IEEE1588精密网络同步协议修改

合集下载

【8A文】IEEE1588协议介绍

【8A文】IEEE1588协议介绍

基本报文交互流程 偏差和延迟测量 时钟调整

协议内容介绍 协议具体实现及精度保证 IEEE1588 v2新特性 协议应用
IEEE1588基本操作
报文发送与接收

但远不止如此简单……
IEEE1588基本操作
Delay, Jitter两个待解决问题
IEEE1588基本操作
Drift (Phase change rate)计算

currentDS: Current synchronization and topological operational properties



parentDS: parent和master clock的属性


timeProperitiesDS: Time base属性

currentUTCoffset Leap59 timeSource

时间分发协议概述 IEEE1588基本操作 协议内容介绍

时钟类型及模型 报文类型、数据类型 拓扑、BMC、协议状态机及Data sets

协议具体实现及精度保证 IEEE1588 v2新特性 协议应用
IEEE1588协议内容
时钟类型

Version 1

Ordinary clock
IEEE1588精准时间同步协议
软件二部
内容提纲


时间分发协议概述 IEEE1588同步过程 协议内容介绍 协议具体实现及精度保证 IEEE1588 v2新特性 协议应用
内容提纲

时间分发协议概述



IEEE1588同步过程 协议内容介绍 协议具体实现及精度保证 IEEE1588 v2新特性 协议应用

IEEE_1588协议

IEEE_1588协议

IEEE_1588协议IEEE1588协议,也称为精密时钟同步协议,是一个用于实时系统中精确同步时钟的网络协议。

它的目标是提供亚微秒级的时钟同步精度,以满足高精度和高同步性能的实时应用需求。

IEEE1588协议主要用于工业自动化、电力系统、通信系统等领域,能够实现在分布式系统中所有时钟设备之间的同步。

IEEE 1588协议的原理是基于主从模式,其中一个设备是主时钟(Master Clock),该设备通过发送同步消息来广播时间信息,其他设备则是从时钟(Slave Clock),它们通过接收同步消息来校正自身的时钟。

主从模式可以实现网络中所有设备的时间同步,但是主时钟设备需要提供高精准的参考时钟。

IEEE1588协议的消息格式如下:1. Sync消息(同步消息):主时钟设备通过此消息广播时间信息,从时钟设备通过解析此消息来校正自身的时钟。

2. Delay_Req消息(延迟请求消息):从时钟设备通过向主时钟设备发送此消息来计算时钟矫正的延迟。

3. Follow_Up消息(跟随消息):主时钟设备通过此消息回复Delay_Req消息,包含时钟矫正延迟的信息。

4. Delay_Resp消息(延迟响应消息):主时钟设备通过此消息回复Delay_Req消息,包含时钟矫正延迟的信息。

5. PDelay_Req消息(精确延迟请求消息):用于测量主从时钟之间的延迟。

6. PDelay_Resp消息(精确延迟响应消息):用于回复PDelay_Req消息,包含主从时钟之间的延迟信息。

7. Announce消息(通告消息):用于通知网络中的设备主时钟的更改。

IEEE 1588协议的核心算法是时钟同步算法,该算法通过计算往返时延(Round-Trip Delay)来实现时钟同步。

往返时延包括主时钟设备发送Sync消息到从时钟设备接收到Follow_Up消息的时间,以及从时钟设备收到Delay_Resp消息到主时钟设备接收到的时间。

IEEE 1588精确时间协议在智能变电站中应用的关键技术

IEEE 1588精确时间协议在智能变电站中应用的关键技术

IEEE 1588精确时间协议在智能变电站中应用的关键技术【摘要】IEEE 1588精确时间同步协议(PTP)解决了通用以太网延迟时间和同步能力差的瓶颈,在自动化、通信等工业领域具有重要意义,本文介绍了IEEE 1588标准在智能变电站建设中应用的关键技术,包括PTP时钟同步模型以及同步过程,分析了PTP网络结构中的设备类型以及主从时钟的偏移和网络延时的修正,最后分析了PTP时钟设备冗余配置的必要性,给出了时钟设备冗余配置的方法。

【关键词】IEEE 1588 PTP 智能变电站时钟同步目前,在变电站自动化系统中广泛应用的对时方式主要有GPS同步脉冲对时,NTP(Network Time Protocol)网络时间协议,SNTP(Simple Network Time Protocol)简单网络时间协议对时等对时方式。

随着数字化变电站的发展使得站内二次硬接线逐渐被串行通信线所取代,GPS对时技术已不适用于新兴的数字化智能变电站网络系统,而NTP/SNTP时间同步协议的时间同步精度仅能到到ms 级,不能满足具有高精度和稳定性要求的电力自动化设备的需求,因此最终提出了IEEE 1588标准,它定义了一种用于分布式测量和控制系统的精密时间协议(Precision Time Protocol,PTP),其网络对时精度可达亚μs级,满足电力系统自动化设备对时间精度的要求,并且所占用网络和硬件资源较少,因此IEEE 1588网络对时方式是应用于智能变电站的理想对时方式[3]。

1 PTP时钟同步模型PTP系统是分布式网络系统,由PTP设备和非PTP设备组成。

下图1为一个典型的PTP分布式系统。

其中,OC(Ordinary Clock)为普通时钟,普通时钟可能是一个系统的最高级主时钟(Grandmaster Clock,GC),也可能是主、从时钟体系中的从时钟(Slave)。

BC(Boundary Clock)为边界时钟,PTP设备通过网络彼此通信,PTP协议在一个叫做域的逻辑范围内运行。

IEEE1588的高精度时间同步算法的分析与实现

IEEE1588的高精度时间同步算法的分析与实现

IEEE1588的高精度时间同步算法的分析与实现IEEE1588,也被称为精确时间协议(PTP),是一种用于网络中实现高精度时间同步的协议。

它在各种工业应用和通信系统中被广泛采用,因为它可以提供微秒级甚至亚微秒级的精度,满足了许多应用的实时性要求。

首先,IEEE 1588协议需要在网络中选择一个主时钟(Master Clock),作为时间同步的源头。

主时钟拥有最高的时间精度,并将其时间信息通过数据包广播给其他时钟节点。

其他节点被称为从时钟(Slave Clock),它们通过接收到的时间数据来调整自身的时钟,并与主时钟保持同步。

在主时钟启动时,它会周期性地发送特殊的数据包,称为同步事件(Sync Event)。

这些数据包包含了主时钟的当前时间戳,从时钟接收到这些数据包后,会记录接收时间戳。

当从时钟收到一定数量的同步事件后,它会计算出与主时钟的相对时间差,并根据这个时间差来调整自身的时钟。

为了确保时间同步的准确性,IEEE 1588采用了两个重要的概念,即时钟同步和时间戳校准。

时钟同步通过周期性的同步事件来实现,从而减小网络延迟带来的时间误差。

而时间戳校准则通过周期性地发送延迟请求(Delay Request)和延迟响应(Delay Response)数据包来估计网络延迟,并相应地调整时间戳。

在实际的实现中,IEEE1588通常使用硬件支持或软件实现的方式。

硬件支持一般通过专用的电路芯片或FPGA来实现,它们能够提供更高的时间精度和更低的延迟。

而软件实现则是在通用的计算机上运行,通过操作系统和网络协议栈来实现时间同步功能。

在软件实现中,IEEE1588通常依赖于操作系统的时钟服务和网络协议栈。

操作系统的时钟服务提供了计算机系统的时间信息,并提供了时间戳的功能。

网络协议栈则负责封装和发送数据包,并处理收到的数据包以提取时间戳信息。

在实现中,需要考虑以下几个关键问题:1.时间同步精度:在实现中,需要根据具体应用的要求选择合适的时钟源和自适应算法,以达到所需的精度。

LXI-1588协议(交流稿)完整版

LXI-1588协议(交流稿)完整版

• 由上可知时钟同步的精度取决于主从时钟时间戳的精度和 可重复性。 • 那么如何产生精确的时间戳呢? • 硬件方式 OR 软件方式
精确时间戳通过软硬件的实现
精确时间戳通过软硬件的实现
• 用DP83640芯片实现的系统
• DP83640由美国国家半导体公司推出的集成IEEE1588精确 时钟协议硬件支持功能的以主网收发器。芯片内置高精度 IEEE1588时钟,并设有由硬件执行的时间标记功能,可为 接收及发送信息包印上标记 。
现在 以后
我觉得应该是
GPIB、VXI、PXI、 LXI等仪器总线 并存
有人说测试总 线的未来是
LXI标准的仪器
不同的LXI应用要求催生出不同的功能需要 ,国际LXI协会初步将 基于LXI的仪器分为三个等级: • 等级A 触发总线硬件触发机制;IEEE1588精确时间协 议同步;网络功能性(辨识,浏览界面) • 等级B IEEE1588精确时间协议同步;网络功能性(辨 识,浏览界面) • 等级C 网络功能性(辨识,浏览界面)
LXI联盟
• 2004年11月成立了LXI Consortium(LXI联盟),是由业界 领先的测量仪器厂商(VXI Technology Inc.和Angilent Technology Inc.)、系统集成商和最终用户(如美国国防部) 共同组建的非盈利组织。其目标是开发、支持和促进LXI标 准,其目标在于开发、支持及推广LXI标准,用公开的规格 与功能的测试来获得业内对测试测量寻求标准方案。目前已 有包括绝大多数国际著名测试测量公司在内的43家公司成为 其会员。陕西海泰电子有限责任公司是亚洲唯一加入LXI联 盟的企业。 • 欲知LXI有关方面的更多信息,请访问网址:
网络中主时钟的确定及各功能模块程序流程图

IEEE1588精密时钟同步协议的实现探讨

IEEE1588精密时钟同步协议的实现探讨

• 35•随着网络控制技术水平的不断提升,分布式控制系统也提出对时钟同步精度的更高标准,本文以IEEE1588精密时钟同步协议为例,对该高精度时钟的同步机制与校正原理阐述说明,并对IEEE1588协议的BMC(最佳主时钟)、LCS(本地时钟同步)两大核心算法进行分析,并以技术开发角度提出了IEEE1588精密时钟同步协议,应用于数字化通信机房的应用方案,通过系统测试发现了数字化通信机房内IEEE1588的高精度时间同步实现可行性。

IEEE1588作为一种精密时钟同步协议标准,主要应用于网络测量及控制系统中,作为新一代测控纵向LXI标准关键组成,为了可以更好的满足工业控制、仪器测量相关领域中微秒级标准的时间同步需求,IEEE1588标准自提出得以广泛应用。

IEEE1588标准代称网络测量和控制系统的精密时钟同步协议标准,该标准原理就是经同步信号周期性,能够校正网络内的全部节点时钟达到同步,并基于以太网分布式系统,精准同步亚纳秒时钟。

IEEE1588标准较现阶段的GPS、NTP/SNTP达到配置简单优化、高精度且快速收敛,以及较小资源消耗与网络带宽特点。

对于时钟同步精度方面也要求更加严格,譬如运用于电力自动化系统、工业以太网、移动通信网等领域,引发人们的广泛关注。

1 IEEE1588时钟同步协议机制1.1 PTP时钟状态机PTP时钟同步系统作为包括主时钟、从时钟这样两部分之间构成主从关系的网络层次结构,以单个或多个PTP子域共同组成,并且每一个子域内都含有按个或多个彼此通信时钟。

在网络内每一个PTP时钟,都极有可能存在两种不同状态,具体状态主要取决于BMC算法,在主时钟状态下设备为精确时钟,能够与从时钟的时间同步,但是一个主时钟只能存在1个通信子域内。

对于PTP网络内每一个时钟设备,经周期性交换带有时间信息同步报文,能够计算主时钟和从时钟之间存在的偏差与网络延时,对偏差进行纠正,对延时进行补偿处理,能够做到主时钟和从时钟之间同步亚纳秒级。

IEEE1588v2高精度时钟同步协议的总体设计与实现

IEEE1588v2高精度时钟同步协议的总体设计与实现

IEEE1588v2高精度时钟同步协议的总体设计与实现王冠;肖萍萍【摘要】With the development of network technology, the gradually networked audio transmission set higher demands on asynchronous ethemet In provied high precision time to guaranty the real-time of transmission of audio data. Fortunately, IEEE 1588 is precisely designed to solve this problem. This article systematically describes the principle of IEEE1588 (version 2), and presents the general design of IEEE1588v2 in the angle of software implementation.%随着网络技术的发展,音频传输逐渐网络化,为保证音频数据传输的实时性,对异步的以太网提出了高精度的时间同步要求.而IEEE1588标准定义的PTP(Precision Time Protocol)协议正是为实现高精度时钟同步而制定的,本文系统地介绍了IEEE1588v2(第二版本的PTP协议)的原理,并从软件实现的角度给出了IEEEI588v2的总体设计.【期刊名称】《价值工程》【年(卷),期】2012(031)015【总页数】2页(P198-199)【关键词】音频传输网络;时钟同步;IEEE1588v2;PTP;精确时间协议【作者】王冠;肖萍萍【作者单位】武汉邮电科学研究院烽火网络有限公司,武汉430074;武汉邮电科学研究院烽火网络有限公司,武汉430074【正文语种】中文【中图分类】TN919.20 引言目前,基于以太网的数字音频传输技术已得到广泛应用,而以太网生来就是非确定性的网络,很难满足音频数据在传输过程中的同步和实时性要求。

IEEE1588协议

IEEE1588协议

IEEE1588协议IEEE 1588协议是一种用于时钟同步的网络通信协议,其全称为"Precision Clock Synchronization Protocol for Networked Measurement and Control Systems"。

该协议是由IEEE所制定的,旨在解决分布式系统中设备时钟同步问题。

在分布式系统中,设备之间的时钟同步是至关重要的。

准确的时钟同步能够确保系统中的各个设备在不同节点上以一致的时间进行操作,从而实现更可靠的协调和协同工作。

此外,在一些需要严格时间同步的应用领域,如工业自动化、电力系统等,时钟同步则是成功实现系统任务的基础。

传统的时钟同步方法中,基于GPS(Global Positioning System)的时间同步方案是一种常见的解决方法。

然而,GPS无法完全适用于所有场景,尤其是对于移动设备、室内场景等。

IEEE 1588协议的出现,则为这类应用场景的时钟同步问题提供了有效的解决方法。

IEEE 1588协议基于主从(Slave)的建模方式,其中主时钟(Master Clock)负责向从时钟(Slave Clock)广播时钟信号。

具体而言,协议通过周期性发送时间戳消息来实现主从时钟之间的同步。

在主时钟发送时间戳消息时,从时钟会接收该消息,并通过与其内置的本地时钟进行比较,进而进行时钟校正。

这样,从时钟就可以根据主时钟的参考进行同步,从而实现各个设备间的时钟同步。

IEEE 1588协议定义了两个核心消息:Sync(同步)和Delay_Req(延迟请求)。

Sync消息用于主时钟广播当前的时间信息,而Delay_Req消息用于从时钟向主时钟请求延迟信息。

协议还提供了一些附加消息,如Follow_Up(回应)、Delay_Resp(延迟回应)和Pdelay_Req(对称延迟请求),用于进一步优化时钟同步过程。

除了时钟同步外,IEEE 1588协议还提供了一种高级特性,即时钟精度统计(Clock Accuracy Estimation)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IEEE1588精密网络同步协议(PTP)-v2.0协议浅析/s/blog_4b0cdab70100k4fv.html1 引言以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的网络中,以太网的数据传输速度也从早期的10M提高到100M,GE,10GE。

40GE,100GE正式产品也于2009年推出。

以太网技术是“即插即用”的,也就是将以太网终端接到IP网络上就可以随时使用其提供的业务。

但是,只有“同步的”的IP网络才是一个真正的电信级网络,才能够为IP网络传送各种实时业务与数据业务的多重播放业务提供保障。

目前,电信级网络对时间同步要求十分严格,对于一个全国范围的IP网络来说,骨干网络时延一般要求控制在50ms之内,现行的互联网网络时间协议NTP(Network Time Protocol),简单网络时间协议SNTP(Simple Network Time Protocol)等不能达到所要求的同步精度或收敛速度。

基于以太网的时分复用通道仿真技术(TDM over Ethernet)作为一种过渡技术,具有一定的以太网时钟同步概念,可以部分解决现有终端设备用于以太网的无缝连接问题。

IEEE 1588标准则特别适合于以太网,可以在一个地域分散的IP网络中实现微秒级高精度的时钟同步。

本文重点介绍IEEE 1588技术及其测试实现。

2 IEEE 1588PTP介绍IEEE 1588PTP协议借鉴了NTP技术,具有容易配置·、快速收敛以及对网络带宽和资源消耗少等特点。

IEEE1588标准的全称是“网络测量和控制系统的精密时钟同步协议标准(IEEE 1588 Precision Clock Synchronization Protocol)”,简称PTP(Precision Timing Protocol),它的主要原理是通过一个同步信号周期性的对网络中所有节点的时钟进行校正同步,可以使基于以太网的分布式系统达到精确同步,IEEE 1588PTP时钟同步技术也可以应用于任何组播网络中。

IEEE 1588将整个网络内的时钟分为两种,即普通时钟(Ordinary Clock,OC)和边界时钟(Boundary Clock,BC),只有一个PTP通信端口的时钟是普通时钟,有一个以上PTP通信端口的时钟是边界时钟,每个PTP端口提供独立的PTP通信。

其中,边界时钟通常用在确定性较差的网络设备(如交换机和路由器)上。

从通信关系上又可把时钟分为主时钟和从时钟,理论上任何时钟都能实现主时钟和从时钟的功能,但一个PTP通信子网内只能有一个主时钟。

整个系统中的最优时钟为最高级时钟GMC(Grandmaster Clock),有着最好的稳定性、精确性、确定性等。

根据各节点上时钟的精度和级别以及UTC(通用协调时间)的可追溯性等特性,由最佳主时钟算法(Best Master Clock)来自动选择各子网内的主时钟;在只有一个子网的系统中,主时钟就是最高级时钟GMC。

每个系统只有一个GMC,且每个子网内只有一个主时钟,从时钟与主时钟保持同步。

图1所示的是一个典型的主时钟、从时钟关系示意。

图1 主时钟、从时钟关系示意图同步的基本原理包括时间发出和接收时间信息的记录,并且对每一条信息增加一个“时间戳”。

有了时间记录,接收端就可以计算出自己在网络中的时钟误差和延时。

为了管理这些信息,PTP协议定义了4种多点传送的报文类型和管理报文,包括同步报文(Sync),跟随报文(Follow_up),延迟请求报文(Delay_Req),延迟应答报文(Delay_Resp)。

这些报文的交互顺序如图2所示。

收到的信息回应是与时钟当前的状态有关的。

同步报文是从主时钟周期性发出的(一般为每两秒一次),它包含了主时钟算法所需的时钟属性。

总的来说同步报文包含了一个时间戳,精确地描述了数据包发出的预计时间。

由于同步报文包含的是预计的发出时间而不是真实的发出时间,所以Sync报文的真实发出时间被测量后在随后的Follow_Up报文中发出。

Sync报文的接收方记录下真实的接收时间。

使用Follow_Up报文中的真实发出时间和接收方的真实接收时间,可以计算出从属时钟与主时钟之间的时差,并据此更正从属时钟的时间。

但是此时计算出的时差包含了网络传输造成的延时,所以使用Delay_Req报文来定义网络的传输延时。

Delay_Req报文在Sync报文收到后由从属时钟发出。

与Sync报文一样,发送方记录准确的发送时间,接收方记录准确的接收时间。

准确的接收时间包含在Delay_Resp报文中,从而计算出网络延时和时钟误差。

同步的精确度与时间戳和时间信息紧密相关。

纯软件的方案可以达到毫秒的精度,软硬件结合的方案可以达到微图2 PTP报文与交换顺序秒的精度。

PTP协议基于同步数据包被传播和接收时的最精确的匹配时间,每个从时钟通过与主时钟交换同步报文而与主时钟达到同步。

这个同步过程分为漂移测量阶段和偏移测量与延迟测量阶段。

第一阶段修正主时钟与从时钟之间的时间偏差,称为漂移测量。

如图3所示,在修正漂移量的过程中,主时钟按照定义的间隔时间(缺省是2s)周期性地向相应的从时钟发出惟一的同步报文。

这个同步报文包括该报文离开主时钟的时间估计值。

主时钟测量传递的准确时间T0 K,从时钟测量接收的准确时间T1 K。

之后主时钟发出第二条报文——跟随报文(Follow_up Message),此报文与同步报文相关联,且包含同步报文放到PTP通信路径上的更为精确的估计值。

这样,对传递和接收的测量与标准时间戳的传播可以分离开来。

从时钟根据同步报文和跟随报文中的信息来计算偏移量,然后按照这个偏移量来修正从时钟的时间,如果在传输路径中没有延迟,那么两个时钟就会同步。

图3 PTP时钟漂移测量计算为了提高修正精度,可以把主时钟到从时钟的报文传输延迟等待时间考虑进来,即延迟测量,这是同步过程的第二个阶段(见图4)。

图4 PTP时钟延迟和偏移计算从时钟向主时钟发出一个“延迟请求”数据报文,在这个过程中决定该报文传递准确时间T2。

主时钟对接收数据包打上一个时间戳,然后在“延迟响应”数据包中把接收时间戳B送回到从时钟。

根据传递时间戳B和主时钟提供的接收时间戳D,从时钟计算与主时钟之间的延迟时间。

与偏移测量不同,延迟测量是不规则进行的,其测量间隔时间(缺省值是4~60s之间的随机值)比偏移值测量间隔时间要大。

这样使得网络尤其是设备终端的负荷不会太大。

采用这种同步过程,可以消减PTP协议栈中的时间波动和主从时钟间的等待时间。

从图4右边可以看到延迟时间D 和偏移时间数值O的计算方法。

IEEE 1588目前的版本是v2.2,主要应用于相对本地化、网络化的系统,内部组件相对稳定,其优点是标准非常具有代表性,并且是开放式的。

由于它的开放性,特别适合于以太网的网络环境。

与其他常用于Ethernet TCP/IP网络的同步协议如SNTP或NTP相比,主要区别是PTP是针对更稳定和更安全的网络环境设计的,所以更为简单,占用的网络和计算资源也更少。

NTP协议是针对于广泛分散在互联网上的各个独立系统的时间同步协议。

GPS(基于卫星的全球定位系统)也是针对于分散广泛且各自独立的系统。

PTP 定义的网络结构可以使自身达到很高的精度,与SNTP和NTP相反,时间戳更容易在硬件上实现,并且不局限于应用层,这使得PTP可以达到微秒以内的精度。

此外,PTP模块化的设计也使它很容易适应低端设备。

IEEE1588标准所定义的精确网络同步协议实现了网络中的高度同步,使得在分配控制工作时无需再进行专门的同步通信,从而达到了通信时间模式与应用程序执行时间模式分开的效果。

由于高精度的同步工作,使以太网技术所固有的数据传输时间波动降低到可以接受的,不影响控制精度的范围。

3 IXIA IEEE 1588PTP测试方案美国IXIA公司目前提供最为完整的城域以太网功能、性能、一致性测试解决方案,并且最先在2~7层统一IP测试平台实现了IEEE 1588PTP时钟同步技术方案。

关于IXIA 的城域以太网测试解决方案在以前有过详细介绍,在这里对相应的技术点和对应IXIA应用程序做一总结(见表1)。

表1 IXIA城域以太网测试方案及对应程序图5是典型的IEEE 1588PTP测试场景,IXIA测试端口可以仿真普通时钟并处于主模式,被测设备,比如以太网交换机处于边界时钟状态,验证其对各种时钟报文的处理能力与实现;另一种测试情况是IXIA端口仿真边界时钟并处于从属模式,这时候被测设备处于主模式,验证被测设备在主时钟模式下的处理机制。

IXIA端口都有PTP协议栈,可以对PTP时钟信息做灵活的配置。

图5 IEEE 1588典型测试场景IXIA IEEE 1588PTP测试方案所支持的特性包括:支持目前最为流行的IEEE 1588 2.2版本;支持两步时钟配置;一个物理端口可以同时产生PTP流量和非PTP流量;一个物理端口一个时钟信号设置,时钟可以手动设置为主模式或者从模式;可以以柱状图显示从时钟对应于主时钟的偏移量;IXIA IxExplorer内置的实时协议分析解码软件可以对PTP报文直接进行编辑或者解码。

在测试过程中可以实时显示各种详细的PTP统计信息,统计信息见表2。

表2 IXIA IEEE 1588PTP测试统计信息IXIA IEEE 1588PTP方案还可以实现负面测试(Negative Testing),可以根据需要设定发送Sync报文中Follow-up报文的比例,观察丢弃掉的Follow-up报文对被测设备的影响;在Follow-up报文中增加错误数据包,验证被测设备的处理与检测能力;发送包括抖动与偏移的带有时间戳的数据包迫使Sync报文失败,检验被测设备的处理机制。

图6所示为PTP时钟配制界面。

图6 PTP时钟配置界面4 结束语根据最新的信息公告,IXIA 被eWeek授予年度十大产品奖之一,被Frost & Sullivan授予2008全球三重播放综合测试和监测设备的年度市场领先奖,被Test & Measurement World授予三个最佳测试奖,以及被Internet Telephony授予年度产品奖,被如此众多令人尊敬有技术影响力组织机构的认可,进一步证明了IXIA正在推动测试、测量和业务认证市场的进步和战略创新,在城域以太网网技术方面,IXIA同样保持领先的地位,推出了业界第一个100G高速以太网测试加速系统,第一个在统一2~7层IP测试平台上推出了IEEE 1588PTP 精密时钟同步协议测试技术,IXIA这些技术创新和技术的领导地位,都为全面的IP 测试提供了可靠保证。

相关文档
最新文档