热交换器规格计算表

合集下载

热交换器计算示例-精

热交换器计算示例-精

《热交换器计算示例》2.6 管壳式热交换器[例2.2] 试对固定管板的管壳式煤油冷却器进行传热计算、结构计算和阻力计算。

在该热交换器中,要求将14 t/h的T-1煤油由140 ℃冷却到40 ℃,冷却水的进、出口水温为30 ℃和40 ℃,煤油的工作表压力为0.1 MPa,水的工作表压力为0.3 MPa。

[解]由已知条件,选用两台〈1-2〉型管壳式热交换器串联工作,水的结垢性强,工作压力也较高,故使其在管程流动,而煤油的温度、压力均不高,且较洁净,在壳程流动也是合适的,计算过程和结果列于表2.11中。

表2.11 例2.2计算表格3.1 螺旋板式热交换器[例3.1] 试设计一台螺旋板式热交换器,将质量流量3 000kg/h的煤油从t′1= 140℃冷却到t″1=40℃。

冷却水入口温度t′2=30 ℃,冷却水量为M2=15 m3/h。

[解]①煤油的热物性参数值煤油平均温度按卡路里温度计算,即t1m=t″1+F c (t′1-t″1)=40+0.3(140-40)=70℃。

查得煤油在70℃时物性参数值:黏度μ1=10.0×10-4kg/(m·s),导热系数λ1=0.14 W/(m·℃),比热c p1=2.22×103J/(kg·℃),密度ρ1=825 kg/m3。

②传热量QQ=M1 c p1 (t′1-t″1)=3 000×2.22×103×(140-40)=666 000×103J/h③冷却水出口温度t″2由Q=M2 c p2 (t″2-t′2),得t″2=QM2c p2+t′2=666 000×10315×994×4.18×103+30=40.6℃④冷却水的热物性参数值冷却水的平均温度t2m=t′2+t″22=35.3℃,冷却水在该温度下的热物性参数值为:黏度μ2=7.22×10-4kg/(m·s),导热系数λ2=0.627 W/(m·℃),比热c p2=4.18×103J/(kg·℃),密度ρ2=994 kg/m3。

热交换器计算及设计

热交换器计算及设计
校核性热力计算
针对现成的热交换器,目的在于确定流体的出 口温度,并了解该换热器在各种工况下的性能 变化,判断能否完成非设计工况下的换热任务
热交换器热力计算核心参数
传热面积 &传热量
热流体出 冷流体入 口温度 口温度
热流体入 口温度
冷流体出 口温度
热力计算的核心在于寻找上面五个物理量之间的关系
换热器设计基本关系式
制糖造纸工业中的蒸发器等等 化工、航天、机械制造、食品、医药行业中。。
凝汽式燃煤电厂生产过程
凝汽部分换热过程
低压加热器
除氧器换热过程
高压加热器
省煤器
过热器
空预器
对换热器的基本要求
满足工艺要求,热交换强度高,热损失小 工艺结构在工作温度压力下不易遭到破坏,
制造简单,维修方便,运行可靠 设备紧凑(对于航天、余热利用、大型设
按照传送热量的方法:间壁式、混合 式、蓄热式(回热式)、流体耦合间 接式等
按照流动方向的分类
a. 顺流 b. 逆流 c. 交叉流(错流) d. 总趋势为逆流的四次
错流 e. 总趋势为顺流的四次
错流 f. 混流式:先顺后逆平
行流 g. 混流式:先逆后顺的
串联混和流
按照热量传输方式划分
间壁式换热器 冷流体和热流体之
该类型热交换器的管子常用直管(蛇管)或螺旋弯管(盘 管)组成传热面,将管子沉浸在液体的容器或池内
多用于液体预热器、蒸发器或气体冷却、冷凝 管外液体中的传热以自然对流方式进行,传热系数低,体
积大,但是结构简单、制造、修理、清洗方便。
沉浸蛇管换热
管式热交换器类型
-喷淋式热交换器
该类型热交换器将冷却水 直接喷淋到管子外表面使 管内的热流体冷却或冷凝

换热器设计计算

换热器设计计算

污垢热阻的大致数值
流体种类
水(u<1m/s, t<50℃) 海水 河水 井水 蒸馏水
锅炉给水 未处理的凉水塔用水 经处理的凉水塔用水 多泥沙的水
盐水
污垢热阻 m2·℃/W
0.0001 0.0006 0.00058 0.0001 0.00026 0.00058 0.00026 0.0006 0.0004
校核性热计算 针对现成的换热器,其目的在于确定流体 的出 口温度
因此: 设计型——已知任务设备 操作型——已知一定设备预测、调节结果
1、设计型计算的命题
给定生产任务:ṁ1,T1T2(or ṁ2,t1t2) 选择工艺条件:t1,t2 计算目的:换热器传热面积A(管子规格,根数);ṁ2 特点:结果的非唯一性。
换热器设计计算
5.1 换热器类型
换热器类型 按结构分为
间壁式
套管式 交 壳 板叉 管 式流 式(换管热壳器式)管 管 板翅 束 翅式 式 式
螺旋板式
夹套式
混合式
蓄热式
按用途分为:加热器、冷却器、冷凝器、蒸发器、再沸器
蓄热器(蓄能器)
(一)间壁式换热器 一、套管式换热器
二 、管壳式换热器
2、设计计算公式:
质量衡算:ṁ1
ṁ2
ṁn = ?
dn = ?
热量衡算: Q = ṁ1Cp1(T1 - T2) = ṁ2Cp2(t2 - t1)
传热速率式: Q = KAtm
注意: 计算单位要统一
➢ 热量:由于温差的存在会导致能量的交换。 该交换过程称为热交换或热传递。 热量的国际单位:焦耳(J)或常用单位:卡(cal)。 换算关系:1cal=4.19J
(对数平均数)
Δt1 Δt2 ln Δt1

化工原理课程设计--年处理7万吨乙醇的换热器设计

化工原理课程设计--年处理7万吨乙醇的换热器设计

化工原理课程设计说明书课题名称:年处理7万吨乙醇的换热器设计目录摘要 (1)Abstract (2)第一章设计内容 (3)1.1概述 (3)1.2固定管板式换热器的优缺点 (4)1.3固定管板式换热器的构成及结构特点 (4)1.4固定管板式换热器的结构原理 (4)第二章设计计算 (5)2.1确定设计方案 (5)2.2确定物性数据 (5)2.3初选总传热系数 (7)2.4计算传热面积 (8)2.5工艺结构尺寸 (8)第三章换热器核算 (14)3.1面积核算 (14)3.2压降核算 (16)附表及符号说明 (20)设计小结与致谢 (21)参考文献 (22)摘要换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

在石油、化工、轻工、制药、能源等工业生产中,常常用作把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。

根据统计,热交换器的吨位约占整个工艺设备的20%有的甚至高达30%,其重要性可想而知。

我们这次课程设计的任务是设计一套固定管板式换热器。

乙醇为热流体,水为冷流体。

乙醇进口温度为C70,出口温度为在这次设计过程包括设计方案的确定,设计计算(总传热系数选择传热面积及其工艺尺寸的计算),然后进行面积与压降核算经过反复核算最终确定出了换热器的各个参数。

面积裕度为24.7%符合面积裕度范围(15%-25%),管程压降为2028.6pa<105pa,壳程压降为5722pa<105pa 符合设计要求。

紧接着我们开始编写说明书,用CAD画换热器装配图。

最终完成满足要求的设计方案。

关键词:固定管板式换热器设计AbstractThe heat exchanger is part of thermal fluid heat transfer to the cold fluid equipment, also called heat exchanger. Heat exchanger is the realization of chemical processes of heat exchange and transmission of essential equipment the petroleum, chemical industry, light industry, pharmaceuticals, energy and other industrial production, often used for the cryogenic fluid heating or cooling the high temperature fluid, the liquid vaporized into steam or the steam is condensed into liquid. According to statistics, heat exchanger tonnage about the entire process equipment 20%, some even as high as 30%, one can imagine the importance.We this course design task is to design a set of fixed tube plate heat exchanger Ethanol as the hot fluid, water as cooling fluid. Ethanol inlet temperature, outlet temperature in determining this design process including design, design calculation (calculation of heat transfer area and the process of selection of size of the total heat transfer coefficient and pressure drop), and then the area of accounting after repeated accounting Area of margin of 24.7% compliance area margin range (15%-25%), pipe pressure drop is 2028.6pa<105pa, pressure shell of 5722pa<105pa meets the design requirements. eventually determine the various parameters of the heat exchanger. Then, we heat exchanger assembly drawing with CAD. Finally completed to meet the requirements of the design scheme.Keywords: fixed tube sheet heat exchanger design第一章 设计内容1.1概述目前固定管板式换热器产品达到了一个成熟阶段,凭借其高效、节能、环保的优势,在各行业领域中被频繁使用, 并被用以替换原有管壳式和翅片式换热器,取得了很好的效果。

管壳式热交换器计算

管壳式热交换器计算

列管式换热器的设计计算列管式(管壳式)换热器的设计计算1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。

(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。

(3) 压强高的流体宜走管内,以免壳体受压。

(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。

(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。

(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。

(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。

在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。

2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。

但是流速增加,又使流体阻力增大,动力消耗就增多。

所以适宜的流速要通过经济衡算才能定出。

此外,在选择流速时,还需考虑结构上的要求。

例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。

管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。

这些也是选择流速时应予考虑的问题。

3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。

若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。

例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。

管壳式换热器设计 课程设计

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计学院:机械与动力工程学院专业:热能与动力工程专业班级:11-02班学号:姓名:指导老师:小组成员:目录第一章设计任务书 (2)第二章管壳式换热器简介 (3)第三章设计方法及设计步骤 (5)第四章工艺计算 (6)4.1 物性参数的确定 (6)4.2核算换热器传热面积 (7)4.2.1传热量及平均温差 (7)4.2.2估算传热面积 (9)第五章管壳式换热器结构计算 (11)5.1换热管计算及排布方式 (11)5.2壳体内径的估算 (13)5.3进出口连接管直径的计算 (14)5.4折流板 (14)第六章换热系数的计算 (20)6.1管程换热系数 (20)6.2 壳程换热系数 (20)第七章需用传热面积 (23)第八章流动阻力计算 (25)8.1 管程阻力计算 (25)8.2 壳程阻力计算 (26)总结 (28)第一章设计任务书煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。

设计任务及操作条件1、设备形式:管壳式换热器2、操作条件(1)煤油:入口温度140℃,出口温度40℃(2)冷却水介质:入口温度26℃,出口温度40℃第二章管壳式换热器简介管壳式换热器是在石油化工行业中应用最广泛的换热器。

纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。

目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。

强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。

目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。

换热站计算说明书

换热站计算说明书

换热站计算说明书The Standardization Office was revised on the afternoon of December 13, 2020河北建筑工程学院毕业设计计算说明书系别:能环学院专业:建筑环境与设备工程班级:建环 121姓名:任少朋学号: 2012305127起迄日期:16年02月21日 ~ 16年06月15日设计(论文)地点:河北建筑工程学院指导教师:贾玉贵职称:副教授 2016 年 06 月 15 日摘要随着人们生活水平的提高,集中供热被越来越多地采用,采用集中供暖可以减少能量的浪费,提高供热效率,减少环境污染,利于管理.同时采用集中供热可提高供热质量,提高人们的生活质量。

本题目是以张家口市桥西区恒峰热力有限公司集中供热系统M13号热力站供热区域的工程设计、改造为需用背景的实际工程。

本工程为张家口市桥西区集中供热工程张家口市检察院换热站,属于原有燃煤锅炉房改造工程。

供热区域总建筑面积:110000m2,总热负荷:约6400kw。

本次设计主要有工程概述、热负荷计算、供热方案确定、管道水力计算、系统原理图和平面布置图绘制、设备及附件的选择计算的内容。

除上述内容外,在计算说明书中尚需包括如下一些曲线:供回水温度随室外温度变化曲线,调节曲线。

本次设计要求使用CAD绘出图纸,其中包括设计施工说明、主要设备附件材料表,换热站设备平面布置图、换热站管道平面布置图、换热站流程图及相关剖面图等。

在换热站设计合理,安装质量符合标准和操作维修良好的条件下,换热站能够顺利地运行,对于采暖用户,在非采暖期停止运行期内,可以维修并且排除各种隐患,以满足在采暖期内正常运行的要求。

关键词:供热负荷设备选择计算及布置换热站系统运行板式换热器目录摘要 (1)第一章设计概况 (4)1.1设计题目 (4)1.2设计原始资料 (4)1.2.1 设计地区气象资料 (4)1.2.2 设计参数资料 (4)第二章换热站方案的确定 (5)2.1换热站位置的确定 (5)2.2换热站建筑平面图的确定 (5)2.3换热站方案确定 (5)2.4供热管道的平面布置类型 (5)2.5管道的布置和敷设 (6)2.6换热站负荷的计算 (6)第三章换热站设备的选取 (7)3.1换热器简介 (7)3.1.1换热器概述 (7)3.1.2换热器的分类 (7)3.2换热器的选取 (9)3.2.1换热器类型的选取 (9)3.2.2换热器选型计算 (9)3.3换热站内管道的水力计算 (10)3.4循环水泵的选择 (11)3.4.1循环水泵需满足的条件 (11)3.4.2循环水泵选择 (11)3.5补水泵的选择 (12)3.5.1补水泵需该满足的条件 (12)3.5.2补水泵的选择 (12)3.6补水箱的选择 (14)3.7除污器的选择 (14)3.8钠离子交换器的选择 (14)3.9分集水器的选择 (15)第四章设备管道的防腐保温 (15)4.1 保温材料的选择原则及保温结构 (15)4.2保温材料选材计算 (16)第五章质调节 (17)参考文献 (22)致谢 (22)第一章设计概况1.1设计题目张家口市桥西区集中供热工程M13号热力站工艺设计二次网改造及供热系统运行模式分析1.2 设计原始资料1.2.1 设计地区气象资料1、建筑物修建地区:河北省长张家口市2、该工程的供热区域总建筑面积:110000m2,供需范围有十六中学校区、市检察院办公区和住宅区等,供热半径:500m,最大建筑高度:36m。

单壳程双管程管壳式换热器设计

单壳程双管程管壳式换热器设计

本科生通用题目:单壳程双管程管壳式换热器设计(立式)专业:应用化学班级:0703班姓名:肖黎鸿成绩:导师签字:2010年7月11日题目:单壳程双管程管壳式换热器设计(立式)参数:要求要求每位学生在设计的过程中,充分发挥自己的独立工作能力及创造能力,在设计过程中必须做到:(1)及时了解有关资料,做好准备工作,充分发挥自己的主观能动性和创造性。

(2)认真计算和制图,保证计算正确和图纸质量。

(3)按预定计划循序完成任务。

日程安排:1.准备阶段(1天)2.设计计算阶段(3天)3.绘图阶段(4天)4.编写设计说明书(2天)目录1.绪论 (1)2.设计计算 (2)2.1管子数n的计算 (2)2.2管子排列方式,管间距的确定 (2)2.3壳体直径的确定 (2)2.4壳体厚度的计算 (2)2.5壳体液压试验应力校核 (3)2.6分程隔板的选择 (3)2.7封头的选择 (3)2.8法兰,管板的选择 (4)2.9垫片尺寸的确定 (5)2.10管子拉脱力的计算 (5)2.11是否安装膨胀节的计算 (6)2.12折流板设计 (7)2.13拉杆设计 (8)2.14开孔补强 (8)2.15支座 (9)3.设计评述 (10)4.参考文献 (11)附:设计结果一览表 (12)1.绪论热交换器,通常又称作换热器,是化工﹑炼油和食品及其他工业部门的通用设备,在生产中占有重要作用。

化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。

换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可以分为三大类,及间壁式、混合式和蓄热式。

三类换热器中,间壁式换热器应用最多。

本次设计的管壳式换热器就属于间壁式换热器的一种。

立式固定管板式换热器示意图2.设计计算2.1管子数n 的计算选25 ×2.5的无缝钢管,材质20号钢,管长1.5m 。

因为F =πd 均Ln ,所以根均1045.10225.011=⨯⨯==ππL d F n2.2管子排列方式,管间距的确定本设计物料:管程氮气,壳程水,循环水工作温度90℃较高,不易结垢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档