hν W\其中,$h$ 为普朗克常数。

3、截止电压当光电子的动能为零时,所加的反向电压称为截止电压$U_{c}$。

此时有:\eU_{c} = E_{k}\将上面两式联立,可得:\U_{c} =\frac{hν}{e} \frac{W}{e}\4、普朗克常数的测量通过测量不同频率光对应的截止电压,作$U_{c} ν$ 图像,图像的斜率即为$h / e$ ,从而可以求出普朗克常数$h$ 。

三、实验仪器光电效应实验仪、汞灯、滤光片、遮光片、微电流测量仪等。

四、实验步骤1、仪器连接与预热将光电效应实验仪的各个部分正确连接,打开电源,让仪器预热 20 分钟左右。

2、调整仪器(1)调整光源与光电管之间的距离,使光斑能够均匀照射在光电管的阴极上。

(2)调整遮光片,使得光能够准确地通过遮光孔照射到光电管上。

3、测量不同频率光的截止电压(1)依次换上不同波长的滤光片,得到不同频率的单色光。

(2)缓慢调节电压,观察微电流测量仪上的示数,当电流为零时,记录此时的电压值,即为该频率光对应的截止电压。

4、重复测量对每个频率的光,进行多次测量,取平均值以减小误差。

五、实验数据及处理1、实验数据记录|波长λ (nm) |频率ν (×10^14 Hz) |截止电压 Uc (V) |||||| 365 | 821 |-185 || 405 | 741 |-148 || 436 | 688 |-115 || 546 | 549 |-071 || 577 | 519 |-057 |2、数据处理以频率$ν$ 为横坐标,截止电压$U_{c}$为纵坐标,绘制$U_{c} ν$ 图像。

普朗克常数测量的实验

普朗克常数测量的实验

普朗克常数测量的实验一、实验仪器GD-4型智能光电效应(普朗克常数)实验仪(由光电检测装置和实验仪主机两部分组成)光电检测装置包括:光电管暗箱GDX-1,高压汞灯箱GDX-2;高压汞灯电源GDX-3和实验基准平台GDX-4。

二、实验目的1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

三、实验原理1、普朗克常数的测定根据爱因斯坦的光电效应方程:E=hv -W (1)PsW 是材料本身的属性,所以对于同一种材料W 是一样的。

当光子的能量hv<W 时不能产sss生光电子,即存在一个产生光电效应的截止频率v 0(v o =W/h )实验中:将A 和K 间加上反向电压U KA (A 接负极),它对光电子运动起减速作用.随着反向电压U n 的增加,到达阳极的光电子的数目相应减少洸电流减小。

当U M =U 时,光电流降为零,此时光电子的初动能全部用于克服反向电场的作用。

即eU =EsP这时的反向电压叫截止电压。

入射光频率不同时,截止电压也不同。

将(2)式代入(1)式, 得hU=—(v 一v )(3) s e 0(其中v =W /h )式中h 、e 都是常量,对同一光电管v 也0s 0 是常量,实验中测量不同频率下的U ,做出U-v 曲线。

在ss (3)式得到满足的条件下,这是一条直线。

若电子电荷e ,由斜率k=h 可以求出普朗克常数h 。

由直线e(其中:Ep 是电子的动能,h 是光子的能量,v 是光 的频率,W 是逸出功,h 是普朗克常量。

)(2)上的截距可以求出溢出功W,由直线在v轴上的截距可以求出截止频率v。

如图(2)所示。

2、测量光电管的伏安特性曲线在照射光的强度一定的情况下,光电管中的电流I与光电管两端的电压U之间存在着一定的关系。

AK四、实验内容1、将仪器的连线接好;2、经老师确认后,接通电源预热仪器20分钟;3、熟悉仪器,进行一些简单的操作,并将仪器调零;4、普朗克常数的测定选定某一光阑孔径为①的光阑(记录其数值),在不改变光源与光电管之间的距离L的情况下,选用不同滤色片(分别有人为400nm,430nm,460nm,490nm,520nm),调节光电管两端的电压U,使得光电管中的电流为0,将此时光电管两端的电压表示为U(称AKs为截止电压),将其记录下来;5、测量光电管的伏安特性曲线观察5条谱线在同一光阑孔径为①(记录其数值),在不改变光源与光电管之间的距离L(记录其数值)的情况下,改变光电管两端的电压U(范围在T〜50V),记录电压UAKAK 和对应的光电流I。

光电效应法测定普朗克常数实验报告

光电效应法测定普朗克常数实验报告

光电效应法测定普朗克常数实验报告一、实验目的本实验旨在通过光电效应法测定普朗克常数,并掌握使用光电效应法测定普朗克常数的实验方法。

二、实验原理光电效应是指光照射在金属表面时,如果光子的能量大于金属的逸出功,那么就会发生光电子的发射。

发射的光电子速度与入射光子的能量有关,其关系式为:1/2mv^2=hv-φ其中,m为光电子的质量,v为光电子的速度,h为普朗克常数,v 为光子的频率,φ为金属的逸出功。

根据上述公式,我们可以通过测量光电子的最大动能和入射光子的频率来求解普朗克常数。

三、实验器材和实验步骤实验器材:光电效应实验仪、电压源、微安表、光源、金属样品、计算机等。

实验步骤:1.将金属样品安装在光电效应实验仪的样品台上,并调整光源的位置和强度,保证光线垂直照射在样品上。

2.调节电压源的输出电压,使得微安表的指针停留在零位。

3.改变光源的频率,记录微安表的读数,并记录此时的电压值。

4.重复第3步,直到微安表的读数变为零。

5.根据实验数据求解普朗克常数。

四、实验数据处理根据实验数据,我们可以绘制出光电效应实验的电流-电压曲线,如下图所示:其中,当电流为零时,表示此时的电压为最大电压,即光电子的最大动能。

通过测量光电子最大动能对应的电压值和对应的光源频率,我们可以求解普朗克常数。

五、实验结果与结论通过实验数据处理,我们得到普朗克常数的值为6.63×10^-34 J·s,这个数值与理论值非常接近,说明本次实验的结果是比较准确的。

实验结果表明,光电效应法可以用于测定普朗克常数,而且其测量精度高,方法简单易行,是一种非常有用的实验方法。

六、实验注意事项1.实验过程中要保证光线垂直照射在金属样品上,同时避免其他光源的干扰。

2.测量电流时,要注意保证电流表与金属样品之间的电路畅通无阻。

3.实验过程中要注意用手套或木夹子等工具操作,避免直接接触金属样品。

4.实验结束时,要注意关闭电源和光源,并按照要求归还实验器材。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电效应测定普朗克常数1887年德国物理学家赫兹发现,电火花间隙受到紫外线照射时会产生更强的电火花,此即光电效应。

1902年勒纳德等人对光电效应做了深入研究并总结出了光电效应的基本实验规律,但是这些规律无法用光的波动理论解释。

1900年普朗克在研究黑体辐射时,首次提出了能量子假说,即辐射只能是hν的整数倍。

1905年爱因斯坦把普朗克能量子假设启,提出了光量子假说,即一束光是一粒一粒以光速c运动的粒子流,这些粒子称为光子,光子的能量为E=hν。

根据光量子假说,爱因斯坦导出了光电效应方程,并成功地解释了光电效应的实验规律。

1916年密立根以精湛的实验技术检验了爱因斯坦的光电效应方程,并对普朗克常数h作了首次精确测定。

1922年康普顿发现了“康普顿效应”,他采用单个光子和自由电子的碰撞理论,对这个效应做出了满意的理论解释,进一步证实了爱因斯坦的光子理论。

光电效应实验在证实光的量子性方面起着决定性的作用,与此密切相关的研究5次获得诺贝尔奖。

光电效应分为外光电效应和内光电效应。

利用外光电效应制成的光电器件如光电管、光电池、光电倍增管等已广泛应用于生产科研和日常生活中,如摄影,电视,光控路灯,数码相机;利用内光电效应(光电导效应和光生伏打效应)的光敏电阻、光电二极管和光电三极管、场效应光电管、雪崩光电二极管、电荷耦合器件等半导体光敏元件制成的光电式传感器已应用到纺织、造纸、印刷、医疗、环境保护等领域,在红外探测、辐射测量、光纤通信,自动控制等传统应用领域的研究也有新发展。

【实验目的】1. 测定光电效应的伏安特性曲线,加深对光的量子性的认识和理解;2. 学习验证爱因斯坦光电方程的实验方法,并测定普朗克常数。

【实验原理】1. 光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。

为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为γ的光波,每个光子的能量为E h ν=,其中 h =6.626s J ⋅⨯-3410为普朗克常数。

按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。

爱因斯坦提出了著名的光电方程:212h m W νυ=+ (1) 式中,ν为入射光的频率,m 为电子的质量,υ为光电子逸出金属表面的初速度,W 为被光线照射的金属材料的逸出功,212m υ为从金属逸出的光电子的最大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位0U 被称为光电效应的截止电压。

显然,有02120=-mv eU(2)代入(1)式,即有0h eU W ν=+ (3)由上式可知,若光电子能量h . .+ν<W ,则不能产生光电子。

产生光电效应的最低频率是ν0=W/h ,通常称为光电效应的截止频率。

不同材料有不同的逸出功,因而ν0也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。

又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子的频率ν成正比,,将(3)式改写为00()h W hU e e eννν=-=- (4) 上式表明,截止电压0U 是入射光频率ν的线性函数,如图2,当入射光的频率ν=ν0时,截止电压00=U ,没有光电子逸出。

图中的直线的斜率k=h/e 是一个正的常数:ekh =(5)由此可见,只要用实验方法作出不同频率下的U 0-ν曲线,并求出此曲线的斜率,就可以通过式(5)求出普朗克常数h 。

其中C e 191060.1-⨯=是电子的电量。

图2 U 0-ν 直线 图3 光电效应原理图2. 光电效应的伏安特性曲线图3是利用光电管进行光电效应实验的原理图。

频率为 、强度为P 的光线照射到光电管阴极上,即有光电子从阴极逸出。

如在阴极K 和阳极A 之间加正向电压AK U ,它使K 、A 之间建立起的电场对从光电管阴极逸出的光电子起加速作用,随着电压AK U 的增加,到达阳极的光电子将逐渐增多。

当正向电压AK U 增加到m U 时,光电流达到最大,不再增加,此时即称为饱和状态,对应的光电流即称为饱和光电流。

由于光电子从阴极表面逸出时具有一定的初速度,所以当两极间电位差为零时,仍有光电流I 存在,若在两极间施加一反向电压,光电流随之减少;当反向电压达到截止电压时,光电流为零。

图4 入射光频率不同的I -U 曲线 图5 入射光强度不同的I -U 曲线爱因斯坦方程是在同种金属做阴极和阳极,且阳极很小的理想状态下导出的。

实际上做阴极的金属逸出功比作阳极的金属逸出功小,所以实验中存在着如下问题:(1) 暗电流和本底电流。

当光电管阴极没有受到光线照射时也会产生电子流,称为暗电流。

它是由电子的热运动和光电管管壳漏电等原因造成的。

室内各种漫反射光射入光电管造成的光电流称为本底电流。

暗电流和本底电流随着K 、A 之间电压大小变化而变化。

(2) 阳极电流。

制作光电管阴极时,阳极上也会被溅射有阴极材料,所以光入射到阳极上或由阴极反射到阳极上,阳极上也有光电子发射,就形成阳极电流。

由于它们的存在,使得实际I~U曲线较理论曲线下移,如图6。

图6 伏安特性曲线由于暗电流是由阴极的热电子发射及光电管管壳漏电等原因产生,与阴极正向光电流相比,其值很小,且基本上随电位差U呈线性变化,因此可忽略其对遏止电位差的影响。

阳极反向电流虽然在实验中较显著,但它服从一定规律。

因此,确定遏止电位差值可采用以下两种方法:⑴ 交点法光电管阳极用逸出功较大的材料制作,制作过程中尽量防止阴极材料蒸发,实验前对光电管阳极通电,减少其上溅射的阴极材料,实验中避免入射光直接照射到阳极上,这样可使它的反向电流大大减少,其伏安特性曲线与图5十分接近,因此曲线与U轴交点的电位差值近似等于遏止电位差U0,此即本实验采用的交点法(或零电流法)。

⑵拐点法光电管阳极反向电流虽然较大,但在结构设计上,若使反向光电流能较快地饱和,则伏安特性曲线在反向电流进入饱和段后有着明显的拐点,如图6中虚线所示的理论曲线下移为实线所示的实测曲线,遏止电位差U0也下移到U’0点。

因此测出U’0点即测出了理论值U0。

【实验仪器】ZKY—GD1光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪(含光电管和微电流放大器)实验仪器【实验内容及步骤】1.调整仪器(1)用专用电缆将微电流测量仪的输入接口与暗盒的输出接口连接起来;将微电流测量仪的电压输出端插座与暗盒的电压输入插座连接起来;将汞灯下侧的电线与限流器连接起来;接好电源,打开电源开关,充分预热(不少于20分钟)。

(2)在测量电路连接完毕后,没有给测量信号时,旋转“调零”旋钮,使其显示“000”。

每换一次量程,必须重新调零。

(3)取下暗盒光窗口遮光罩,换上365.0nm滤光片,取下汞灯出光窗口的遮光罩,装好遮光筒,调节暗盒与汞灯距离。

2.测量光电管的伏安特性曲线(1)暗盒光窗口装365.0nm滤光片和2mm光阑,缓慢调节电压旋钮,令电压输出值缓慢由-2伏增加到+30V,-2到0之间每隔0.2V记一个电流值,0到30之间每隔3伏记一个电流值。

但注意在电流值为零处记下截止电压值。

(2)在暗盒光窗口上换上404.7nm滤光片,仍用2mm的光阑,重复步骤(1)。

记入表1。

(3)换用4mm的光阑重复步骤(1)、(2)。

(4) 选择合适的坐标,分别作出两种光阑下的光电管伏安特性曲线U~I。

3.测量普朗克常数h(1)电压选择–2~+2V档,将“电流量程”选择开关置于10-13A档。

将测试仪电流输入电缆断开,调零后重新接上。

(2)将直径为4mm的光阑和365.0nm的滤色片装在光电管暗箱入口上。

从高到低调节电压,用零电流法测量该波长对应的U0,并将数据记录于表2中。

(3)依次换上404.7nm、435.8nm、546.1nm、577.0nm的滤色片,重复步骤(1)、(2)。

【数据记录及处理】1. 表1 光电管的伏安特性2. 表2 频率与截止电压的关系(光阑mm 4=Φ)【注意事项】1. 微电流测量仪和汞灯的预热时间必须长于20分钟,连线时务必先接好地线,后接信号线。

切勿让电压输出端A 与地短路,以免损坏电源。

微电流测量仪每改变一次量程,必须重新调零。

2.实验中,汞灯如果关闭,必须经过5分钟后才可重新启动。

3.微电流测量仪与暗盒之间的距离在整个实验过程中应当一致。

4.注意保护滤光片,勿用手触摸其表面,防止污染。

5.每次更换滤光片时,必须遮挡住汞灯光源,避免强光直接照射阴极而缩短光电管寿命,实验完毕后用遮光罩盖住光电管暗盒进光窗。

【思考题】1. 光电管为什么要装在暗盒中?为什么在非测量时,用遮光罩罩住光电管窗口?2. 为什么当反向电压加到一定值后,光电流会出现负值?3. 如何消除暗电流和本底电流对遏止电压的影响?。

相关文档
最新文档