曲面及其方程 1PPT课件

合集下载

高等数学-曲面及其方程复习课件.ppt

高等数学-曲面及其方程复习课件.ppt

所求方程为
x
22
y
12
z
42
116 .
3
3 9
.精品课件.
3
例 3 已知A(1,2,3),B(2,1,4),求线段AB 的
垂直平分面的方程. 解 设M ( x, y, z)是所求平面上任一点,
根据题意有 | MA || MB |,
x 12 y 22 z 32
x 22 y 12 z 42 ,
定义 以一条平面
曲线绕其平面上的
一条直线旋转一周
所成的曲面称为旋
转曲面.
这条定直线叫旋转
曲面的轴.
播放
.精品课件.
7
旋转过程中的特征:
如图 设 M ( x, y, z),
(1) z z1
(2)点M 到z 轴的距离
z
d M1(0, y1, z1)
M f ( y,z) 0
o
y
d x2 y2 | y1 | x
同理: yoz 坐标面上的已知曲线 f ( y, z) 0 绕 y 轴旋转一周的旋转曲面方程为
f y, x2 z2 0.
平面曲线绕某轴旋转,轴坐标变量不变,
而将曲线方程中的另一变量改写成该变量与
第三个变量的平方和的正负平方根。
.精品课件.
9
例 5 直线L绕另一条与L 相交的直线旋转一周,
柱面的母线.
观察柱面的形
成过程:
播放
.精品课件.
13
柱面举例
z
z
y2 2x
o
y
o
x
x
抛物柱面
平面
y
y x
.精品课件.
14
从柱面方程看柱面的特征:

2.1.曲面及其方程ppt课件

2.1.曲面及其方程ppt课件

z


l

oo
y
x
注意:在空间直角坐标系,缺项方程〔不完全方程〕的 图形是柱面.
:
18
z
(1) y 2 2 x 表示抛物柱面,
母线平行于 z 轴;
准线为xoy 面上的抛物线.
o
(2) x y 0表示母线平行于
z 轴的平面.
x
z
(且 z 轴在平面上)
注意:描述柱面只须指出
其准线及母线.
o
x
准线
:
用坐标面和平行于坐标面的平面与曲面相截, 考察其交线(即截痕)的形状, 然后加以综合, 从而 了解曲面的全貌.
以下用截痕法讨论几种常见的二次曲面.
:
23
(1) 椭球面
z
x2 y2 z2 a2 b2 c2 1
O y
1 用坐标面z = 0 , x = 0
x
和y = 0去截割,分别得椭圆
x 2 a2
三元二次方程
椭球面
x2 y2 z2 a2 b2 c2 1
抛物面
椭圆抛物面
双曲抛物面
(p,q同号) x 2 y 2 z 2 p 2q
x2 y2 z
2 p 2q
双曲面 单叶双曲面
双叶双曲面
椭圆锥面
x2 y2 z2 a2 b2 c2 1
x2 a2
y2 b2
z2
x2 y2 z2 a2 b2 c2 1
dx2y2 |y1|
将 z z1 , y 1 x 2y2代入 f(y1,z1)0
:
10
将 z z 1 , y 1 x 2 y 2代入 f(y1,z1)0
得方程 f( x2y2, z)0.

曲面及其方程、二次曲面ppt课件

曲面及其方程、二次曲面ppt课件
观察柱面的 形成过程:
30
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
31
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
18
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
19
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
12
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
13
观察柱面的 形成过程:
37
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
38
柱面举例 抛物柱面
平面
39
一般地,已知准线方程
母线平行于 z 轴的柱面方程为: 注意:方程中缺z,表示z可以任意取值,所以方程 表示母线平行于z轴的柱面。 一般地,在空间直角坐标下
y
x x
.
48
平面
椭圆. 上的截痕情况:

7-5曲面及其方程 共42页

7-5曲面及其方程  共42页
特殊地:球心在原点时方程为 x2y2z2R2
球面的一般方程:x 2 y 2 z 2 D E x F y G z 0
圆 ( D ,心 E , F )半 , R 径 1D 2 为 E 2 F 2 4 G 3
222
2
例3 问方 x2程 y2z22x4y4z0表示什?么 解 方程可化为:
这条定直线叫旋转 曲面的轴.曲线叫旋 转曲面的母线.
6
三、旋转曲面
(1)定义以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.曲线叫旋 转曲面的母线.
7
三、旋转曲面
(1)定义以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.曲线叫旋 转曲面的母线.
观察柱面的形 成过程:
29
柱面
(1) 定义 平行于定直线并沿定曲线C 移动的直线L 所形成的曲面称为柱面.
这条定曲线C 叫柱面的准线 ,动直线L 叫 柱面的母线.
观察柱面的形 成过程:
30
柱面
(1) 定义 平行于定直线并沿定曲线C 移动的直线L 所形成的曲面称为柱面.
这条定曲线C 叫柱面的准线 ,动直线L 叫 柱面的母线.
§7-5 曲面及其方程
一、球面及其方程 1. 曲面方程的概念
曲面的实例: 水桶的表面、台灯的罩子面等.
曲面在空间解析几何中被看成是点的几何轨迹.
曲面方程的定义:
如果曲面 S 与三元方程F ( x, y, z) 0有下述关系:
(1) 曲面 S 上任一点的坐标都满足方程; (2)不在曲面 S 上的点的坐标都不满足方程; 那么,方程F ( x, y, z) 0就叫做曲面 S 的方程, 而曲面 S 就叫做方程的图形.

高等数学第八章第三节曲面及其方程课件.ppt

高等数学第八章第三节曲面及其方程课件.ppt

3) y1 b时, 截痕为双曲线:
x2 a2
z2 c2
1
y12 b2
0
y y1
(实轴平行于z 轴;
虚轴平行于x 轴)
z
x
y
z
x
y
(2) 双叶双曲面
z
x2 a2
y2 b2
z2 c2
1
( a, b, c 为正数)
平面 y y1 上的截痕为曲线 x 平面 z z1 ( z1 c)上的截痕为 椭圆
故所求方程为
(x x0 )2 ( y y0 )2 (z z0 )2 R2
z 特别,当M0在原点时,球面方程为
x2 y2 z2 R2
表示上(下)球面 . o x
M0
M
y
例2. 研究方程 的曲面.
表示怎样
说明: 如下形式的三元二次方程 ( A≠ 0 )
都可通过配方研究它的图形. 其图形可能是 一个球面 , 或点 , 或虚轨迹.
二、旋转曲面
定义2. 一条平面曲线 绕其平面上一条定直线旋转 一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转 轴.
例如 :
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z) 0
若点 M1(0, y1, z1) C, 则有
z
f ( y1, z1) 0
一、曲面方程的概念
引例: 求到两定点A(1,2,3) 和B(2,-1,4)等距离的点的 轨迹方程.
解:设轨迹上的动点为 M (x, y, z), 则 AM BM , 即
(x 1)2 ( y 2)2 (z 3)2 (x 2)2 ( y 1)2 (z 4)2
化简得 2x 6 y 2z 7 0

《曲面及其方程》PPT课件

《曲面及其方程》PPT课件

x2 y2 z2 Ax By Cz D 0 () 其特点是:平方项系数相等,交叉项系数为零.
方程 (*) 称为球面的一般式方程, 经配方后可化为球面的标准方程.
中值定理与导数的应用
4
特别地:球心在坐标原点时, 球面方程为 x2 y2 z2 R2
中值定理与导数的应用
5
例2 求与原点O 及点 M0(2,3,4)的距离之比为1 : 2 的点的全体所组成的曲面方程.
1
双曲柱面 母线//z

其在 xoy 面上的准线为
x2
a
2
y2 b2
1.
z 0
x2 2 pz 抛物柱面 母线//y 轴
其在 zox 面上的准线为
x2 2 pz
.
y 0 中值定理与导数的应用
19
椭圆柱面
x2 a2
y2 b2
1
z
母线 // z 轴,
其在 xoy 面上的
准线是椭圆
x2
母线平行于 y 轴的柱面,
其在
zox
面上的准线方程是
H ( x, z) y0
0 .
注意 x2 y2 0的图形是什么? z 轴.
中值定理与导数的应用
18
例如
y2 z2 b2 c2 1
椭圆柱面
母线 //x 轴
其在 yoz 面上的准线为
y2
b2
z2 c2
1.
x 0
x2 a2
y2 b2
而生成的旋转面方程 f ( y, x2 z2 ) 0.
例如 yoz 面上的圆 y2 z2 R2 绕 z 轴旋转生成
球面 ( x2 y2 )2 z2 R2,即 x2 y2 z2 R2 .
一般地 xoy 面上的曲线 g( x, y) 0绕 x 轴旋转一周

《曲面及其方程》课件

《曲面及其方程》课件

02
常见曲面及其方程
平面
总结词:二维平面
详细描述:平面是一种常见的曲面,它在三维空间中表现为一个无限延展且没有 厚度的二维表面。平面的方程通常可以表示为 Ax + By + Cz = D。
球面
总结词
三维球体表面
详细描述
球面是三维空间中球体的表面,它可以由球心和球面上任意两点之间的距离来确定。球面的方程通常可以表示为 x^2 + y^2 + z^2 = R^2。
03
曲面的参数方程
参数方程的定义与特点
总结词
参数方程是描述曲面的重要方式,它通过引 入参数来表达曲面上点的坐标。
详细描述
参数方程通常由两个或三个参数变量和对应 的坐标表达式组成,例如,平面上的圆心为 $(h, k)$,半径为$r$的圆的参数方程为$(xh)^2+(y-k)^2=r^2$。参数方程能够清晰 地表达曲面的形状和大小,并且可以通过调 整参数来改变曲面的形状。
《曲面及其方程》 ppt课件
目录
CONTENTS
• 曲面及其方程概述 • 常见曲面及其方程 • 曲面的参数方程 • 曲面的性质与变换 • 曲面方程的求解方法 • 曲面在几何与工程中的应用
01
曲面及其方程概述
曲面的定义与分类
总结词
曲面的定义、分类
详细描述
曲面是三维空间中弯曲的二维表面,它可以由多种方式形成,如旋转、平移、 拉伸等。根据形成方式的不同,曲面可以分为多种类型,如球面、锥面、柱面 等。
性。
曲面的参数方程
曲面可以用参数方程表示,其中 两个参数(u和v)用于描述曲面 上的点。通过参数方程,可以方 便地研究曲面的几何性质和变换
方法。

《曲面及方程》课件

《曲面及方程》课件

7. 曲面的切向量与切线方程
⇢⇠
8. 曲面的法向向量与法线方程⇑⇓
9. 曲面的曲率及主曲率
10. 可视化表示曲面
11. 曲面的翻转与旋转
12. 曲面的投影与裁剪⇩⇧
13. 三维曲面的交点⚡
14. 曲面的梯度、散度、旋度⚙️
15. 曲面的高斯曲率与平均曲率⚖️
16. 曲面的最小曲面与最小旋
转曲面
17. 曲面的拓扑结构
18. 曲面的曲线包络与曲面包络⭕
19. 曲面的偏微分方程
20. 曲面的应用与发展趋势
《曲面及方程》PPT课件
从曲面的定义和特点开始,逐步深入探讨曲面的方程表示、参数化曲面以及
其切平面、法向量等概念,包括曲面的曲率、可视化表示以及应用与发展趋
势。
1. 什么是曲面?
2. 曲面的分类及特点✨
3. 曲面的方程表示
4. 参数化曲面的定义及优点
ห้องสมุดไป่ตู้
5. 常见的参数化曲面
6. 曲面的切平面与法向量⏩⏪
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均为
f ( x2 y2 , z) 0
(3) Oyz面上的曲线 f (z, y) 0 和 Oxy面上的
曲线 f (x, y) 0 绕 y 轴旋转所形成的旋转面方程
均为
f ( x2 z2 , y) 0
.
13
四、空间曲线的一般方程
空间曲线可视为两曲面的交线, 其一般方程为方程组
F(x, y, z) 0 G(x, y, z) 0
例3. 试建立顶点在原点, 旋转轴为z 轴, 半顶角为
的圆锥面方程. 解: 在yoz面上直线L 的方程为
z y cot
z L
绕z 轴旋转时,圆锥面的方程为
z x2 y2 cot
令 a cot
两边平方
x
M (0, y, z)
y
z2 a2( x2 y2 )
.
11
机动 目录 上页 下页 返回 结束
故旋转曲面方程为
M (x, y, z)
o x
M 1 (0, y1, z1 )
y
f ( x2 y2 , z) 0
.
9
机动 目录 上页 下页 返回 结束
思考:当曲线 C 绕 y 轴旋转时,方程如何?
z C : f (y, z) 0
o y
x
f ( y, x2 z2 ) 0
.
10
机动 目录 上页 下页 返回 结束
S2
G(x, y, z) 0
L
S1
F (x, y, z) 0
例如,方程组
x2 y2 1 2x 3z 6
表示圆柱面与平面的交线 C.
z
2C
o
1y
.
x
14
机动 目录 上页 下页 返回 结束
又如,方程组
z
z a2 x2 y2
方程.
解: 设轨迹上动点为 M (x, y, z), 依题意 M 0M R

(x x0 )2 ( y y0 )2 (z z0 )2 R
故所求方程为
(x x0 )2 ( y y0 )2 (z z0 )2 R2
z
特别,当M0在原点时,球面方程为
x2 y2 z2 R2
M0
z R2 x2 y2 表示上(下)球面 .
.
5
机动 目录 上页 下页 返回 结束
定义2. 平行定直线并沿定曲线 C 移动的直线 l 形成
的轨迹叫做柱面. C 叫做准线, l 叫做母线.
• y2 2x表示抛物柱面,
z
母线平行于 z 轴;
准线为xoy 面上的抛物线.

x2 a2
y2 b2
1表示母线平行于
z 轴的椭圆柱面.
x
z
C
o
yl
z
• x y 0 表示母线平行于
总结
(1) Oxy面上的曲线 f (x, y) 0 和 Oxz面上的
曲线 f (x, z) 0 绕 x 轴旋转所形成的旋转面方程
均为 f (x, y2 z2 ) 0
(2) Oxz 面上的曲线 f (x, z) 0 和 Oyz面上的
曲线 f ( y, z) 0 绕 z 轴旋转所形成的旋转面方程
方程 H (z, x) 0 表示柱面,
母线 平行于 y 轴;
准线 xoz 面上的曲线 l3.
.
z
x l1
y z l2
x z l3
x
y y
7
机动 目录 上页 下页 返回 结束
三、旋转面
定义3. 一条平面曲线 绕其平面上一条定直线旋转 一周 所形成的曲面叫做旋转面. 该定直线称为旋转 轴,曲线成为旋转面的母线
C
o
M1
y
在圆C上任取一点M1(x, y,0) , 过此点作 x
平行 z 轴的直线 l , 对任意 z , 点M (x, y, z)
l
的坐标也满足方程 x2 y2 R2
沿曲线C平行于 z 轴的一切直线所形成的曲面称为圆
柱面. 其上所有点的坐标都满足此方程, 故在空间
x2 y2 R2 表示圆柱面
例如 :
.
8
机动 目录 上页 下页 返回 结束
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z) 0
若点 M1(0, y1, z1) C, 则有
z
f ( y1, z1) 0
C
当绕 z 轴旋转时, 该点转到
M (x, y, z) , 则有
z z1, x2 y 2 y1
两个基本问题 :
F (x, y, z) 0
z
S
(1) 已知动点按照某种规律运动, 求运动 x o y
轨迹所产生的曲面方程.
(2) 已知方程时 , 研究它所表示的几何图形
( 必要时需作图 ).
.
2
机动 目录 上页 下页 返回 结束
一、球面及其方程
例1. 求动点到定点 M 0 (x0 , y0 , z0 ) 距离为 R 的轨迹
o
M
y
x
.
3
机动 目录 上页 下页 返回 结束
例2. 研究方程 x2 y2 z 2 2x 4 y 0 表示怎样
的曲面.
解: 配方得 (x 1)2 ( y 2)2 z 2 5 此方程表示: 球心为 M 0 (1, 2, 0 ) ,
半径为 5 的球面.
说明: 如下形式的三元二次方程 ( A≠ 0 )
9.3 曲面及其方程
.
1
定义1. 如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系:
(1) 曲面 S 上的任意点的坐标都满足此方程;
(2) 坐标满足方程的点都在曲面 S 上,
则 F( x, y, z ) = 0 叫做曲面 S 的方程, 曲面 S 叫做方程 F( x, y, z ) = 0 的图形.
例4.
求坐标面
xoz
上的双曲线
x2 a2
z2 c2
1
分别绕
x
轴和 z 轴旋转一周所生成的旋转曲面方程.
解:绕 x 轴旋转 所成曲面方程为
x2 a2
y2 z2 c2
1
绕 z 轴旋转所成曲面方程为
x2 y2 a2
z c
2 2
1
x
y
z
这两种曲面都叫做旋转双曲面.
.
12
机动 目录 上页 下页 返回 结束
A(x2 y2 z 2 ) Dx Ey Fz G 0
都可通过配方研究它的图形. 其图形可能是 一个球面 , 或点 , 或虚轨迹.
.
4
机动 目录 上页 下页 返回 结束
二、柱面
z
引例. 分析方程 x2 y2 R2
表示怎样的曲面 .
M
解:在 xoy 面上, x2 y2 R2表示圆C,
z 轴的平面. (且 z 轴在平面上)
.
o y
o y
x
ቤተ መጻሕፍቲ ባይዱ
x
6
机动 目录 上页 下页 返回 结束
一般地,在三维空间
方程 F (x, y) 0 表示柱面,
母线 平行于 z 轴; 准线 xoy 面上的曲线 l1.
方程 G( y, z) 0 表示柱面,
母线 平行于 x 轴;
准线 yoz 面上的曲线 l2.
相关文档
最新文档