继电器触点失效分析及常用保护电路
继电器触点保护方法

继电器触点保护方法
继电器触点保护方法如下:
(1)当触点断开理性负载电路时,负载中储存的能量必须通过触点着弧来耗费为了消除和减轻电弧在断开理性负载时的危害,延伸触点的使用寿命,消除或减轻继电器对有关灵敏电路的电磁搅扰、危害,一般选用电弧按捺维护措施。
常见的触点维护电路有:在理性负载上并联一个电阻或阻容电路、或并联一个二极管。
(2)应尽量避免继电器输出端和输进端共线或连通,因为线圈往鼓励时,线圈上的反电势会加在触点上,使触点的断开电压增大,一起也会搅扰其它电路。
继电器作业方位与其结构特色有关,大多数继电器可在恣意方位下作业,但也有部分继电器作业方位有详细的规则。
例如一般水银继电器,就规则要竖立装置,其偏斜极限不得超越30℃,不然,因为水银的衔接中止将不起继电器效果。
继电器除需满意在各种稳态的线路和环境条件下作业的要求外,还必须考虑到各种动态特性,即吸合时刻、开释时刻,因为电流的动摇要素形成的颤动,以及触点磕碰形成的回跳等。
一般继电器的线圈是不标正负极的,两头能够随意衔接。
但在线圈往鼓励时,因为电感的效果,线圈内会发生反电动势,其峰值可高出额定电压的5倍以上,虽然其效果时刻很短,但会形成线圈漆层击穿或电路中的开关器材击穿。
汽车继电器触点寿命分析及保护措施

汽车继电器触点寿命分析及保护措施汽车继电器是汽车电气系统不可或缺的重要部件,在整个汽车电气系统中起着“开关”的作用。
继电器触点是汽车继电器中的最核心部件之一,其寿命和可靠性直接关系到汽车电气系统的正常运行和安全性。
因此,对汽车继电器触点的寿命分析及保护措施是非常必要的。
首先,汽车继电器触点的寿命分析。
汽车继电器触点寿命的主要影响因素是继电器的使用环境和负载电流大小。
经过长时间的使用,继电器触点表面会出现磨损、氧化、污染等现象,有效触点面积逐渐变小,导致接触电阻增大,从而引起触点发热、焊接、氧化等故障,使继电器失效。
在负载电流大小方面,负载电流越大,热量越大,对继电器触点的损伤越大,因此,负载电流大小也是影响继电器触点寿命的重要因素。
其次,汽车继电器触点的保护措施。
为了保证汽车继电器触点的稳定性和寿命,在实际使用中需要采取以下几个保护措施:1. 控制继电器的负载电流大小。
根据继电器的负载电流大小来匹配适当的继电器,不能超出继电器负载电流范围,否则会损伤继电器触点,加速其老化。
2. 减小继电器触点接触电阻。
通过增加触点弹性、改进触点结构等方式来减小接触电阻,降低触点发热及焊接等故障的发生。
3. 做好继电器触点的清理和维护工作。
及时清理继电器触点表面的污垢和氧化物,以保证触点的传导性和稳定性。
4. 增加继电器触点的功率。
采用专用接点材料,使触点受电流时的发热率能够降低,从而延长继电器触点的寿命。
综上所述,对汽车继电器触点的寿命分析及保护措施非常重要。
在使用继电器时,我们需要根据实际情况选择合适的继电器,控制负载电流大小,定期进行维护清理,增加触点的功率,以保证继电器触点的正常运行和稳定性,避免因触点老化和故障带来的安全隐患和不必要的损失。
除了上述所提到的保护措施外,还有一些其他的注意事项也需要在使用汽车继电器时注意。
首先,避免长期在低负载使用。
长时间低负载时,继电器触点的接触面很难保持良好的连接性,这会导致触点表面氧化,进而降低整个继电器的寿命。
继电器_接触器_触头常见故障原因分析及处理方法

继电器(接触器)触头常见故障原因分析及处理方法刘兴全摘要:介绍继电器触头的构造及材料,分析继电器触头常见故障及原因并给出可行的解决方法。
关键词:继电器 接触器 触头 故障原因 处理方法刘兴全,沈阳铁路局,110001辽宁省沈阳市收稿日期:1998-09-041 概述担负着铁路运输牵引的内燃机车、电力机车及供给铁路运输生产供电的供电系统中,大量使用继电器(接触器)。
它的种类多、用途广、功能全,既适用于近距离、又适用于远距离的接通与断开;它既适用交、直流控制电路,也可用于作传递信息的中间元件,当输入量达到预先整定和需要动作值时,继电器即动作,和原来输出量相反,而发出指令。
铁路内燃、电力机车及供电系统中,按使用范围分保护、控制、信号继电器;按用途分电流、电压、中间、时间、温度、热、同步、光照等继电器,重合闸装置及各种用途的接触器。
控制线圈可分交流和直流继电器(接触器)。
因用途广泛,使用中易发生故障,故如何分析常见故障原因,进行处理,对于保证供电安全生产极为重要。
2 继电器触头的构造及材料继电器(接触器)的触头包括静触头和动触头及其它部件。
其触头做成双断点桥形和单断点簧片式两种,各种接触对、触点形状,有圆锥面对平面、圆锥面对平面滚动、球面对平面、球面对锥突网纹状面、球面对平面滚动等等,它直接构成继电器(接触器)的输出。
继电器触点的材料,过去多用纯银制造,由于工业不断发展,新材料不断产生,加工工艺不断改变,现采用银镍、银镁及带银层的复合材料等,用银基合金材料制成的触头,它具有接触电阻小,在接触过程中产生的气化物也有很好的导电性,在使用过程中还会还原银,它不需很大的接触压力,就能保证触点间具有良好的导电性能。
3 继电器触头常见故障3 1 触头接触不紧密、不牢固继电器(接触器)因长时间使用,触头表面不洁净、氧化及电弧烧蚀造成缺陷,凹凸及毛刺等,使动、静触头接触不牢,不密贴,电阻增大,出现触头温度升高,接触面变成点接触,发展到严重时不导通。
继电器常见故障解决方案及工作原理

继电器常见故障解决方案及工作原理继电器常见故障解决方案1、触点松动回开裂触点是完成切换负荷的电接触零件,有些产品的触点是靠铆装压搭配的,其重要的弊病是触点松动、触点开裂或尺寸位置偏差过大。
这将影响继电器的接触牢靠性。
显现铲除点松动,是簧片与触点的搭配部分尺寸不合理或操对铆压力调整不当造成的。
触点开裂是材料硬度过高或压力太大造成的。
对于不同材料的触点采纳不同材料的工艺,有些硬度较高的触点材料应进行退火处理,在进行触点制造、铆压或点焊。
触点制造应细心,由于材料有公差存在,因此每次切断长度应试摸后决议。
触点制造不应显现飞边、垫伤及不饱满现象。
触点铆偏则是操将摸具未对正确、上下摸有错位造成。
触点损伤、污染、是未清理干净摸具上的油污染和铁屑等物造成的。
无论是何种弊病,都将影响继电器的工作牢靠性。
因此,在触点制造、铆装或电焊过程中,要遵守首件检查中心抽样和最后检查的自检规定、以提高装配质量。
2、继电器参数不稳定电磁继电器的零部件相当部分是铆装搭配的,存在的重要问题是铆装处松动或结合强度差。
这种毛病会使继电器参数不稳定,高处与低处温下参数变化大,抗机械振动、抗冲击本领差。
造成这种毛病的原因重要是被铆件超差、零件放置不当、工摸具质量不合格或安装不精准。
因此,在铆焊前要认真检验工摸具和被铆零件是否符合要求。
3、电磁系统铆装件变形铆装后零件弯曲、扭斜、墩粗黑给下道工序的装配或调整造成困难,甚至会造成报废。
这种毛病的原因重要是被铆零件超长,过短或铆装时用力不均匀,摸具装配偏差或设计尺寸有误,零件放置不当造成。
在进行铆装时,操作工人应当首先检查零部件尺寸,外型,摸具是否精准,假如摸具未装到位就会影响电磁系统的装配质量或铁心变形、墩粗。
4、玻璃绝缘子损伤玻璃绝缘子是由金属插脚与玻璃烧结而成,在检查、装配、调整、运输、清洗时简单显现的插脚弯曲,玻璃绝缘子掉块、开裂,而造成漏气并时绝缘及耐压性能下降,插脚转动还会造成接触簧片移位,影响产品牢靠通断。
继电器特性和继电器触点保护

关于继电器特性和继电器触点保护一、常有的继电器触点保护电路有:●在继电器驱动端并接反向二极管,用于吸收继电器线圈火花,保护继电器的驱动三极管;●在继电器负载端并接RC吸收电路;用于吸收负载火花;●继电器负载端并接压敏电阻,用于吸收负载接通时的尖波;一般用于继电器接电机之类的感性负载,尤其是继电器驱动直流负载时常用;●对容性负载,一般在负载端串接电阻或RL电路;●但是要注意,增加这些保护电路后,会改变继电器的吸合时间和吸合特性;有时可能因为漏电流而导致继电器的误操作。
二、继电器驱动电路中二极管保护电路继电器内部具有线圈的结构,所以它在断电时会产生电压很大的反向电动势,会击穿继电器的驱动三极管,为此要在继电器驱动电路中设置二极管保护电路,以保护继电器驱动管。
如图9-53所示是继电器驱动电路中的二极管保护电路,电路中的J1是继电器,VD1是驱动管VT1的保护二极管,R1和C1构成继电器内部开关触点的消火花电路。
图9-53 二极管保护电路图9-54 等效电路电路工作原理分析继电器内部有一组线圈,如图9-54所示是等效电路,在继电器断电前,流过继电器线圈L1的电流方向为从上而下,在断电后线圈产生反向电动势阻碍这一电流变化,即产生一个从上而下流过的电流,见图中虚线所示。
根据前面介绍的线圈两端反向电动势判别方法可知,反向电动势在线圈L1上的极性为下正上负,见图中所示。
如表9-44所示是这一电路中保护二极管工作原理说明。
表9-44 保护二极管工作原理说明三、继电器触点的常识1、触点保护在切断电机、变压器、离合器和螺线管等电感性负荷时,触点两端常常会出现数百乃至数千伏电压,这会使触点寿命显著变短。
另外,电感负荷产生的1A以下的电流,可导致火花放电,这个放电会使空气中有机物发生分解,触点碳化(氧化或碳化)发黑,这也将导致触点接触不良。
这里反电压产生的主要原因是当切断感性负载时贮存在线圈中的电感里的能量1/2 Li 2通过触点放电的形式表现出来,这时反电压t=-L.Di/Dt。
开关电源输入端继电器触点短路失效分析

AC ,即在相位90°或270°时,最大的输入峰值电压为902127 V ∗≈,输入最大峰值电流为I max 127/1012.7 A ==,测试结果和理论计算完全偏离。
图1 PFC电路广州金升阳科技有限公司蔡晓静图2 继电器触点稳态电流波形(注:黄色为输入电压,蓝色为继电器触点电流)通过实际测量,如图2所示,该继电器工作时触点电流约3A,继电器环境温度为83 ℃。
查阅本款应图3 继电器触点导通波形(注:黄色为输入电压,蓝色为继电器触点电流)继电器K1后端负载为感性负载(L1、L2)及容性负载(C1、C2、C8),实测继电器K1触点电流,如图4 监测PFC电感L2启机电流图5 PFC电感未饱和图6 饱和电流L1差模电感参数为200μH/48Ts/0.7mm,实测其饱和电流如图6,当通入13.1A电流(PFC启动时被箝位的电流)时感量只有为12.5μH,电感感量急剧图7 更换前触点电流图8 更换后触点电流(注:绿色为C8电容电压,红色为继电器触点电流)C1为π型滤波电路的第一个电容,输入电压直接对C1进行充电,会产生畸变脉冲充电电流。
电容越大,畸变电流脉冲越大,从而导致继电器的触点电流峰值图9 PFC升压时电流电压波形(绿色为C8电容电压,红色为继电器触点电流)图11 继电器触点电流波形综上所述,输入端继电器闭合后出现较大冲击电流可总结如下:PFC电流采样电阻小即过流点大,PFC开始工作时(升压)输入电流达到箝位点的电流器件中加入SAB 层可以提高器件的维持电压。
为了进一步评估传统SCR 器件和SCR _SAB 器件的ESD 保护性能,在这里采用以下定义的公式来评估器件的ESD 性能:FOM =W V I V t 2h××t 1(3)其中,FOM 是器件的品质因子,W 是器件的总宽度,V t 1是触发电压,V h 是维持电压,I t 2是失效电流。
如表1所示,传统SCR 器件的FOM 为1.39 mA/μm ,SCR _SAB 器件的FOM 为5.45 mA/μm 。
继电器触点失效分析及保护电路设计研究

图2 反向电压的测量作者简介:刘光明(1977-),男,江西萍乡人,高级工程师。
研究方向:航空进气道控制器、发动机控制相关技术。
图3 二极管保护电路图4 等效电路在正常工作时,输出电压+V加到二极管VD1负极,二极管处于截止状态且内阻很大,二极管在电路中不起任何作用。
在继电器断电瞬间,继电器J1两端产生下正上负幅值很大的反向电压,正极加在二极管正极上,负极加在二极管负极上,二极管正向导通,反向电压产生的电流通过内阻很小的二VD1构成回路。
由于二极管导通后的管压降很小,这样继电器J1两端的反向电压被限制到很小的范围,通常为二极管的导通电压,从而防止了反向电压对继电器触点的伤害。
4 触点保护电路设计通过使用触点保护元件或电路,可以压低反向电压,从而保护继电器触点。
根据继电器感应负载特性,设计的保护电路有所不同,根据实际使用电路,有以下几种触点保护电路。
4.1 RC保护电路电阻值和电容值的选择以可以消除感性电压为宜。
一个很好的经验法则是首先使电阻值等于电路电压,然后根据电路感性电流的水平来选择电容值,如电流是1A,选择的电容是适合的。
如果是更大的电流,那么电容值也要相应在阻容电路中加上一个二极管,可以帮助消除直流和交流负载电路中的感性电压尖峰,选用的二极管要能承受来自感性负载的正常的电压和电流值。
电路图如图6所示。
线圈储存的能量通过并列二极管以电流的形式流入线圈,在感应负载的电阻部分以焦耳热的形式消耗。
这个方式比CR方式复位时间更慢。
二极管使用容许反向电压为电路电压10倍以上时,使用大于负载电流的正向电流。
在电子电路中电路电压不太高时,也可以使用为电源电压2~3倍的容许反向电压。
图6 二极管保护电路图5 结 语继电器触点保护线路很多,对电感性负载通常采用负载并联二极管消火花,与触点并联RC吸收网络或压敏电阻来保护触点。
感性负载断开,数百甚至几千伏的反电动势造成的浪涌会降低触点寿命甚至彻底损坏触点。
如果电流较小,反电动势会造成电弧放电,导致金属氧化物污染触点,使接触点阻变大,触点失效。
电磁继电器常见失效模式、失效原因及失效机理分析

5.电磁继电器常见失效原因及失效机理分析 1继电器内部多余物引起的失效 轴孔内壁磨损 转轴表面磨损 磨损形成的金属粉末
5.电磁继电器常见失效原因及失效机理分析 d.簧片断裂 簧片断裂位置 簧片沿晶断口及晶界过热、熔融
5.电磁继电器常见失效原因及失效机理分析
5.3工艺结构不当引起的失效
e.线圈开路
线圈开路通常是由于线圈引出线或漆包线断裂以及引出线与引线柱或者与漆包线之间焊点脱开或者虚焊所致。 继电器一般采用与安装轴之间的轻微过盈配合而固定线圈。由于线圈骨架与固定轴之间存在配合公差,在振动环境条件下可能引起线圈与固定轴之间产生转动以及轴向运动,从而在线圈引出线上附加一定的振动应力,振动一段时间后,导致线圈引出线产生疲劳断裂。
5.电磁继电器常见失效原因及失效机理分析 e.线圈开路 漆包线断裂形貌
e.线圈开路 线圈引出线与漆包线或引线柱之间虚焊均是由于焊接工艺不当引起,包括焊接时间、焊接温度、引出线的处理等。 引出线与漆包线之间虚焊
电磁继电器常见失效原因及失效机理分析
5.电磁继电器常见失效原因及失效机理分析
e.线圈开路
非金属多余物
5.电磁继电器常见失效原因及失效机理分析
5.1继电器内部多余物引起的失效
多余物引起的失效机理主要有以下几种:
a.多余物使推动杆受阻或者卡在衔铁与轭铁之间,使衔铁无法动作、推动杆动作不到位,导致触点不能正常开闭;
多余物使推动杆受阻
电磁继电器常见失效原因及失效机理分析 1继电器内部多余物引起的失效 多余物卡在衔铁与轭铁之间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.关于触点的基本注意事项
电压
触点电路的电压,在电路含有感应时会发生非常高的反向电压,电压越高能量越大,由于触点的消耗量、移动量增大,所以需要注意继电器的控制容量。
另外直流电压时控制容量会极度降低需要注意。
这是DC的情况,如果象AC电流那样没有零点(电流为零的点),则一旦发生电弧后很难消去,电弧时间变长是主因。
尤其是因为电流方向一定,在下面有所记述,所以会引起触点的移动现象,与触
点消耗相关。
一般在手册中记载了大概的控制容量,但只有这些是不够的,应该在特殊的触点电路里进行试验确认。
另外,在手册等里面虽然记载了电阻负载的情况和限定的控制容量,但这主要是表示了继电器的级别,一般以AC的125V电路的电流容量来考虑是比较妥当的。
手册中记载的最小适用负载并非继电器可以通断的下限标准值、保证值。
这个值由于通断频率、环境条件、被要求的接触电阻的变化、绝对值的不同,可靠程度是不同的。
要求模拟微小负载控制或者接触电阻为100mΩ以下的情况(测量、无线等)请使用AgPd触点的继电器。
电流
触点闭合及开路时的电流对触点影响很重要。
例如负载为电动机或者指示灯的时候,闭合时的冲击电流越大,触点的消耗量、移动量就越增加,由于触点的粘连、移动会产生触点不能断开的故障,请在实际使用时认真确认。
2.一般触点材料的特征
下表为触点材料的特征。
请在选择继电器时进行参考。
触点材料
Ag(银)
导电率·导热率在金属中是最大的。
由于低接触电阻、低价
位而被广泛使用。
缺点是在硫化物的环境容易生成硫化膜。
在低电压·微电流水平要注意。
AgCdO(银酸化
镉)
显示了Ag具有的导电性和低接触电阻,有良好的耐粘连性。
与Ag一样在硫化物环境里容易生成硫化膜。
AgSnO
2
(银酸化
锡)
具有比AgCdO还要优良的耐粘连性。
与Ag一样在硫化物环
境容易生成硫化膜。
AgW(银钨)
硬度·融点高,耐电弧性好,不易被移动·粘连,要求触点
压力高。
另外,接触电阻也比较高,耐环境性差。
加工、向
接触弹簧安装也有限制。
AgNi(银镍)电传导度可与Ag匹敌,耐电弧性好。
AgPd(银钯)
在常温下耐蚀性较好,耐硫化性虽然也不错,但在微小功率
电路里容易吸着有机气体而生成聚合物,需要贴层金属来防
止生成聚合物。
价格贵。
表面Rh镀金(铑)
兼具良好的耐腐蚀性和高硬度。
作为镀金触点在小负载情况
下使用。
在有机气体环境中易生成聚合物,请注意。
所以作
处
理 为密闭型(干簧继电器等)使用。
价格较贵。
Au 金属包层(贴金属膜) 将耐腐蚀性最好的Au 压接在母材上,厚度均一和无小孔是
其最大的特征。
使用环境条件比较恶劣的情况下,特别对 于微小负载效果大。
已有标准品的金属包层会有设计上、设备
上的困难。
Au 镀金(金镀金) 与Au 包层效果几乎相同。
由于镀金处理会有小孔和龟裂的
可能,请注意保管。
已有标准品的金镀金比较容易。
Au flash (金薄镀金)0.1~0.5μ
以开关或者与开关组成的成套保管中的触点母材的保护为目的,负载通断时可以得到一定程度的接触稳定性。
3.关于触点保护
反向电压
象启动DC 继电器那样,通断继电器串联电路或DC 电动机、DC 套管、DC 螺线管等的感应性负载时必须进行二极管等的浪涌吸收以保护触点,这一点很重要。
切断这些感应负载时,会引起数百~数千V 的反向电压,使触点受到很大损害,寿命可能会明显缩短。
另外,在上述负载的电流小于1A 以下的领域里,反向电压产生白热或者电弧放电的电弧,通过这个放电使空气中含有的有机物分解,在
触点生成黒色的异物(酸化物、炭化物),导致接触不良。
反向电压和实际测量值的例子
在图1(a )里,使感应负载R 为OFF 的瞬间,会在线圈的两端+、-方向产生反向电压(e =-Ldi/d-t )图1(b )那样的尖峰形,这个反向电压通过电源线加在触点的两端。
一般认为常温常压的空气中的临界绝缘破坏电压是200~300V ,所以,前面所说
的反向电压如果超过的时候,会在触点进行放电,线圈储藏的能量(1/2Li 2)被
消耗。
吸收反向电压时,希望在200V 以下。
有3种常用的继电器保护电路:阻容电路、压敏电阻电路和二级管电路。
阻容电路:
电阻值和电容值的选择以可以消除感性电压为宜,但是也不要过分大引起其它问题,如元件尺寸和成本。
一个很好地经验法则是首先使电阻值等于电路电压,然后根据电路感性电流的水平来选择电容值,如果电流是1A,选择0.1mF的电容是适合的。
如果是更大的电流,那么电容值也要相应增大。
因此,一个120 VAC, 0.4 A 的电路应该使用120 ohms的电阻和0.1 mF的电容。
如果这个组合没有很好地调节瞬态电压,第一步先增加电容值,然后减小电阻值。
例如:120 ohm/0.1 mF的组合和47 ohm/0.2 mF 的组合有大致相同的能量吸收时间常数,但是由于后者有更小的电阻值,在某些特殊的应用中比前者有更好的性能。
通常来说,对于一个应用是找不到一个完美的组合的,只是可以找到一些可以正常工作的组合。
在这个例子中电阻和电容的额定功率应该选择大于20W,虽然说小功率值也可以工作,这样可以让能量快速消耗。
在测试各种组合的时候,注意不要损坏其它的电路元器件。
压敏电阻电路:
压敏电阻是一个阻值会随着两端电压而发生变化的电阻。
一般来说当两端电压接近临界值的时候电阻值会迅速减小,压敏电阻可以用在一个很宽的电压范围和钳位电压下。
例如,在继电器上有一个220VAC的感性负载,可以使用额定电压稍微高于220V的压敏电阻。
当继电器触点打开的时候,加在电路上的感性尖峰会促使压敏电阻的阻值降到很小,相当于对地短路,因此继电器线圈上的电压可以被有效钳位。
二极管电路:
在阻容电路中加上一个二极管可以帮助消除直流和交流负载电路中的感性电压尖峰,效果取决于电路如何搭建。
注意二极管需要能承受来自感性负载的正常的电压和电流值。
电感器、电磁铁、接触器线圈、轭流圈等都是感性负载。
接通瞬间,电磁线圈有抑制电流上升的功能,不会出现浪涌电流;但关断时,贮存在电磁线圈中的电磁能通过触点间燃弧消耗掉,这将导致触点烧蚀,材料转移、沾结。
采用RC网络、二极管,压敏电阻等触点保护装置可减少触点的烧蚀。
负载的种类和冲击电流
负载的种类和冲击电流的特性是与通断频率也有关系的,是产生触点粘连的一个大的重要因素。
特别是在有冲击电流存在的负载的情况请与稳态电流一起测定冲击电流值,并讨论与选定的继电器的余裕度。
下表显示了有代表性的负载与冲击电流的关系。
另外,根据继电器的不同COM,NO 的极性会影响电气寿命请用实际使用极性确认。
负载的种类冲击电流
电阻负载稳态电流的1倍
螺线管负载稳态电流的10~20倍
电动机负载稳态电流的5~10倍
白炽灯负载稳态电流的10~15倍
水银灯负载稳态电流的约3倍
钠灯负载稳态电流的1~3倍
电容器负载稳态电流的20~40倍
变压器负载稳态电流的5~15倍。