自动控制系统工程设计PPT课件

合集下载

自控原理课件 第7章-自动控制系统控制器及其校正与设计

自控原理课件 第7章-自动控制系统控制器及其校正与设计

31
32
33
比例控制器另一作用是调整系统的开环放大 倍数,加快系统的响应速度。 考虑图7.14所示带有比例控制器校正的控制系 统,系统的闭环传递函数为
34
可见,Kp 愈大,稳态精度愈高,系统的时间常 数τ=T/(1+Kp )愈小,则系统响应速度愈快。 [例7.4]被控对象为一阶惯性的比例控制器控 制时SIMULINK仿真 如图7.15所示,一阶惯性环节为10/(5s+1) ,比例控制器增益为1时,系统输出为指数上升 形式。 如图7.16所示,被控对象不变,比例控制器 增益为10,系统输出仍为指数上升形式,输出与 输入不相等,仍为有差系统,但误差减小,且响 应速度加快,读者可计算验证。
67
由图7.36可见,校正前原系统是O型系统(无积 分器)是有静差系统。校正后系统成为I型系统(含 有一个积分器),在阶跃输入下能实现无静差,改 善了系统的稳态性能。校正前原系统相位裕量= 88º ,校正后相位裕量=65,相位裕量是减小的, 意味着系统的超调量将增加,降低了系统的稳定 性。总之,采用PI校正,能改善系统的稳态性能, 而动态性能可能受到一定的影响。
第7章 自动控制系统控制器及其 校正与设计
本章主要讲述自动控制系统中常用的控制器 及其校正。在对自动控制系统分析后,发现系统 不能满足性能指标的要求,需要对系统进行改进, 在原有的系统中,有目的地增添一些装置和元件, 人为地改变系统的结构和性能,使之满足所要求 的性能指标,这种方法就称为校正。常用的校正 方法有串联校正、反馈校正和顺馈补偿。同时, 本章还简要叙述常用的工程上的设计方法。
38
SIMULINK仿真结果如图7.20所示,输出波形 虽有振荡,但超调量减小,振荡次数减少,系统响 应得到了改善。 7.2.3 积分控制器(I)校正

自动控制原理课件1

自动控制原理课件1

一、开环控制系统、闭环控制系统和复合控制 系统
(一)开环控制系统 例
概念: 如果控制系统的输出量对系统没有 控制作用,这种系统称为开环控制系统.
输入 控制器
被控对象
输出
一、开环控制系统和闭环控制系统 举例:炉温控制系统
uc
特点:
本系统的输入量是自耦变压器的输出电压uc,输 出量是电阻炉的输出温度T; u唯一对应T;
§1-1 控制理论的发展历程
3、本课程与相关课程的关系 现制 代理 控论
过制 程系 控统
后续课程
各业 其 类课 它 专程
自动控制原理 先修课程 大 学 物 理 微 积 分 积 分 变 换 复 变 函 数 电 子 技 术 电 路 理 论 电 机 拖 动
§1-1 控制理论的发展历程
4、课程的理论体系
给定 环节 比较 环节 校正 环节 放大 环节 执行 机构
§1-2 控制系统的基本概念 (三)关于传递方框图的几点说明
执行机构 直接作用于控制对象(调节机构、传 动装置、电机)
给定 环节 比较 环节 校正 环节 放大 环节 执行 机构 被控 对象
§1-2 控制系统的基本概念 (三)关于传递方框图的几点说明
§1-2 控制系统的基本概念 举例: 液位自动控制系统
手臂,手
+
大 脑
M

目标液位
放大器
§1-2 控制系统的基本概念 一、基本术语 自动控制:在没有人的直接干预下,利用物理
装置对生产设备和工艺过程进行合理的控制,使 被控制的物理量保持恒定或按一定的规律变化。
如液位,炉温,轧辊辊速,带钢张力等控制。
古代
在二次世界大战期间,由于军事上 的需要,雷达和火力控制系统有了 较大的发展,N.Winner在总结前 人成果的基础上发表了《控制论》 一书,标志着控制理论学科的诞生。

自动控制系统课程设计.ppt

自动控制系统课程设计.ppt

保护电路
三相交流电源
三相全控桥
直流电动机
双闭环调速
触发电路
图2-3 系统设计框图
变流器主电路和保护环节设计
• 整流变压器
• 在一般情况下,晶闸管装置所要求的交流供电电 压与电网电压往往不一致;此外,为了尽量减小 电网与晶闸管装置的相互干扰,要求它们相互隔 离,故通常要配用整流变压器,这里选项用的变 压器的一次侧绕组采用△联接,二次侧绕组采用Y 联接。
课程设计的主要任务
• (一) 系统各环节的选型:
1、主回路方案确定; 2、控制回路选择;
• (二) 主要电气设备的计算和选择:
1、整流变压器计算; 2、晶闸管整流元件; 3、系统各主要环节的设计; 4、平波电抗器选择计算;
• (三) 系统参数计算:
1、电流调节器ACR中 、 计算; 2、转速调节器ASR中 、 计算;
本设计采用如下图阻容吸收回路来抑制过电压
图3-3 元件换相保护原理图
• 其中
C (2 ~ 4)IT 103
• 电阻功率选择 PR 1.75 fCUTm 2 10 6 (W )
• 过电流保护
• 将快速熔断器安装在交流侧或直流侧,在直流侧与元件直 接串联。
• 选择时应注意以下问题: • ① 快熔的额定电压应大于线路正常工作电压的有效值。 • ② 熔断器的额定电流应大于溶体的额定电流。 • ③ 溶体的额定电流 计算公式 三相交流电路的一次侧过电流保护 • 在本设计中,选用快速熔断器与电流互感器配合进行三
• β=0.77V/A,α=0.007Vmin/r
直流拖动系统系统总体设计
• 主要任务
1、系统总体方案的选择; 2、系统方案的实体设计; 3、系统各主要保护环节的设计; 4、系统的动态工程设计;

控制工程基础PPT课件(王积伟)第一章控制系统的基本概念

控制工程基础PPT课件(王积伟)第一章控制系统的基本概念

2/4/2024
20
第一章 控制系统的基本概念
输入量 控制器
输出量 对象或过程
反馈量 测量元件
闭环控制系统框图
➢ 半闭环控制系统 特点:反馈信号通过系统内部的中间信号获得。
2/4/2024
21
第一章 控制系统的基本概念 闭环控制系统的组成
比较
给定 元件
+ 元件
_
串联校正 元件
输入信号 偏差信号
2/4/2024
31
第一章 控制系统的基本概念
准确性 控制精度,以稳态误差来衡量。 稳态误差:系统的调整(过渡)过程结束而趋 于稳定状态时,系统输出量的实际值与给定量 之间的差值。
2/4/2024
32
第一章 控制系统的基本概念
快速性 输出量和输入量产生偏差时,系统消除这种偏 差的快慢程度。快速性表征系统的动态性能。
注意:在机械、液压、气动、机电等系统中 存在着内在反馈,这种反馈无须专门 的反馈元件,是系统内部各参数相互 作用产生的,如作用力与反作用力之 间形成的直接反馈。
2/4/2024
23
第一章 控制系统的基本概念
➢ 比较元件 对给定信号和反馈信号进行比较,产生偏差 信号;
➢ 放大元件 对偏差信号进行放大,使之有足够的能量驱 动执行元件实现控制功能。
系统的输出不断地、直接或间接地、全部或部分 地返回,并作用于系统,即输出量的返回过程称 为反馈。返回的全部或部分输出信号称为反馈信号。
2/4/2024
9
第一章 控制系统的基本概念
综上所述,控制系统的工作原理: ➢检测输出量(被控制量)的实际值 ➢将输出量的实际值与给定值(输入量)进行比
较得出偏差; ➢用偏差值产生控制调节作用去消除偏差,使得

第八章控制系统工程设计 过程控制系统课件

第八章控制系统工程设计 过程控制系统课件

第八章 控制系统工程设计
8.1.3 自控系统工程设计的方法
接到一个工程项目后,在进行自控系统的工程设计时,一般应按照 以下所述的方法来完成。
(1)熟悉工艺流程 熟悉工艺流程是自控设计的第一步。自控设计人员对工艺流程熟悉
和了解的深度将决定设计的好坏与成败。在此阶段还需收集工艺中有关的 物性参数和重要数据。
而文字资料则是对设计第八章控制系统工程设计表81被测变量和仪表功能的字母代号首位字母后继字母被测变量修饰词读出功能输出功能修饰词a分析报警b喷嘴火焰供选用供选用供选用c电导率控制d密度差e电压电动势检测元件f流量比分数g供选用视镜观察h手动高i电流指示j功率扫描第八章控制系统工程设计自动手动操作器k时间时间程序变化速率l物位指示灯低m水分或湿度瞬动中中间n供选用供选用供选用供选用oo供选用节流孔p压力真空连接或测试点q数量积算累计r核辐射记录s速度频率安全开关联锁第八章控制系统工程设计t温度传送变送u多变量多功能多功能多功能v振动机械监视阀风门百叶窗w重量或力套管x未分类x轴未分类未分类未分类y供选用y轴继动器继电器计算器转换器z位置尺寸z轴驱动器执行元件第八章控制系统工程设计对于表81中所涉及的内容简要说明如下
第八章 控制系统工程设计
8.1.1 工程设计的基本任务和设计步骤
1.基本任务与设计宗旨 自控系统工程设计的基本任务是:依据生产工艺的要求, 以企业经济效益、安全、环境保护等指标为设计宗旨,对生产 工艺过程中的温度、压力、流量、物位、成分及火焰、位置、 速度等各类质量参数进行自动检测、反馈控制、顺序控制、程 序控制、人工遥控及安全保护(如自动信号报警与联锁保护系 统等)等方面的设计,并进行与之配套的相关内容(如控制室、 配电、气源,以及水、蒸汽、原料、成品计量等)的辅助设计。 在实际工作中,必须按照国家的经济政策,结合工艺特点 进行精心设计。一切设计既要注意厂情,又要符合国情,严格 以科学的态度执行相关技术标准和规定,在此基础上建树设计 项目的特色。总之,工程设计的宗旨应切合实际、技术上先进、 系统安全可靠、经济投入/效益比要小。

自动控制系统ppt课件

自动控制系统ppt课件

(二) 逆变器输出电压与脉宽的关系 单极式SPWM 脉冲幅值1/2Us.在半个周波内有 N个脉冲,个脉冲不等宽 但中心间距一样, 等三角波的周期
令 第 个矩形脉冲宽度为 其中心点相位角
因为从原点始只有半个三角波
因为输出电压波形 负半波左右对称,是一个奇 次周期函数
把N个矩形脉冲代表的 代入上式,须先求的每个 脉冲的起始和终止相位角
五.研究自动控制系统的方法
定性分析 建立数学模型
定性分析 建立数学模型
定量分析
定性分析
对系统校正 工程实践
对系统校正
称心?
N
Y 工程实践
六.本课程与其它课程的关系
先修课程 电机学、自控原理、电子技术
后续课程 计算机控制系统
六.本课程与其它课程的关系
主要内容 直流电机自动控制系统 交流电机自动控制系统
§7-1变频调速的基本控制方 式
电机调速时希望磁通量Φm为额定值不变 三相异步机每相电势 Eg=4.44f1N1KN1Φm f1------定子频率 KN1---基波绕组系数 N1-----定子每相绕组串联匝数 Φm ----每极气隙磁通量(Wb)
一.基频以下调速
f1从额定f1n向下调。 要求: Eg /f1 =常数。
二.自动控制系统的分类
③过程控制系统 特点:对生产过程自动提供一定的外界条件,
例如:温度、压力、流量、粘度、浓度等参 量保持恒定或按一定的程序变化。对其中的 每一局部,可以是随动系统,也可以是恒值 系统。 例子:化工厂控制系统。
二.自动控制系统的分类
2.按数学模型分类 数学模型 描述系统内部各物理量之间关系的数学表达式。 静态模型 变量各阶导数为零的条件下。
二:直接变频装置(AC-AC)

《闸门自动控制系统》课件

《闸门自动控制系统》课件

传感器
1 功能
传感器用于感知和监测闸门操作过程中的各种参数,如位置、速度、压力等。
2 常见类型
常见的传感器类型包括位置传感器、压力传感器和光电传感器等。
3 使用注意事项
在选择和安装传感器时需要考虑环境条件和性能要求,以确保准确可靠的数据采集。
控制模块
功能
控制模块用于接收传感器信号并 进行逻辑处理,控制闸门的运行 和停止。
自动控制系统的实现过程
1
控制过程简介
自动控制系统通过传感器、控制模块和执行机构等组件,实现对闸门的自动化控 制。
2
实现步骤
实现自动控制系统的步骤包括需求分析、系统设计、硬件和软件配置、系统调试 和运行等。
应用范围和前景
应用领域介绍 经济效益分析 技术发展前景展望
闸门自动控制系统广泛应用于水利工程、环境工 程和工业生产等领域。
常见类型
常见的控制模块包括可编程逻辑 控制器(PLC)和单片机控制器 等。
使用注意事项
在安装和编程控制模块时,需要 仔细阅读说明书并按照要求进行 操作。
执行机构
功能
执行机构用于实际控制和操作 闸门的打开、关闭和停止等动 作。
常见类型
常见的执行机构包括电机、液 压缸和气动执行器等。
使用注意事项
在选择和安装执行机构时需要 考虑闸门的大小、重量以及所 需动作的力量和速度等因素。
《闸门自动控制系统》PPT课 件
在这个PPT课件中,我们将介绍闸门自动控制系统的定义、系统组成部分,以 及传感器、控制模块、执行机构等关键组成部分。我们还会介绍实现过程、 应用范围和技术前景。
系统概述
闸门自动控制系统的定义
闸门自动控制系统是一种用于自动控制和管理闸门运行的系统。

自动控制原理演示课件-自动控制原理(孙晓波)

自动控制原理演示课件-自动控制原理(孙晓波)

开环控制系统不具备自动修正的能力。
当系统精度要求不高或干扰对系统的影响不大时,可以采 用开环控制方式,如交通指挥的红绿灯转换,自动控制生产 线等。
开环控制系统的精度主要取决于构成系统元器件的精度以 及调整的精度。
输入量
控制器
对象 或过程
输出量
开环控制系统的方框图
闭环控制
闭环控制指控制装置与被控对象之间既有正向的作用, 又有反向联系的控制过程。
测量元件
闭环系统的方框图
开环控制与闭环控制的比较
开环控制系统中信号由输入到输出是单方向传递的,不必对输
出信号进行测量,因此结构简单,调整方便,成本较低。

开环控制可分为按给定量进行控制与按扰动量进行控制,按扰 动量进行控制又称为前馈控制,适用于扰动可测量的场合。
环 控 制
由于开环控制只有正向作用,没有反向的联系,因此没有修正 偏差的能力,抗扰动性较差。
而电动机的反电动势E,与输出角速度W成正比,即 E Ce
电枢电流i在恒定外磁场中产生的力矩为 M=CM i
CM 比例系数
在以上各式中消去中间变量,求得以电枢电压为输入变量和以电动机 输出轴角速度为输出变量时,直流电动机空载时的运动方程式为
1.4 控制系统的组成与对控制系统的基本要求
控制系统的组成
输入量
-
变换
串联
放大
校正
-
变换 放大
执行 元件
反馈 校正
测量 元件
闭环系统的一般组成
被控 输出量 对象
自动控制系统的基本要求 c(t)
稳定性:稳定性是指系统重新恢复平衡状
态的能力。稳定性是对系统的最基本要求,
p
2
不稳定的系统不能实现预定任务。稳定性通 c()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
12
1.1.3 控制理论的形成
自动化技术的实际应用划分为自动化技术形 成、局部自动化和综合自动化三个阶段
自动化技术形成时期为18世纪末~20世纪30 年代
局部自动化时期是在20世纪40~50年代 ,期 间形成了经典控制理论
20世纪50年代之后,是综合自动化阶段,出 现了各种复杂的控制系统,如:多环控制、 多变量控制、分级控制、集散控制系统等。
详细设计阶段编制3版
设计任务书 初步设计 详细设计 现场调试 资料归档
详1版(或称研究版,简称E版)
详2版(或称设计版,简称F版)
施工版(简称G版)
.
20
设计任务书 ① 工艺流程或对象特征 ② 重要工艺参数及指标要求 ③ 系统运行环境 ④ 特殊工艺要求 ⑤ 系统设计目标
.
18
自动化工程阶段划分与内容
自动化工程设计要分阶段进行,主要有一下 几方面的原因:
便于审查 随时纠正错误,以免施工中返工 协调各专业之间的矛盾
.
19
1.2.2 自动控制系统的工程设计流程
基础设计阶段编制4版
初版(简称A版) 内部审查版(简称B版) 用户审查版(简称C版) 确认版(简称D版)
等系统的设计 顺序控制、信号报警和联锁系统、安全仪表系统
和紧急停车系统的设计
完成这些基本设计任务时,要选择自动化装置,确定信号的传递连接。同时
还要考虑自动化工程中辅助设备及附件、电气设备材料、安装材料的选型设计,
自控的安全技术措施和防干扰、安全设施的设计,以及控制室、仪表车间与分
析室的设计。
.
17
解决的问题
安全性 稳定性
安全性是指在生产过程中,要 保证人员的安全、设备的安全、 以及生态平衡和环境卫生的安 全。越限报警、联锁保护、视频监视、
远程监控、安全栅等
稳定性主要指系统的抗干扰能 力,在出现各种可预见的干扰 的情况下,系统都要保留一定 的稳定裕度
经济性
经济性是指节省投资、提高产 品产量质量、节能降耗、提高 经济效益和社会效益等
1877年英国数学家劳斯(E.J.Routh)提 出了著名的劳斯稳定判据
1895年德国数学家A.胡尔维茨提出著名
的胡尔维茨稳定判据.
8
自动控制理论的早期发展过程
1892年俄国数学家李雅普诺夫发表了 《论运动稳定性的一般问题》的专著 。 以数学语言形式给运动稳定性的概念下 了严格的定义﹐给出了判别系统稳定的 两种方法
浑天仪和地动仪
指南车
水运仪象台
自动开启装置、自动洒圣 水的铜祭司、投币式圣水 箱、青铜小鸟
.
3
钟壶滴漏
.
指南车
4
17~19世纪
1642年法国物理学家 帕斯卡
加法器
1657年荷兰机械师 惠更斯
钟表
1745年英国机械师 E.李
风磨
1765年俄国
波尔祖诺夫 水位调节器
1788年英国科学家 瓦特
离心式节速器
➢ 连续控制与逻辑控制 ➢ 安全与防爆 ➢ 集中控制方式与就地控制方式
项目实施过程
➢ 项目组成 ➢ 项目实施过程 ➢ 项目过程参与方
.
16
1.2 自动控制系统设计的基本知识
1.2.1 设计的主要任务和解决的问题
自动化工程设计的基本任务
工艺生产装置与公用工程、辅助工程系统的控制 检测仪表、在线分析仪表和控制及管理用计算机
第一章 绪论
本章主要内容
自动控制系统的发展及技术现状(技术和理论) 自动控制系统设计的基本知识
.
1
1.1.1 自动控制系统的发展及技术现状
发展过程
自动控制技术的发展经历了机械自动化 机械、电气自动化的过程
.
2
古代
中国,埃及和巴比伦等 汉朝 张衡 三国 公元1090年 苏颂 古埃及 希腊
自动计时漏壶
程序控制、逻辑控制和自动机的思想同时得到了发展
1833年英国数学家C.巴贝奇在设计分析机时首先提出 程序控制的概念
1936年英国数学家图灵提出著名的图灵机﹐成为现代 数字电子计算机的雏形。图灵机定义可计算函数类﹐
建立了算法理论和自动机理论。
1938年美国电气工程师香农和日本数学家中岛﹐以及 1941年苏联科学家В﹒И﹒舍斯塔科夫﹐分别独立地 建立了逻辑自动机理论﹐用仅有两种工作状态的继电 器组成了逻辑自动机﹐实现了逻辑控制
李雅普诺夫第一法
李雅普诺夫第二法
.
9
自动控制理论的早期发展过程
1925年英国电气工程师O.亥维赛把拉普拉斯 变换应用到求解电网络的问题上﹐提出了运 算微积分,求得瞬态过程
利用拉普拉斯变换描述线性定常系统或线性 元件的输入输出关系,就得到了传递函数
在传递函数基础上,发展了频率响应法
1927年美国贝尔电话实验室在解决电子管放 大器失真问题时,电气工程师H.S.布莱克从 电信号的角度引入了反馈的概念
.
10
自动控制理论的早期发展过程
1932年美国电信工程师奈奎斯特提出著名 的奈奎斯特稳定判据﹐可以直接根据系统 的传递函数来画出奈奎斯特图,判定反馈 系统的稳定性
1938年苏联电气工程师A.B.米哈伊洛夫应 用频率法来研究自动控制系统的稳定性﹐ 提出著名的米哈伊洛夫稳定判据
.
11
自动控制理论的早期发展带动了其 它领域的发展
自动调节器的稳定性问题、蒸汽机的剧烈振荡问题、自 动操舵机的稳定性问题
一些数学家尝试用微分方程来描述和分析系统的稳定性
问题。
.
7
自动控制理论的早期发展过程
英国物理学家麦克斯韦,在1868年发表 了《论调速器》的文章,总结了无静差 调速器的理论,对控制系统进行了最初 的数字描述
俄国机械学家И﹒А﹒维什涅格拉茨基 1876年发表《论调节器的一般理论》的 文章﹐进一步总结了调节器的理论。
1854年俄国
康斯坦丁诺夫 电磁调速器
1868年法国工程师 法尔科
反馈调节器
.
5
惠更斯发明的钟表
.
6
1.1.2 自动控制理论的早期发展
自动控制理论是自动控制系统工程设计的基础
自动控制装置的优点:改进生产技术,提高生产效率
17~18世纪是自动化技术的逐渐形成时期
18世纪之后是自动化技术的发展时期,期间数学描述和 理论分析起到了至关重要的作用 。
.
13
前期课程/知识准备 过程工业原理
关于被控过程的知识。 过程控制系统
关于控制方案及策略的知识。
自动化装置
关于控制工具的知识。
检测技术
关于检测工具的知识。
.
14
过程工业的特点
➢ 连续性 ➢ 变化不可见性 ➢ 强关联性 ➢ 物料流体形态 ➢ 生产过程多样性 ➢ 生产的高危险性
.
相关文档
最新文档