CIE标准色度系统

合集下载

CIE标准色度学系统

CIE标准色度学系统

⑶规定( 规定 X)和( 和 Z)的亮度为 的亮度为0,XZ线称为无 亮度线 无亮度线 的各点只代表 度 亮度线。无亮度线上的各点只代表色度, 没有亮度,但Y既代表色度,也代表亮度。 为了使用方便,XYZ三角形经过转换就成 为麦克斯韦直线三角形,即目前国际通用 的CIE 1931 色度图。
• CIE 1931 标准观察者光谱三刺激值 标准 察者光谱 刺激值X‐,Y‐,Z‐ 分别代表匹配各波长等能光谱刺激所需要 的红、绿、蓝三原色的量。在理论上,要 想得到某一波长的光谱颜色 想得到某 波长的光谱颜色,可以从表中 可以从表中 ‐ ‐ ‐ 或图上查出相应的X ,Y ,Z 三刺激值,也 就是说 按X‐,Y‐,Z‐数量的红、绿、蓝设 就是说,按 数量的红 绿 蓝设 想原色相加,便能得到该光谱色。
X k ( ) x ( ) Y k ( ) y ( ) Z k ( ) z ( )
4. 根据下式,求出光源的色度坐标。 根据 式 求出光源的色度坐标
X x X Y Z Y y X Y Z Z z X Y Z
1931 CIE‐RGB系统
莱 特 ( W.D.Wright,1928‐1929 ) 选 择 650 、 530 和 460nm 的 三 原 色 和 吉 尔 德 (J.Guild,1931)选择630、542和460nm三原 色,由若干名观察者在2°视场范围内,用 视场范围内,用 这三种原色匹配等能光谱的各种颜色。
光谱三刺激值与光谱色色度坐标的关系为: 光谱 刺激值与光谱色色度坐标的关系为 r= r‐ /( r‐ + g‐ + b‐ ), g= g‐ /( r‐ + g‐ + b‐ ), b= b‐ /( r‐ + g‐ + b‐ ) 1931 CIE‐RGB 系统用700nm,546.1 546 1 nm和 435.8 nm作为三原色是因为700nm是可见光 的红色末端 546.1 的红色末端, 546 1 nm和435.8 435 8 nm是两个较 为明亮的汞亮线谱,三者都比较容易精确 地产生 来 地产生出来。

CIE标准色度系统课程(PDF 50页)

CIE标准色度系统课程(PDF 50页)
第二部分 CIE标准色度系统 (CIE calorimetric system)
2.6 CIE 标准照明体和标准光源
我们知道,照明光源对物体的颜色影响很大。不同的光源,
有着各自的光谱能量分布及颜色,在它们的照射下物体表面呈现 的颜色也随之变化,确定颜色离不光源。
为了统一对颜色的认识,首先必须要规定标准的照明光源。 CIE规定的标准照明体是指特定的光谱能量分布(《色度学》 p229),是规定的光源颜色标准。因为光源的颜色与光源的色温 密切相关,所以CIE规定了四种标准照明体的色温标准: 这4种标 准光源的名称见下表,在这4种标准光源中,常用的C光源和D65 光源,我国以D65为标准光源。
显色性Color rendering: 光源对物体本身颜色呈现的程度称为显色性,也就是颜色逼
真的程度;光源的显色性是由显色指数来表明,它表示物体在光 下颜色比基准光(太阳光)照明时颜色的偏离,能较全面反映光 源的颜色特性。显色性高的光源对颜色表现较好,我们所见到的 颜色也就接近自然色,显色性低的光源对颜色表现较差,我们所 见到的颜色偏差也较大。国际照明委员会CIE把太阳的显色指数 定为100,各类光源的显色指数各不相同,如:高压钠灯显色指 数Ra=23,荧光灯管显色指数Ra=60~90。显色分两种:
• 人造光源来实现标准照明体的规定
CIE规定的标准照明体是指特定的光谱能量分布(《色度 学》p229-),是规定的光源颜色标准。它并不是必须由一个光源 直接提供,也并不一定用某一光源来实现。为了实现CIE规定的 标准照明体的要求,还必须规定标准光源,以具体实现标准照明 体所要求的光谱能量分布。CIE推荐下列人造光源来实现标准照 明体的规定: √ 标准光源A:色温为2856K的充气螺旋钨丝灯,其光色偏黄(白 织灯)。

CIE标准色度学系统

CIE标准色度学系统

CIE标准色度学系统CIE标准色度学系统,全名为国际照明委员会标准色度学系统,是一种用于量化和描述颜色的科学方法。

它是由国际照明委员会(CIE)开发和推广的,目的是建立一个统一的国际标准,以便不同地区和领域的人们能够使用相同的术语和工具来描述和测量颜色。

CIE标准色度学系统基于人类视觉系统的特性和颜色感知的原理,广泛应用于工业工程、设计、艺术和科学研究领域。

下面将详细介绍CIE标准色度学系统的基本原理和应用。

CIE标准色度学系统是基于三个基本刺激色彩:红色,绿色和蓝色。

它们被称为三刺激值,并用X、Y和Z表示。

这些基本刺激色彩可以组合成所有其他的可见光颜色。

CIE标准色度学系统通过测量和描述三刺激值的相对量来定量描述颜色。

这些相对量是通过比较样品与已知标准的颜色之间的差异来确定的。

以CIE标准光源和CIE标准观察者为基准,CIE标准色度学系统提供了一种一致和可重复的方法来测量和描述颜色。

CIE标准色度学系统的应用非常广泛。

在工业工程中,它可以用于设计和控制光照,以确保产品的颜色一致性。

例如,在汽车制造业中,使用CIE标准色度学系统可以确保一个车型的不同部件的颜色一致,这对于提高产品质量和顾客满意度非常重要。

此外,CIE标准色度学系统还可以用于指导产品的色彩设计和开发,以满足不同顾客的需求和喜好。

在设计和艺术领域,CIE标准色度学系统可以用来操纵颜色,以实现特定的视觉效果。

例如,可以使用CIE标准色度学系统来调整图像和照片的颜色平衡,并根据需要增强或减弱特定颜色的亮度和饱和度。

此外,CIE标准色度学系统还可以用于指导画家和设计师在他们的作品中使用颜色。

在科学研究领域,CIE标准色度学系统可以用来研究和理解人类视觉系统的特性和颜色感知的机制。

通过研究CIE标准色度学系统,科学家们可以更好地了解色盲和其他视觉障碍的发生机制,并开发更好的方法来诊断和治疗这些问题。

总之,CIE标准色度学系统是一种用于量化和描述颜色的标准化方法。

色度学原理与CIE标准色度学系统

色度学原理与CIE标准色度学系统

色度学原理与CIE标准色度学系统一、引言色度学是一门研究颜色的科学,它涉及到物体反射、发射和感知的光的属性。

色度学的研究对于许多应用领域都具有重要意义,如图像处理、印刷、设计等。

CIE标准色度学系统作为国际上广泛应用的色度学标准,为我们提供了描述颜色的一套分析方法和标准。

二、色度学基础2.1 光的色彩与频率色彩来源于光的特性,光的色彩与其频率有直接关系。

常见的可见光波长范围在380-780纳米之间,对应的频率范围为400-790THz。

不同频率的光波经过人眼感觉,形成不同的颜色感知。

2.2 色光三基色原理色光三基色原理是指将可见光的色彩分解为三种基本色彩,通过不同的基本色彩的混合来形成各种其他颜色。

一般来说,最常用的三基色是红色、绿色和蓝色,这也是彩色显示技术的基础。

2.3 颜色感知人眼对于颜色的感知是通过视锥细胞来实现的。

根据颜色的感知级别,可以将颜色分为亮度、饱和度和色相三个属性。

亮度表示颜色的明暗程度,饱和度表示颜色的纯度,色相表示颜色的种类和类别。

三、CIE标准色度学系统3.1 CIE标准色度学系统简介CIE标准色度学系统是国际照明委员会(CIE)制定的一套描述和标准化颜色的系统。

它通过数学模型和测量标准,将各种颜色归纳成一组三刺激值,即人眼对应的红、绿、蓝三种光的感知量。

3.2 CIE XYZ色彩空间CIE XYZ色彩空间是CIE标准色度学系统的基础,它是一种线性变换的色彩空间,能够精确地表示所有可见光的颜色。

CIE XYZ色彩空间以人眼的感知为基础,通过三个轴表示红、绿、蓝三种感知的亮度值。

3.3 CIE色度图CIE色度图是CIE标准色度学系统中的一种图形表示方式,它将颜色以坐标的形式展示在一个平面内。

CIE色度图中,色度坐标表示颜色的色相和饱和度,亮度值表示颜色的亮度。

通过CIE色度图,可以直观地比较不同颜色之间的差异。

3.4 CIE L a b*色彩空间CIE L a b色彩空间是一种非线性变换的色彩空间,它将颜色表示为一组三维坐标。

CIE标准色度学系统介绍

CIE标准色度学系统介绍

CIE标准色度学系统介绍所谓1931CIE-XYZ系统,就是在RGB系统的基础上,用数学方法,选用三个理想的原色来代替实际的三原色,从而将CIE-RGB系统中的光谱三刺激值与色度坐标r、g、b均变为正值。

(一)、CIE-RGB系统与CIE-XYZ系统的转换关系选择三个理想的原色(三刺激值)X、Y、Z,X代表红原色,Y代表绿原色,Z代表蓝原色,这三个原色不是物理上的真实色,而是虚构的假想色。

它们在图5-27中的色度坐标分别为:从图5-27中能够看到由XYZ形成的虚线三角形将整个光谱轨迹包含在内。

因此整个光谱色变成了以XYZ三角形作为色域的域内色。

在XYZ系统中所得到的光谱三刺激值、、、与色度坐标x、y、z将完全变成正值。

经数学变换,两组颜色空间的三刺激值有下列关系:X=0.490R+0.310G+0.200BY=0.177R+0.812G+0.011B …………………………(5-8)Z= 0.010G+0.990B两组颜色空间色度坐标的相互转换关系为:x=(0.490r+0.310g+0.200b)/(0.667r+1.132g+1.200b)y=(0.117r+0.812g+0.010b)/(0.667r+1.132g+1.200b)………………(5-9)z=(0.000r+0.010g+0.990b)/(0.667r+1.132g+1.200b)这就是我们通常用来进行变换的关系式,因此,只要明白某一颜色的色度坐标r、g、b,即能够求出它们在新设想的三原色XYZ颜色空间的的色度坐标x、y、z。

通过式(5-9)的变换,对光谱色或者一切自然界的色彩而言,变换后的色度坐标均为正值,而且等能白光的色度坐标仍然是(0.33,0.33),没有改变。

表5-3是由CIE-RGB系统按表5-2中的数据,由式(5-9)计算的结果。

从表5-3中能够看到所有光谱色度坐标x(l),y(l),z(l)的数值均为正值。

(毫微米)x y z3800.17410.00500.82090.001450.00000.0065 3850.17400.00500.82100.00220.00010.0105 3900.17380.00490.82130.00420.00010.0201 3950.17360.00490.82150.00760.00020.0362 4000.17330.00480.82190.01430.00040.0679 4050.17300.00480.82220.02320.00060.1102 4100.17260.00480.82260.04350.00120.2074 4150.17210.00480.82310.07760.00220.3713 4200.17140.00510.82350.13440.00400.6456 4250.17030.00580.82390.21480.0073 1.0391 4300.16890.00690.82420.28390.0116 1.3856 4350.16690.00860.82450.32850.0168 1.6230 4400.16440.01090.82470.34830.0230 1.7471 4450.16110.01380.82510.34810.0298 1.7826 4500.15660.01770.82570.33620.0380 1.7721 4550.15100.02270.82630.31870.0480 1.7441 4600.14400.02970.82630.29080.0600 1.6692 4650.13550.03990.82460.25110.0739 1.5281 4700.12410.05780.81810.19540.0910 1.2876 4750.10960.08680.80360.14210.1126 1.0419 4800.09130.13270.77600.09560.13900.8130 4850.06870.20070.73060.05800.16930.6162 4900.04540.29500.65960.03200.20800.4652 4950.02350.41270.56380.01470.25860.3533 5000.00820.53840.45340.00490.32300.2720 5050.00390.65480.34130.00240.40730.2123 5100.01390.75020.23590.00930.50300.1582 5150.03890.81200.14910.02910.60820.1117 5200.07430.83380.09190.06330.71000.07826750.73270.26730.00000.06360.02320.0000 6800.73340.26660.00000.04680.01700.0000 6850.73400.26600.00000.03290.01190.0000 6900.73440.26560.00000.02270.00820.0000 6950.73460.26540.00000.01580.00570.0000 7000.73470.26530.00000.01140.00410.0000 7050.73470.26530.00000.00810.00290.0000 7100.73470.26530.00000.00580.00210.0000 7150.73470.26530.00000.00410.00150.0000 7200.73470.26530.00000.00290.00100.0000 7250.73470.26530.00000.00200.00070.0000 7300.73470.26530.00000.00140.00050.0000 7350.73470.26530.00000.00100.00040.0000 7400.73470.26530.00000.00070.00020.0000 7450.73470.26530.00000.00050.00020.0000 7500.73470.26530.00000.00030.00010.0000 7550.73470.26530.00000.00020.00010.0000 7600.73470.26530.00000.00020.00010.0000 7650.73470.26530.00000.00010.00000.0000 7700.73470.26530.00000.00010.00000.0000 7750.73470.26530.00000.00010.00000.00007800.73470.26530.00000.00000.00000.0000按5毫微米间隔求与:=21.3714;=21.3711;=21.3715为了使用方便,图5-27中的XYZ三角形,经转换变为直角三角形(图5-28),其色度坐标为x、y。

cie标准色度系统

cie标准色度系统

cie标准色度系统CIE标准色度系统。

CIE标准色度系统是国际上通用的一种色彩空间系统,由国际照明委员会(CIE)制定。

它是在1928年首次被提出,并在1931年得到正式的推广和应用。

CIE标准色度系统是对人眼视觉感知的颜色进行科学描述的一种标准方法,它是通过对人眼对颜色的感知进行实验和测量,建立了一种数学模型,用以描述颜色的三个特性,亮度、色调和饱和度。

在CIE标准色度系统中,亮度用Y表示,色调用x和y表示,饱和度则可以通过x和y的比值来表示。

这种描述方法可以很好地描述出人眼对颜色的感知,因此在实际应用中得到了广泛的应用。

CIE标准色度系统的建立,为色彩工程、色彩技术、色彩测量和色彩管理等各个领域提供了一个统一的标准,使得不同领域的色彩描述和色彩交流变得更加准确和方便。

在印刷、摄影、显示器、照明等领域,CIE标准色度系统都有着广泛的应用。

在印刷领域,CIE标准色度系统被用来描述印刷品的颜色,通过对颜色进行数学描述,可以更加准确地控制印刷品的颜色,使得不同的印刷机在印刷同一张图像时,可以得到相似的颜色效果。

在摄影领域,CIE标准色度系统被用来描述图像的颜色,通过对图像的颜色进行数学描述,可以更加准确地进行图像处理和编辑,使得图像的颜色更加真实和自然。

在显示器领域,CIE标准色度系统被用来描述显示器的颜色,通过对显示器的颜色进行数学描述,可以更加准确地控制显示器的颜色输出,使得显示器的颜色更加准确和饱满。

在照明领域,CIE标准色度系统被用来描述光源的颜色,通过对光源的颜色进行数学描述,可以更加准确地控制光源的颜色输出,使得照明效果更加自然和舒适。

总之,CIE标准色度系统是对人眼视觉感知的颜色进行科学描述的一种标准方法,它为色彩工程、色彩技术、色彩测量和色彩管理等各个领域提供了一个统一的标准,使得色彩描述和色彩交流变得更加准确和方便。

它的应用范围非常广泛,对于提高色彩的准确性和一致性起着重要的作用。

03第二章CIE标准色度系统

03第二章CIE标准色度系统
印刷业色评价标准中规定,观察环境四周的颜色应该是浅灰 色或白色,不应带有彩色;观察样品的背景色应该是灰色 或浅灰色,避免彩色对样品颜色的干扰。
第五节 CIE色度计算方法
一、三刺激值与色品坐标的计算(略)。 二、颜色相加的计算。 (一)、计算法。 1、当两种或两种以上已知三刺激值的颜色光相加混合,
B、 光谱色均在马蹄形的光谱轨迹上,光谱色的 色相由曲线上各色点的波长来表示。谱外色则均 在中性点与紫红轨迹之间的三角形区域内。位于 光谱轨迹之内各点的颜色色相一般可以用其主波 长来表示(主要是用作图法和计算方法求得)。
任一色点与中性点的连线称为等色相线,这条线上 各点的颜色色相相同,即均由同一主波长来表示, 但彩度有所不同。
C、谱外色的色相可由某色点的补色波长 λc表示。
D、在色度图中,很容易确定一对光谱色 的补色波长。
2.2彩度的表示。 2.3明度的表示。
第三节 CIE1964补充标准色度系统
为了适应大视场颜色测量的需要,所以1964 年,CIE又补充制定了一种10°视场的色 度系统,称为CIE1964补充标准色度系统, 又称10°视场X10Y10Z10色度系统,简称为 X10Y10Z10色度系统。
观察反射样品时应使用D65光源,接近日常照 明条件,一般显色指数在90以上;
观察透射样品应使用D50光源,一般显色指数 在90以上。
(二)、照明条件。
1、反射样品照明条件:
用于观察的光源应在观察面上产生均匀的漫射光 照明,观察反射样品时在观察面上形成照度范围 为500~1500lx,视被观察印刷品的明度而定。观 察面各点的照度不应突变,差别小于20%,照度 的均匀度不得小于80%。日光灯在使用5000小时 后色温会发生变化,应更换,观色以前最好预热 15分钟(才稳定)。

CIE标准色度学系统

CIE标准色度学系统

2XYZ系统与RGB系统的换算公式 (90页)
湖南工业大学包装与印刷学院印刷色彩学
真实三原色 R=700.0nm G= 546.1nm B= 435.8nm CIE理想三原色 r g b X: 1.275 –0.278 0.003 Y:-1.759 2.767 –0.028 Z:-0.743 0.141 1.602 参照光源:等能白Se
0.3000
0.0000 400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
湖南工业大学包装与印刷学院印刷色彩学
2.2.3等能光谱色度坐标和色度图 色度坐标数据见表2-1.色度图见图2-5.
湖南工业大学包装与印刷学院印刷色彩学
2.3CIE1931XYZ系统 2.3.1XYZ表色系统的建立
湖南工业大学包装与印刷学院印刷色彩学
2纯度:颜色接近同一主波长光谱色的程度
①表示:光源色度点到样品色度点的距离与光源色度点 到光谱色度点的距离的比值. ②计算公式: Pe=(x-x0)/(x光-x0)……..x式 Pe=(y-y0)/(y光-y0)……..y式 ③当| x-x0 |大于| y-y0 |选用x式 当| x-x0 |小于| y-y0 |选用y式
湖南工业大学包装与印刷学院印刷色彩学
2.5CIE色度计算
2.5.1物体色三刺激值XYZ的计算 1物体色取决于:光源的光谱能量分布,物体的表 面反射特性,人眼的颜色视觉特征. 2颜色刺激函数:进入人眼的辐射量. 3三刺激值计算式:(99页式2-7).
X K S()() x ( )d Y K S( )( ) y( )d Z K S( )( ) z ( )d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A ≡ B, C ≡ D
A+C ≡ B + D
式中符号“ ”代 表颜色相互匹配

相减的情况也成立。 相减的情况也成立。即
A ≡ B, C ≡ D
A−C ≡ B − D
一个单位量的颜色与另一个单位量的颜色相同,那么 一个单位量的颜色与另一个单位量的颜色相同, 这两种颜色数量同时扩大或缩小相同倍数则两颜色仍为相 同。即 A≡B
2.光谱三刺激值 . 在颜色匹配实验中, 在颜色匹配实验中,待测色光也可以是某一种波长 的单色光(亦称为光谱色 亦称为光谱色), 的单色光 亦称为光谱色 ,对应一种波长的单色光可以得 到一组三刺激值R、 、 。 到一组三刺激值 、G、B。对不同波长的单色光做一系 列类似的匹配实验, 列类似的匹配实验,可以得到对应于各种波长单色光的 三刺激值。 三刺激值。如果将各单色光的辐射能量值都保持为相同 (这样的光谱分布称为等能光谱 来做上述一系列实验,所 这样的光谱分布称为等能光谱)来做上述一系列实验 这样的光谱分布称为等能光谱 来做上述一系列实验, 得到的三刺激值称为光谱三刺激值,也就是匹配等能光 得到的三刺激值称为光谱三刺激值, 谱色的三原色的数量。 表示。 谱色的三原色的数量。用符号 r , g , b 表示。光谱 三刺激值又称为颜色匹配函数, 三刺激值又称为颜色匹配函数,它的数值只决定于人眼 的视觉特性。 的视觉特性。匹配方程表示为
nA ≡ nB
根据代替律可知,只要在感觉上颜色是相同的, 根据代替律可知, 只要在感觉上颜色是相同的, 便可 以互相代替,所得的视觉效果是相同的, 以互相代替, 所得的视觉效果是相同的, 因而可以利用 颜色混合的方法来产生或代替所需要的颜色。 例如: 颜色混合的方法来产生或代替所需要的颜色 。 例如 : 如果没有B种颜色 种颜色, 设 A + B ≡ C ,如果没有 种颜色,但是 X + Y ≡ B ,那 么 A + ( X + Y ) ≡ C 。这个由代替而产生的混合色与原来 的混合色具有相同的效果。 的混合色具有相同的效果。 (4) 混合色的总亮度等于组成混合色的各种颜色光的亮度 总和,称为亮度相加定律。 总和,称为亮度相加定律。 格拉斯曼定律仅适用于各种颜色光的相加混合过程。 格拉斯曼定律仅适用于各种颜色光的相加混合过程。 三、颜色匹配方程 颜色匹配的结果可用格拉斯曼定律来阐述, 颜色匹配的结果可用格拉斯曼定律来阐述,还可以 用代数式和几何图形来表示。 用代数式和几何图形来表示。 用代数式表示色匹配称为颜色匹配方程 用代数式表示色匹配称为颜色匹配方程 表示为下列方程: 表示为下列方程
第二章 CI色研究的第一阶段,色匹配的研究阶段 一、颜色匹配实验 颜色可以相互混合,
颜色混合可以是颜 色光的混合,也可 以染料的混合,这 两种混合方法所得 到的结果是不同的, 前者称为相加混合, 后者为颜色相减混 合。将几种颜色光 同时或快速先后刺 激人的视觉器官, 便产生不同于原来 颜色的新的颜色感 觉,这就是颜色相 加混合的方法。
R+G+ B G g= R + G + B B b= R+G+ B r=

r + g +b =1
所以色品坐标只有两个自由度
色品图、色度图 标准白光(等能白 点):R = G = B = 1; r = 0.333,g = 0.333
§2.2 CIE 1931标准色度系统 标准色度系统 讨论颜色的定量计算,根据上面讲到的颜色匹配方 程和计算任一颜色三刺激值的方法,必须要首先测得人 眼的光谱三刺激值,将辐射光谱与人眼的颜色特性相联, 这正是色度学研究的范畴。 可能性 实验证明不同观察者的视觉特性多少是有差异的, 但是具有正常颜色视觉的人此差异是不大的,故有可能 根据一些观察者进行的颜色匹配实验,将他们的实验数 据加以平均,确定一组匹配等能光谱色所需要的三原色 数据。此数据称为“标准色度观察三刺激值。” 困难性 由于选用的三原色不同及确定三刺激值单位的方法 不一致,因而数据无法统一 。 CIE的工作 的工作
相等数量的绿和蓝原色匹配494nm的蓝绿色,相等 数量的红和绿原色匹配582.5nm的黄色,得出它们的相 对亮度单位为 l R : l G : l B 。 2) 吉尔德(J.Guild)的实验条件: 三原色:630nm 视场:2∘ 三刺激值的单位: 以三原色相加匹配NPL(英国国家物理实验室的缩 写)白色光源的条件下,认为三原色的刺激值相等定出 它们的相对亮度单位为 l R : l G : l B 2. CIE所做的修正 所做的修正 三原色:700nm 视场:2∘ 三刺激值的单位: 546.1nm 435.8nm 542nm 460nm
以相等数量的三原色刺激值匹配出等能白光(又 称为E光源)来确定三刺激值单位 。经实验和计算确 定,匹配等能白光的(R),(G),(B)三原色单 位的亮度比率为1.0000:4.5907:0.0601,它们的辐 亮度比率为72.0962:1.3791:1.0000 统一的方法: 将以上两套数据进行坐标转换 结果: 转换后的数据非常一致,取平均值后得出人眼的 光谱三刺激值,用 r , g , b 来表示。这一组函数叫做 “ CIE 1931 RGB 系 统 标 准 色 度 观 察 者 光 谱 刺 激 值 ” 。 简 称 “ CIE 1931 RGB 系 统 标 准 色 度 观 察 者”。 反映的是2∘视场的平均颜色视觉特性。这一系 统叫做CIE 1931-RGB色度系统。
C (C ) ≡ R ( R ) + G (G ) + B ( B )
其中(C)代表被匹配颜色的单位, , , 代表 其中 代表被匹配颜色的单位,(R),(G),(B)代表 代表被匹配颜色的单位 产生混合色的红、 蓝三原色的单位。 , , , 分 产生混合色的红、绿、蓝三原色的单位。R,G,B,C分 别代表红、 蓝和被匹配色的数量。 别代表红、绿、蓝和被匹配色的数量。 用几何图形表示: 用几何图形表示:
1931年在美国剑桥举行的CIE第8次会议上,统一了实 验结果,提出了最早的主要推荐书——CIE标准色度观 察者和色品坐标系统;并规定了三种标准光源(A,B, C);还对测量反射面的照明观测条件进行了标准化。建 立起CIE 1931标准色度系统。从而奠定了现代色度学的 基础。 一、CIE 1931-RGB系统 1. 数据的来源: 数据的来源: CIE 1931-RGB系统是建立在莱特(W.D.Wright) 和吉尔德(J.Guild)两项颜色匹配实验基础上的。 1) 莱特(W.D.Wright)的实验条件: 三原色:650nm 视场:2∘ 三刺激值的单位: 530nm 460nm
C λ ≡ r ( R ) + g (G ) + b ( B )
任何颜色的光都可以看成是不同单色光混合而组成的,所 任何颜色的光都可以看成是不同单色光混合而组成的, 以光谱三刺激值能作为颜色色度计算的基础。 以光谱三刺激值能作为颜色色度计算的基础。 任意色的三刺激值) 3.三刺激值的计算公式 (任意色的三刺激值)
四、三刺激值和色品图
1.三刺激值 . 在颜色匹配实验中,与待测色达到色匹配时所需要 的三原色的数量,称为三刺激值。也就是颜色匹配方程 式中的R、G、B值。 三原色可以任意选定,但三原色中任何一种颜色不 能由其余两种原色相加混合得到。最常用的是红、绿、 蓝三原色。 三刺激值的单位(R)、(G)、(B):不是用物理量为单 位,而是选用色度学单位,亦称三T单位。确定方法是: 选一特定白光(W)作为标准,在颜色匹配实验装置上用 选定的三原色光(红、绿、蓝)相加混合与此白光(W)相 匹配,达到匹配时,如测得所需要的三原色光的光通量 值(R)为 l R 流明;(G)为lG 流明;B为l B 流明。则将比值 l R : lG : l B 定为三刺激值的相对亮度单位,即色度学单位。
(3) 颜色外貌相同的光,不管它们的光谱组成是否一样, 颜色外貌相同的光,不管它们的光谱组成是否一样, 在颜色混合中具有相同的效果。就是说, 在颜色混合中具有相同的效果。就是说,凡是在视觉上相同 的颜色都是等效的。由这一定律导出颜色的代替律: 的颜色都是等效的。由这一定律导出颜色的代替律: 两个相同的颜色各自与另外两个相同的颜色相加混合后 颜色仍相同。 ,颜色仍相同。用公式表示为 则
光谱三刺激值与光谱色色品坐标的关系式为
r= r r + g +b g= g r + g +b
色品图和色度图
3. 存在的问题 可看到光谱三刺激值和光谱轨迹的色品坐标有 很大一部分出现负值。负值出现的物理意义可以 从匹配实验的过程中来理解它。当投射到半视场 的某些光谱色,用另一半视场的三原色来匹配时, 不管三原色如何调节都不能使两视场颜色达到匹 配,只有在光谱色半视场内加入适量的原色之一 才能达到匹配,加在光谱色半视场的原色就用负 值来表示,这就出现负的色品坐标值。色品图的 三角形顶表示红(R)、绿(G)、蓝(B)三原 色。在色品图上,负值的色品坐标落在原色三角 形之外。在原色三角形以内的各色品点的坐标为 正值。 。 CIE 1931-RGB系统是从实验得出的,可以 用于色度学计算,但计算中会出现负值,用起来 不方便,又不易理解,所以1931年CIE推荐了一个 新的国际通用的色度系统,CIE 1931-XYZ系统。
二、格拉斯曼定律
成立的条件: 成立的条件:外界环境保持不变 1854年格拉斯曼 年格拉斯曼(H· Grassmann)总结出颜色混合的定性性 总结出颜色混合的定性性 年格拉斯曼 称为格拉斯曼定律,为现代色度学的建立奠定了基础。 质,称为格拉斯曼定律,为现代色度学的建立奠定了基础。
(1) 人的视觉只能分辨颜色的三种变化。(例如明度、色度、 人的视觉只能分辨颜色的三种变化。 例如明度 色度、 例如明度、 饱和度) 饱和度) (2) 在由两个成份组成的混合色中,如果一个成份连续地变 在由两个成份组成的混合色中, 化,混合色的外貌也连续变化。 混合色的外貌也连续变化。 若两个成份互为补色,以适当比例混合, 若两个成份互为补色,以适当比例混合,便产生白色或 灰色,若按其它比例混合, 灰色,若按其它比例混合,便产生近似比重大的颜色成份的 非饱和色;若任何两个非补色相混合,便产生中间色, 非饱和色;若任何两个非补色相混合,便产生中间色, 中间 色的色调及饱和度随这两种颜色的色调及相对数量不同而变 化。
相关文档
最新文档