数学建模第二章作业答案章绍辉
(完整版)数学模型第二章习题答案

15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++03032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数.16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(210010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1g m l k g l t '''='ϕ 当无量纲量l l mm '='时, 就有 ll l g g l tt '=⋅'='. (三)2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周⎩⎨⎧==---22/112/112/12/1ππk g m l g tl期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 1022022))()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的.总费用函数()x c b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b kc b b b c kbc x ββ)1(2)1()1(223221+++++=1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0 .01,1单调减少时当t i dtdis s ∴-σσ.0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s,1,10 dtdit s s σσσ从而则若 ()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 (七)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()(记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max Nxrx h -=, 易得 2*0N x = 此时 4rN h =, 但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln'=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. Ex()x f3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=nm n m D 21112 当mn2较小,1 n 时,有 ()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为nq ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 ()1122--+=⋅+⋅n n n nnpq q m npqm q m于是带走产品的平均数是 ()122-+-n n npqq m m , 未带走产品的平均数是 ()()122-+--n n npqq m m n )∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n npq q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111m n n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈当1 n 时,并令'1'D E -=,则 226'm n E ≈④ 两种办法的比较:由上知:mnE 4≈,226'm n E ≈ ∴ m n E E 32/'=,当n m 时,132 mn, ∴ E E '. 所以第二种办法比第一种办法好.2.一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n nr r n r r f 7))(4(7)( 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值.G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.5.某工厂生产甲、乙两种产品,生产每件产品需要原材料、能源消耗、劳动力及所获利润如下表所示:品种 原材料 能源消耗(百元)劳动力(人)利润(千元)甲 2 1 4 4 乙3625现有库存原材料1400千克;能源消耗总额不超过2400百元;全厂劳动力满员为2000人.试安排生产任务(生产甲、乙产品各多少件),使利润最大,并求出最大利润.解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S.则此问题的数学模型为Zy x y x y x y x y x t s y x S ∈≥≥≤+≤+≤++=,,0,020********6140032..54max模型的求解:用图解法.可行域为:由直线,0200024:24006:140032:3:21===+=+=+y x y x l y x l y x l 及组成的凸五边形区域.直线C y x l =+54:在此凸五边形区域内平行移动. 易知:当l 过31l l 与的交点时,S 取最大值. 由⎩⎨⎧=+=+200024140032y x y x 解得:200,400==y x260020054004max =⨯+⨯=S (千元).故安排生产甲产品400件、乙产品200件,可使利润最大,其最大利润为2600千元. 7.深水中的波速v 与波长λ、水深d 、水的密度ρ和重力加速度g 有关,试用量纲分析方法给出波速v 的表达式.解:设v ,λ,d ,ρ,g 的关系为),,,,(g d v f ρλ=0.其量纲表达式为[v ]=LM 0T -1,[λ]=LM 0T 0,[d ]=LM 0T 0,[ρ]=L -3MT 0, [g ]=LM 0T -2,其中L ,M ,T 是基本量纲.---------4分量纲矩阵为A=)()()()()()()()(200010100013111g d v T M L ρλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧===+-++02y - y -0 y 03y y 51454321y y y 的基本解为1y =),21,0,0,21,1(--2y =)0,0,1,1,0(- 由量纲i P 定理 得 ⎪⎩⎪⎨⎧==---2112121πλπλd g v∴g v λ=1π, )(21πϕπ=, λπd =2)(λϕλd g v =∴,其中ϕ是未定函数 .。
章绍辉数学建模第二章

第二章 习题二1.(1)按照“两秒准则”表明前后车距与车速成正比,这和“一车长度准则”是类似的。
在2.2节的基础上引入下面的符号: D ~前后车距(m ) v ~车速(m/s )K ~按照“两秒准则”,D 与v 之间的比例系数(s ),在“两秒准则”中,K=2 于是“两秒准则”的数学模型为(2)D K v K =⨯=而刹车距离的数学模型为212d kv k v =+ 要考虑“两秒准则”是否安全,即要比较D 与d 的大小212d D kv k v K v -=+-⨯(1) 代入k 1=0.75v ,k 2=0.082678,K=2,所以当d>D ,即刹车距离的理论大于前后车距时,认为不够安全;当d<D ,即刹车距离的理论小于前后车距时,认为足够安全。
计算得到当速度超过15.12 m/s 时,“两秒准则”就不安全了,也就是说“两秒准则”适用于车速不是很快的情况。
另外,还可以通过绘图直观解释为什么“两秒准则”不够安全,用以下程序把刹车距离实测数据与“两秒准则”都画在同一幅图中:v=(20:5:80).*0.44704;d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,41820,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2;k1=0.75; k2=0.082678; K=2; d1=[v;v;v].*k1;d=d1+d2;plot([0,40],[0,K*40],'k')hold onplot(0:40,polyval([k2,k1,0],0:40),':k')plot([v;v;v],d,'ok')title('比较刹车距离实测数据、理论值和两秒准则')legend('两秒准则','刹车距离理论值',...'刹车距离的最小值、平均值和最大值',2)xlabel('车速v(m/s)')ylabel('距离(m)')hold off(2)“两秒准则”的不安全性在于,其刹车距离随着车速增长的速度赶不上理论刹车距离的增长速度,为此我们提出一个“t秒准则”,通过不断增加t的值使得刹车距离总是大于理论刹车距离。
数学建模章绍辉版作业

数学建模章绍辉版作业 Last revised by LE LE in 2021第四章作业第二题:针对严重的交通情况,国家质量监督检验检疫局发布的国家标准,车辆驾驶人员血液中的酒精含量大于或等于20mg/100ml,小于80mg/100ml 为饮酒驾车,血液中的酒精含量大于或等于80mg/100ml 的为醉酒驾车。
下面分别考虑大李在很短时间内和较长时间内(如2个小时)喝了三瓶啤酒,多长时间内驾车就会违反新的国家标准。
1、 问题假设大李在短时间内喝下三瓶啤酒后,酒精先从吸收室(肠胃)吸收进中心室(血液和体液),然后从中心室向体外排除,忽略喝酒的时间,根据生理学知识,假设(1) 吸收室在初始时刻t=0时,酒精量立即为032D;在任意时刻,酒精从吸收室吸收进中心室的速率(吸收室在单位时间内酒精含量的减少量)与吸收室的酒精含量成正比,比例系数为1k ;(2) 中心室的容积V 保持不变;在初始时刻t=0时,中心室的酒精含量为0;在任意时刻,酒精从中心室向体外排除的速率(中心室在单位时间内酒精含量的减少量)与中心室的酒精含量成正比,比例系数为2k ;(3) 在大李适度饮酒没有酒精中毒的前提下,假设1k 和2k 都是常量,与饮酒量无关。
2、 符号说明酒精量是指纯酒精的质量,单位是毫克;酒精含量是指纯酒精的浓度,单位是毫克/百毫升; ~t 时刻(小时);()~x t 在时刻t 吸收室(肠胃)内的酒精量(毫克);0~D 两瓶酒的酒精量(毫克);(t)~c 在时刻t 吸收室(血液和体液)的酒精含量(毫克/百毫升); 2()~c t 在时刻t 中心室(血液和体液)的酒精含量(毫克/百毫升);~V 中心室的容积(百毫升);1~k 酒精从吸收室吸收进中心室的速率系数(假设其为常数);2~k 酒精从中心室向体外排除的速率系数(假设其为常数);3~k 在短时间喝下三瓶酒的假设下是指短时间喝下的三瓶酒的酒精总量除以中心室体积,即03/2D V ;而在较长时间内(2小时内)喝下三瓶酒的假设下就特指03/4D V . 3、 模型建立和求解(1) 酒是在很短时间内喝的:记喝酒时刻为0t =(小时),设(0)0c =,可用()2113212()k t k t k k c t e e k k --=--来计算血液中的酒精含量,此时12k k 、为假设中所示的常数,而033155.792D k V ⎛⎫== ⎪⎝⎭.下面用MATLAB 程序画图展示血液中酒精含量随时间变化并且利用fzero 函数和fminbnd 函数来得到饮酒驾车醉酒驾车对应的时间段,以及血液中酒精含量最高的时刻。
章绍辉数学建模第一章

f2=@(xb,t)(xb(1)).*exp(xb(2).*(t-1790)); xb0=[3.9 0.1]; xb=nlinfit(t,x,f2,xb0); x0=xb(1) r=xb(2) sseb=sum((x-f2(xb,t)).^2) %(iii) f3=@(xc,t)(xc(2)).*exp(xc(1).*(t-xc(3))); xc0=[0.1 3.9 1790]; xc=nlinfit(t,x,f3,xc0); t0=xc(3) x0=xc(2) r=xc(1) ssec=sum((x-f3(xc,t)).^2)
输出结果如下: (i) r = 0.021194226383220 ssea = 1.741848398741968e+04 (ii) x0 = 14.993958741348798 r = 0.014223075471036 sseb = 2.263917490355983e+03 (iii) t0 = -3.555319403868392e+43 x0 = -2.354423987310530e+42 r = -2.276151673580580e+37 ssec = 3.584072600000000e+05 由输出结果我们可以看到:情况(ii)的误差平方和相最 小,所以认为(ii)的拟合效果最好,并由此做出拟合效 果图: Matlab代码: %画图
%(i) f1=@(xa,t)(3.9).*exp(xa(1).*(t-1790)); x=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76 92 106.5 123.2 131.7 150.7 179.3 204 226.5 251.4 281.4]; t=1790:10:2000; xa0=0.1; xa=nlinfit(t,x,f1,xa0); r=xa ssea=sum((x-f1(xa,t)).^2) %(ii)
2009全国大学生数学建模竞赛广东赛区初

甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组 甲组
学校名称 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 中山大学 华南理工大学 华南理工大学 华南理工大学 华南理工大学 华南理工大学 华南理工大学 华南理工大学 华南理工大学 华南理工大学 华南理工大学 华南理工大学 华南理工大学 华南理工大学
省赛成绩 3 3 3 成功参赛奖 2 成功参赛奖 2 2 成功参赛奖 成功参赛奖 2 2 1 成功参赛奖 2 成功参赛奖 3 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 3 3 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 1 成功参赛奖 3 3 成功参赛奖 1 3 成功参赛奖 3 2 2 1 3 1 成功参赛奖 1 成功参赛奖 3 2 3 2 3 3 1 成功参赛奖 成功参赛奖
于金杨 罗剑平 辜质敏 郭浩升 欧嘉权 纪晓燕 戴育卿 黄海波 甘若迅 苏美婷 赵丽娜 陈其龙 毕瀛 谢灵玉 赵辛 张智峰 陈真佳 陈敏旋 邓小玲 何娇 张天松 姚尚君 顾龙 陈荣贵 赵必胜 曾一平 曾俊杰 王蓉 丘赟立 郑旭洲 邝永峰 李振昌 苏汉龙 程镇森 徐晓鑫 杨洁 吴劲良 黄成强 方楚逢 付神贺 黄健聪 蓝江林 于超凡 张龙光 唐南军 林兴荣 胡奕荣 王国恩 梁坚强 苏艺胜 钟顺杰 廖林文 唐光灿 黄晓敏 陈成 方菊纯
【免费下载】华南师范大学参加美国数学建模竞赛获奖成绩

题号 A B B C A B B A B C A A A A A B C C
二等奖 20797 刘秀湘
二等奖
20853
二等奖 21820 刘秀湘
二等奖 23312 刘秀湘
二等奖 23232 苏洪雨
二等奖 20767
二等奖 21708
二等奖 22535
二等奖 22753
二等奖 19695 王明兰
二等奖
一等奖 22308
一等奖 20506
一等奖 22082
一等奖 20879
一等奖 22480
二等奖 20382
二等奖 20749
二等奖 21061
二等奖 21593
二等奖 21691
二等奖 22266
Hale Waihona Puke 二等奖 22398二等奖 22532
二等奖 22791
二等奖 18193
二等奖 18560
控制号 18252
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数学建模第一章作业(章绍辉)

X 1 X 2 X n nP nP(1 P)
的分布趋向于标准正态分布 (也就是说, 当 n 充分大的时候, 随机变量 ( X1 X 2 X n ) n 的分布近似于均值为 P、方差 为 P(1 P) n 的正态分布). 用循环语句实现以下计算:考虑试验次数 n=100、400、y Nhomakorabea0
0.1
0.2
0.3
0.4
0.5 x
0.6
0.7
0.8
0.9
1
3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌 掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次 掷出 3 或 11 点,打赌者赢;如果第一次掷出 2、7 或 12 点, 打赌者输;如果第一次掷出 4,5,6,8,9 或 10 点,记住这个点 数, 继续掷骰子, 如果不能在掷出 7 点之前再次掷出该点数, 则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估 计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概 率吗?请问随着试验次数的增加,这些概率收敛吗? 解答 (一)算法 输入 模拟试验的次数 n; 输出 打赌者赢的概率 p. 第 1 步 初始化计数器 k=0; 第 2 步 对 i=1,2,…,n,循环进行第 3~7 步; 第 3 步 产生两个在 1~6 这 6 个整数中机会均等地取 值的随机数, 并把这两个随机数之和赋值给 x; 第 4 步 如果 x 是 3 或 11,那么 k 加 1,进入下一步循 环;否则,做第 5 步; 第 5 步 如果 x 不是 2、7 和 12,那么做第 6~8 步;否 则,直接进入下一步循环; 第 6 步 产生两个在 1~6 这 6 个整数中机会均等地取 值的随机数, 并把这两个随机数之和赋值给 y; 第 7 步 如果 y 不等于 x,也不等于 7,重复第 6 步所 做的; 第 8 步 如果 y 等于 7,那么 k 加 1,进入下一步循环; 否则,直接进入下一步循环; 第 9 步 计算概率 p=k./n .
华东师大数模第2章答案02~ch2_solutions

> > > > >
dxdK1:=diff(x,K1): dydK1:=diff(y,K1): assign(K1=150000); sxK1:=dxdK1*(K1/x); syK1:=dydK1*(K1/y); sxK1 := 1.001502253 syK1 := -.01760602687
Then S(x, K_1) = +1.0015 and S(y, K_1) = -0.0176 so that if the carrying capacity for Blue whales increases by 10% then the optimal population for Blue whales increases by about 10% and the optimal population for Fin whales stays about the same. Now compute that > restart: > z:=0.05*x*(1 - x / 150000) - 10^(-8)* x* y + 0.08* y* (1 - y / K2) - 10^(-8)* x*y; 1 1 y z := .05 x x x y + .08 y 1 − − 1 − 150000 50000000 K2 > dzdx:=diff(z,x); > dzdy:=diff(z,y); dzdx := .05 − .6666666666 10-6 x − dzdy := − 1 x + .08 − 1 50000000 .16 y K2 y
{ y = 196544.8172, x = 69103.65549 }
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题2作业讲评1. 继续考虑2.2节的“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议?(“两秒准则”,即后车司机从前车经过某一标志开始,默数2秒之后到达同一标志,而不管车速如何.刹车距离与车速的经验公式20.750.082678d v v =+,速度单位为m/s ,距离单位为m )解答(1)“两秒准则”表明前后车距与车速成正比例关系. 引入以下符号:D ~ 前后车距(m );v ~ 车速(m/s );于是“两秒准则”的数学模型为22D K v v ==. 与“一车长度准则”相比是否一样,依赖于一车长度的选取.比较20.750.082678d v v =+与2D v =,得:()0.082678 1.25d D v v -=-所以当15.12 m/s v <(约合54.43 km/h )时,有d<D ,即前后车距大于刹车距离的理论值,可认为足够安全;当15.12 m/s v >时,有d>D ,即前后车距小于刹车距离的理论值,不够安全. 也就是说,“两秒准则”适用于车速不算很快的情况.另外,还可以通过绘图直观的解释“两秒准则”够不够安全. 用以下MATLAB 程序把刹车距离实测数据和“两秒准则”都画在同一幅图中(图1).v=(20:5:80).*0.44704;d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,418 20,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2;k1=0.75;k2=0.082678;K2=2; d1=[v;v;v].*k1; d=d1+d2;plot([0,40],[0,K2*40],'k') hold onplot(0:40,polyval([k2,k1,0],0:40),':k') plot([v;v;v],d,'ok','MarkerSize',2)title('比较刹车距离实测数据、理论值和两秒准则') legend('两秒准则','刹车距离理论值',...'刹车距离的最小值、平均值和最大值',2) xlabel('车速v (m/s )') ylabel('距离(m )') hold off510152025303540020406080100120140160180比较刹车距离实测数据、理论值和两秒准则车速v (m/s )距离(m )图1(2)用最大刹车距离除以车速,得到最大刹车距离所需要的尾随时间(表1),并以尾随时间为依据,提出更安全的“t秒准则”(表2)——后车司机根据车速快慢的范围,从前车经过某一标志开始,默数t秒钟之后到达同一标志.v=(20:5:80).*0.44704;d2=[18,25,36,47,64,82,105,132,162,196,237,283,33422,31,45,58,80,103,131,165,202,245,295,353,41820,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376];d2=0.3048.*d2;k1=0.75;k2=0.082678;d=d2+[v;v;v].*k1;vi=0:40;plot([0,10*0.44704],[0,10*0.44704],'k',...vi,k1.*vi+k2.*vi.*vi,'k:',...[v;v;v],d,'ok','MarkerSize',2)legend('t 秒准则','刹车距离理论值',...'刹车距离的最小值、平均值和最大值',2)hold onplot([10,35]*0.44704,2*[10,35]*0.44704,'k',...[35,60]*0.44704,3*[35,60]*0.44704,'k',... [60,75]*0.44704,4*[60,75]*0.44704,'k') title('t 秒准则,刹车距离的模型和数据') xlabel('车速v (m/s )') ylabel('距离(m )') hold off510152025303540020406080100120140160180车速v (m/s )距离(m )t 秒准则,刹车距离的模型和数据图24. 继续考虑2.3节“生猪出售时机”案例,假设在第t 天的生猪出售的市场价格(元/公斤)为2()(0)p t p gt ht =-+(1)其中h 为价格的平稳率,取h =0.0002. 其它模型假设和参数取值保持不变.(1) 试比较(1)式与(2.3.1)式,解释新的假设和原来的假设的区别与联系;(2)在新的假设下求解最佳出售时机和多赚的纯利润; (3)作灵敏度分析,分别考虑h 对最佳出售时机和多赚的纯利润的影响;(4)讨论模型关于价格假设的强健性. 解答一(用MATLAB 数值计算)(1)比较(1)式与(2.3.1)式,(1)式表明价格先降后升,(2.3.1)式假设价格匀速下降,(1)式更接近实际(图3). 两个假设都满足(0)p g '=-,在最佳出售时机附近误差微小(图4). 绘图的程序p=@(t)12-0.08*t+0.0002*t.^2; figure(1) n=400;plot([0,n],[12,12-0.08*n],'k:',... 0:.1:n,p(0:.1:n),'k') axis([0,400,0,20])title('模型假设(1)式与(2.3.1)式的比较')legend('p(0) - g t (1)式',... 'p(0) - g t + h t^2 (2.3.1)式') xlabel('t (天)')ylabel('p (元/公斤) ') figure(2) n=20;plot([0,n],[12,12-0.08*n],'k:',... 0:.1:n,p(0:.1:n),'k')title('模型假设(1)式与(2.3.1)式的比较')legend('p(0) - g t (1)式',... 'p(0) - g t + h t^2 (2.3.1)式')xlabel('t (天)'), ylabel('p (元/公斤) ')50100150200250300350400024********161820模型假设(1)式与(2.3.1)式的比较t (天)p (元/公斤)图3246810121416182010.410.610.81111.211.411.611.812模型假设(1)式与(2.3.1)式的比较t (天)p (元/公斤)图4(2)在(1)式和(2.3.1)式组成的假设下,多赚的纯利润为()()23()(0)(0)(0)Q t rp gw c t hw gr t hrt =--+-+保留h ,代入其他具体数值,得()32()900.08 1.6Q t ht h t t =+-+令()2()31800.16 1.60Q t ht h t '=+-+=解得生猪出售时机为130t =-(舍去负根)多赚的纯利润为()321111900.08 1.6Q ht h t t =+-+.代入h =0.0002,得113.829t =天,110.798Q =元.或者用MATLAB 函数fminbnd 计算,脚本如下: C=@(t)3.2*t; w=@(t)90+t;p=@(t,h)12-0.08*t+h*t.^2;Q=@(t,h)p(t,h).*w(t)-C(t)-90*12; Qh=@(t)-Q(t,0.0002); t1=fminbnd(Qh,0,30) Q1=Q(t1,0.0002)为帮助理解,可用以下脚本绘制图5: figure(2) tp=0:250;plot(tp,Q(tp,0.0002),'k') title('纯利润Q') xlabel('t (天)') ylabel('Q (元) ')050100150200250-600-500-400-300-200-100100纯利润Qt (天)Q (元)图5(3)用以下MATLAB 脚本计算灵敏度(,)t tS t h h h ∆=∆和(,)Q QS Q h h h ∆=∆,将结果列表.结论:h 的微小变化对t 和Q 的影响都很小 Qh=@(t)-Q(t,0.0002*1.01); [tn,Qn]=fminbnd(Qh,0,30); (tn-t1)/t1/0.01 (-Qn-Q1)/Q1/0.01Qh=@(t)-Q(t,0.0002*1.05); [tn,Qn]=fminbnd(Qh,0,30); (tn-t1)/t1/0.05 (-Qn-Q1)/Q1/0.05Qh=@(t)-Q(t,0.0002*1.1); [tn,Qn]=fminbnd(Qh,0,30); (tn-t1)/t1/0.1 (-Qn-Q1)/Q1/0.1表3 数值计算最佳出售时机t 对h 的灵敏度表4 数值计算多赚的纯利润Q 对h 的灵敏度(4)市场价格是经常波动的,如果价格下跌,往往会止跌回稳,模型假设(1)式以二次函数来刻画价格止跌回升的变化趋势,如果考虑的时间段长达数月,(1)式比(2.3.1)式更接近实际(见图3),但是本问题的最佳出售时机不超过20天,(1)式与(2.3.1)式在最佳出售时机附近非常近似(见图4),(1)式导致的模型解答可以由(2.3.1)式导致的解答加上灵敏度分析所代替. 所以采用更为简单的(2.3.1)式作为假设更好.具体分析如下:由12()(,)g g t p t h -+∆=,得12(,)1g p t h g gt∆-=-, 代入h =0.0002,t =13.82852279,g =0.08,得0.034571gg∆=-. 由于(,)t g S t g t g∆∆≈,根据课本2.3节,代入(,) 5.5S t g =-,t =10,算得11.901t t +∆=,与t =13.829只相差两天.用于以上分析计算的MATLAB 脚本: dg_g=(12-p(ts,0.0002))/ts/0.08-1 10+dg_g*10*(-5.5)解答二(用MATLAB 的Symbolic Math Toolbox 的MuPAD 软件符号计算)(1)运行以下MuPAD 语句,绘得图6和图7:plot(plot::Function2d(12-0.08*t+0.0002*t^2,t=0..400), plot::Function2d(12-0.08*t,t=0..150, LineStyle=Dashed));plot(plot::Function2d(12-0.08*t+0.0002*t^2,t=0..20), plot::Function2d(12-0.08*t,t=0..20, LineStyle=Dashed),#O);(1)式表明价格先降后升,在实际当中有一定道理. 而 (2.3.1)式假设价格匀速下降. 两个假设都满足(0)p g '=-,在最佳出售时机附近误差微小.图6假设(2.3.1)式与(1)式的比较图7假设(2.3.1)式与(1)式的比较(2) 在(1)式和(2.3.1)式组成的假设下,保留h,代入其他具体数值,计算多赚的纯利润. 运行以下MuPAD语句:C:=t->32/10*t:w:=t->90+t:p:=(t,h)->12-8/100*t+h*t^2:Q:=(t,h)-->expand(w(t)*p(t,h)-C(t)-90*12); plot(plot::Function2d(Q(t,0.0002),t=0..290));算得223(2)825,905ht h h t Q t t t =+-+,绘得图8.图8(,0.0002)Q t 的图像运行以下MuPAD 语句:S:=solve(diff(Q(t,h),t),t) assuming h>0; t1:=S[1];subs(t1,h=0.0002); t2:=S[2];ts:=subs(t2,h=0.0002); Q2:=Q(t2,h);Qs:=subs(Q2,h=0.0002);由方程0Qt∂=∂,解得两根:12t t ==代入h =0.0002,得12192.8381439, 13.82852279t t ==(天). 2t 符合题意,1t 应该舍去(对应的Q 是负数). 2t 对应的多赚的纯利润为10.79837809元.(3)接着上一小题,运行以下MuPAD 语句:subs(diff(t2,h)*h/t2,h=0.0002); //t 对h 的灵敏度利用导数算得t 对h 的灵敏度:d (,)0.4124276803d t hS t h h t=⋅=.运行以下MuPAD 语句:subs(diff(Q2,h)*h/Q2,h=0.0002); //Q 对h 的灵敏度,方法一 subs(diff(Q(t,h),h)*h/Q(t,h),t=ts,h=0.0002); //Q 对h 的灵敏度,方法二,更简单用两种方法利用导数算得Q 对h 的灵敏度:d (,)0.367739025d Q hS Q h h Q=⋅=. 结论:h 的微小变化对t 2和Q 2的影响都很小. (4)同解答一5. 继续考虑第2.3节“生猪出售时机”案例,假设在第t 天的生猪体重(公斤)为()000()mt m w w w t w w w e α-=+-(2)其中0(0)90w w ==(公斤),270m w =(公斤),其它模型假设和参数取值保持不变.(1)试比较(2)式与(2.3.2)式,解释新的假设和原来的假设的区别与联系(提示:说明当α (α>0)取何值时,在t =0时可以保持(0)1w r '==;说明当t 增大时,猪的体重会如何变化).(2)在新的假设下求解最佳出售时机和多赚的纯利润. (3)参数m w 代表猪长成时的最终重量,对m w 做灵敏度分析,分别考虑m w 对最佳出售时机和多赚的纯利润的影响.(4)讨论模型关于生猪体重假设的强健性. 解答一(用MATLAB 数值计算)(1)在(2)式中,为使(0)w r '=,必须00()m m w w w w α-=. 当m w =270,0w =90时,有160α=.新假设(2)式是阻滞增长模型,假设生猪体重的增长率是体重的线性递减函数,于是体重增加的速率先快后慢,时间充分长后,体重趋于m w . 而(2.3.2)式0()w t w rt =+只假设体重匀速增加. 长时间来看,新假设比原假设更符合实际(图9). 两个假设都满足(0)w r '=,在最佳出售时机附近误差微小(图10).50100150200250300350400050100150200250300t (天)价格 p (元/公斤)模型假设(2.3.2)式与(2)式的比较图924681012141618209095100105110115t (天)价格 p (元/公斤)图10(2) 在(2.3.1)式和(2)式组成的假设下,用MATLAB 函数fminbnd 计算,可以求得生猪出售时机为t =14.434天,多赚的纯利润为Q =12.151元.(3) 编程计算(,)m m m t t S t w w w ∆=∆和(,)mm m Q QS Q w w w ∆=∆,将结果列表.表5数值计算最佳出售时机t 对m w 的灵敏性表6数值计算多赚的纯利润Q 对m w 的灵敏性结论:m w 的微小变化对t 和Q 的影响都较小.(4)模型假设(2)式导致的模型解答可以由(2.3.2)式导致的解答加上灵敏度分析所代替,所以实践中采用更为简单的(2.3.2)式作为假设即可. 具体分析过程见解答二之(4).MATLAB 脚本: %% (1) 绘图的程序w=@(t)90*270./(90+180*exp(-t/60));figure(1)n=400;plot([0,n],[90,90+n],'k:',...0:.1:n,w(0:.1:n),'k')axis([0,400,0,300])legend('p(0) - g t (2.3.2)式',... 'p(0) - g t + h^2 (2)式',4) title('模型假设(2.3.2)式与(2)式的比较') xlabel('t(天)')ylabel('价格 p(元/公斤) ')figure(2)n=20;plot([0,n],[90,90+n],'k:',...0:.1:n,w(0:.1:n),'k')legend('p(0) - g t (2.3.2)式',... 'p(0) - g t + h^2 (2)式',2) xlabel('t(天)')ylabel('价格 p(元/公斤) ')%% (2) 最佳出售时机和多赚的纯利润C=@(t)3.2*t;w=@(t,m)90*m./(90+(m-90)*exp(-t/60));p=@(t)12-0.08*t;Q=@(t,m)p(t).*w(t,m)-C(t)-90*12;Qh=@(t)-Q(t,270);ts=fminbnd(Qh,0,30)Qs=Q(ts,270)%% (3) 灵敏度分析Qh=@(t)-Q(t,270*1.01);[tn,Qn]=fminbnd(Qh,0,30);(tn-ts)/ts/0.01(-Qn-Qs)/Qs/0.01Qh=@(t)-Q(t,270*1.05);[tn,Qn]=fminbnd(Qh,0,30);(tn-ts)/ts/0.05(-Qn-Qs)/Qs/0.05Qh=@(t)-Q(t,270*1.1);[tn,Qn]=fminbnd(Qh,0,30);(tn-ts)/ts/0.1(-Qn-Qs)/Qs/0.1%% (4) 强健性分析dr_r=(w(ts,270)-90)/ts-110+dr_r*10*6.5解答二(用MATLAB的Symbolic Math Toolbox的MuPAD软件符号计算)(1)运行以下MuPAD 语句,算得160α=:solve(subs(diff(90*270/(90+(270-90)*E^(-a*t)),t), t=0)=1,a);运行以下MuPAD 语句,绘得图11:plot(plot::Function2d(90*270/(90+180*E^(-1/60*t)), t=0..400),plot::Function2d(90+t,t=0..180,LineStyle=Dashed), plot::Line2d([0,270],[400,270],LineStyle=Dotted),#O);运行以下MuPAD 语句,绘得图12 :plot(plot::Function2d(90*270/(90+180*E^(-1/60*t)), t=0..20),plot::Function2d(90+t,t=0..20,LineStyle=Dashed),#O);(2)式()06000()mt m w w w t w w w e -=+-是阻滞增长模型,假设生猪体重的增长率是体重的线性递减函数. 于是,体重w 是时间t 的增函数,体重增加的速率先快后慢,时间充分长后,体重趋于m w . 而(2.3.2)式0()w t w rt =+只假设体重匀速增加. 长时间来看,新假设比原假设更符合实际. 两假设都满足(0)w r '=,在最佳出售时机附近误差微小.图11假设(2.3.2)式与(2)式的比较图12假设(2.3.2)式与(2)式的比较w,代入其(2)在由(2)式和(2.3.1)式组成的假设下,保留m他具体数值,计算多赚的纯利润. 运行以下MuPAD语句:C:=t->3.2*t:w:=(t,wm)->90*wm/(90+(wm-90)*E^(-t/60)): p:=t->12-0.08*t:Q:=(t,wm)-->w(t,wm)*p(t)-C(t)-90*12;plot(plot::Function2d(Q(t,270),t=0..30));算得()()6090120.08(,) 3.210809090emm tmw tQ t w tw--=--+-,绘得图13.图13(,270)Q t的图像运行以下MuPAD语句:T:=solve(diff(Q(t,270),t),t);ts:=T[1];Qs:=Q(ts,270);可解出Q的驻点的数值解14.43357158st=(天),根据函数图像和问题的实际意义,可知这是所求的最佳出售时机,对应的多赚的纯利润为12.15129217s Q =元.(3)接着上一小题,运行以下MuPAD 语句,但是求不出当(,)m Q t w 达到最大值时t 关于m w 的函数解析式:solve(diff(Q(t,wm),t),t);运行以下MuPAD 语句:solve(diff(Q(t,wm),t),wm);可见当(,)m Q t w 达到最大值时m w 关于t 的反函数解析式却有可能求得出,只是MuPAD 给出的表达式很复杂. 其实可以按如下步骤推出m w 关于t 的反函数解析式:g1:=diff(Q(t,wm),t)=0; 算得0Q t∂=∂即: ()()260606030.0812907.2 3.209090902e 90e e m m m m t m t t w t w w w w -----=--⎛⎫++ ⎪⎝⎭观察上式,发现分母大于零,而且去分母之后,合并m w 的同类项,可以表示为m w 的二次方程:g2:=g1*((wm-90)/E^(t/60)+90)^2*25*E^(t/60); //去分母 g2:=collect(g2,wm); //合并wm 的同类项,t 当作参数2606060306060801440016200e 270327038700e e e 648000e 64800012960000e e t m m t t t t t t t w t w ⎛⎫⎛⎫--++-- ⎪ ⎪⎝⎭⎝⎭+--=运行以下MuPAD 语句,由图像(图14)可知在实际问题关心的0<t<30范围内,二次项系数608027030e tt-->:plot(plot::Function2d((270-80/E^(t/60)-3*t),t=0..100));图4 二次项系数的符号于是,运行以下MuPAD语句,解方程:S:=solve(g2,wm);MuPAD给出解的四种情况,其中第一种是二次项系数非零,正是本问题所要求的解. 但是二次方程有两个根,要检验哪一个根才是当(,)mQ t w达到最大值时mw关于t的反函数解析式.float(subs(S[1][1],t=ts));算得当st t=时,有0.8519704108mw=-,这是增根,舍去;float(subs(S[1][2],t=ts));算得当st t=时,有270mw=,这是要找的根;wms:=S[1][2]; //当Q达到最大值时wm关于t的反函数解析式float(subs(1/(diff(wms,t))*wm/t,t=ts,wm=270));//t 对wm 的灵敏度,利用反函数求导数利用反函数求导数算得t 对m w 的灵敏度:d 1(,) 3.80183985d d d m m m m m w w t S t w w w tt t=⋅=⋅=. Q 对m w 的灵敏度则比较简单,运行以下MuPAD 语句: float(subs(diff(Q(t,wm),wm)*wm/Q(t,wm),t=ts,wm=270)); //Q 对wm 的灵敏度利用导数算得Q 对m w 的灵敏度:d (,)7.786585188d m m m w Q S Q w w Q=⋅=. 结论:m w 的微小变化对t 和Q 存在一定影响,不算厉害.(4)模型假设(2)式以阻滞增长模型来刻画生猪体重的变化趋势,如果考虑的时间段长达数月,(2)式比(2.3.2)式更符合实际,但是本问题的最佳出售时机不超过20天,(2)式与(2.3.2)式在最佳出售时机附近非常近似,(2)式导致的模型解答可以由(2.3.2)式导致的解答加上灵敏度分析所代替. 所以采用更为简单的(2.3.2)式作为假设更好. 具体分析如下:由()90(,)m r r t w t w ++∆=,得(,)90m w t w r r t-∆=-, 代入270m w =,14.43357158s t t ==,r =1,得0.036565352791r r r ∆∆==. 由于(,)t r S t r t r∆∆≈,根据2.3节,代入(,) 6.5S t r =,t =10,r =1,算得12.37674793t t +∆=,与14.43357158s t =只相差两天.以上计算可以用以下MuPAD 语句实现:dr:=float((w(ts,270)-90)/ts-1);10+dr*10*6.5;。