空气压缩机的噪音分析和处理
空气压缩机常见故障分析及处理方法

1、故障原因:缺油维修方法:首先对空气消声器进行检查,并对其进行清洗,然后观察油位,发现油位低于1/3油标位,马上加注了相同牌号的机油,再启动电源开关,试开,还是有敲击声。
后来将运动机构部件的曲轴、连杆、活塞、汽缸一一拆开进行检查,发现是曲轴产生了裂纹,看得出快折断了,想必缺油已经有一段时间了。
由于缺油,运动部件发生干摩擦,超负荷运行使各部件不同程度地受到损伤。
我们对损伤的各运动部件进行清洗、研磨,严重的更换,再重新安装、试机,敲缸声消失了,排气量也正常了。
可见机油是绝对不能缺少的,否则后患无穷。
2、故障原因:空气消声滤清器及气阀严密性不好维修方法:排气量的降低还与空气消声滤清器及气阀的严密性有关。
必须对空气消声滤清器勤清冼。
对气阀板、阀片上的污垢进行清洗是有利于空压机保证正常排气量的。
常规下每200小时就应清洗一次滤清器,每500~800小时应清洗一次气阀。
2、故障原因:润滑油质量不好维修方法:润滑油质量不好会造成活塞环被吸住,从而降低排气量。
因此,应选择高质量的润滑油。
长期工作后,润滑油内会含有杂质、灰尘等,因此还要进行过滤。
一般来说,每500~800小时应更换一次机油,并对前一次使用的机油进行过滤。
3、故障原因:排气温度超高维修方法:排气温度超高也会造成活塞环被吸住,导致排气量降低。
只要降低温度,便可以解决问题。
这里要注意两点:(1)环境温度不宜偏高,一般不超过40℃。
(2)若气阀漏气,排出的高温气体又会返回汽缸。
这时我们应仔细检查气阀,研磨阀板或更换阀片,排除漏气现象,这样才有可能解决温度超高问题。
压缩机一旦发生故障,对压缩机原理和结构有比较熟悉的了解,那么对故障原因的分析及排除是不困难的。
对故障的分析应从最容易、最方便的地方着手。
以下介绍几种常见故障的分析及处理方法。
压缩机不加载:1) 气管路上压力超过额定负荷压力,压力调节器断开。
不必采取措施,气管路上的压力低于压力调节器加载(位)压力时,压缩机会自动加载;2) 电磁阀失灵,拆下检查,必要时更换;3) 油气分离器与卸荷阀间的控制管路上有泄漏,检查管路及连接处,若有泄漏则需修补。
空调系统中的噪声及振动的分析及处理方法

空调系统中的噪声及振动的分析及处理方法噪声的原因可以归纳为以下几点:1.空调设备本身的噪声:空调设备在运行过程中会发出机械运转的噪声,如电机的噪声、压缩机的噪声等。
2.空气流动噪声:空调系统通过风机或风道将空气从室外引入室内,空气流动时会产生噪声。
3.水泵噪声:空调系统中的水泵在运行时会产生振动和噪声。
4.控制设备噪声:空调系统中的控制设备,如温控器、遥控器等,可能会发出噪声。
对于空调系统噪声的处理,可以采取以下方法:1.选择低噪声设备:在选购空调设备时,应选择低噪声的产品。
可以查看产品参数中的噪声指标,选择符合要求的产品。
2.加装噪声消除装置:在安装空调设备时,可以在设备的周围安装隔音材料,如吸声板、隔音棉等,来减少噪声的传播。
3.提高空气流动的效率:合理设计风道布局,避免空气流动过程中产生噪音。
可以使用流线型风道,减少气流的阻力,降低噪声。
4.定期维护检修:空调设备在运行过程中,可能会出现摩擦、松动等问题,导致噪声的产生。
定期对设备进行维护检修,确保设备的正常运行,减少噪声。
振动是另一个需要解决的问题,振动会引起噪声,同时还可能导致设备损坏和寿命缩短。
振动的原因主要有以下几点:1.设备不平衡或松动:空调设备在运行过程中可能因为未正确安装造成不平衡或松动,导致振动加剧。
2.风扇叶片不平衡:风扇叶片不平衡会引起振动,可以通过平衡风扇叶片来解决这个问题。
3.风机轴承故障:风机轴承故障会引起振动和噪声,可以定期维护检修风机轴承,加注润滑油来解决。
对于空调系统振动的处理,可以采取以下方法:1.正确安装空调设备:空调设备在安装过程中,需要确保设备平稳安装,并进行调整和检查。
如果设备不平衡或松动,需要进行相应的调整和固定。
2.平衡风扇叶片:风扇叶片不平衡可以通过平衡调整来解决。
可以使用专业的平衡仪器进行调整,确保风扇叶片平衡。
3.定期维护检修:定期对空调设备进行维护检修,确保设备的正常运行。
特别是对风机轴承进行润滑和更换,保证其正常工作。
空压机房噪声治理措施

空压机房噪声治理措施引言在现代工业生产中,空压机房被广泛使用。
由于空压机的运作需要使用电机,因此会产生噪声。
长期处于高噪声环境中对人的身体健康和工作效率都会造成负面影响。
因此,对空压机房噪声进行治理是非常必要的。
本文将介绍几种常见的空压机房噪声治理措施,希望可以为相关工程提供参考。
1. 噪声源控制空压机房中主要的噪声源就是空压机本身的运行以及电机驱动产生的噪声。
为了控制噪声源,可以采取以下措施:•改进空压机结构:通过优化空压机的设计,减少噪声产生的机械共振点,降低空压机的运行噪声。
•选用低噪声电机:选择噪声较低的电机来驱动空压机,减少电机产生的噪声。
•加装噪声消声器件:在空压机的进气口和出气口处加装消声器件,能够有效地降低噪声的传播。
•隔离振动传递:在空压机与地面之间增加减震垫,减少振动传递,从而减少噪声的产生。
2. 声音吸收措施除了控制噪声源,还需要采取措施来减少空压机房内的噪声传播和反射。
常见的声音吸收措施包括:•安装吸音板:在空压机房内墙壁和天花板上安装吸音板,能够吸收噪声并降低反射,减少噪声传播。
•使用吸音隔音材料:在空压机房的墙壁、天花板和地面上铺设吸音隔音材料,如吸音毡、吸音棉等,能够有效地吸收噪声并减少传播。
•设置隔音门窗:在空压机房的门窗处安装隔音门窗,能够有效地阻挡噪声的传播。
3. 人员防护措施在空压机房进行噪声治理的同时,也需要加强人员的防护措施,以保护工作人员的听力和身体健康。
以下是几种常见的人员防护措施:•佩戴耳塞或耳罩:工作人员可以佩戴耳塞或耳罩来阻挡噪声进入耳朵,保护听力。
•定时休息:长时间暴露在高噪声环境中对人的身体会造成损害,因此需要定时休息来缓解疲劳。
•提供听力保护培训:对工作人员进行听力保护培训,教育他们关于噪声危害以及正确使用耳塞等防护设备的知识。
结论空压机房噪声治理是非常必要的工作。
通过控制噪声源、采取声音吸收措施以及加强人员防护措施,可以有效地降低空压机房内的噪声水平,减少对工作人员的危害。
制冷机组中噪音大的原因

制冷机组中噪音大的原因1.引言1.1 概述制冷机组是一种常见的空调设备,它在提供舒适的室内温度的同时,常常伴随着噪音问题。
噪音会给人们的生活和工作带来不便和困扰,因此了解制冷机组中噪音产生的原因显得尤为重要。
本文旨在通过对制冷机组噪音大的原因进行探究,希望找到相应的解决办法,以改善噪音问题,并提高室内环境的质量。
制冷机组中噪音产生的原因有很多,在进行概括时可从以下几个方面入手进行讨论。
首先,噪音源可以直接来自于制冷机组内部的设备部件。
例如,制冷机组的压缩机、蒸发器、风扇等运转时会产生震动和摩擦声,从而导致噪音的产生。
此外,制冷机组中的冷却剂流经管道时,也会因为流速过快或采用不当的管道材质而产生噪音。
其次,噪音还可能来自于制冷机组的外部环境。
例如,在室外安装的制冷机组受到的外界环境噪音、风力影响以及与建筑物的共振等都会直接或间接地影响到机组的噪音水平。
此外,机组的安装位置也是影响噪音的一个关键因素。
若机组安装在露天平台上或靠近窗户等与室内空间直接相连的位置,噪音会更容易传入到室内,进而产生不适。
还有一个重要的因素是制冷机组的设计和维护。
一些低质量的机组设计或制造不合理会增加噪音产生的可能性。
此外,机组维护不当也可能导致零部件的松动或磨损,进而进一步增加噪音水平。
综上所述,制冷机组中噪音产生的原因涉及到机组内部设备部件、冷却剂流动、外部环境以及设计维护等方面。
在接下来的章节中,将详细探讨这些原因,并提出相应的解决方法和建议,以便降低和控制制冷机组的噪音水平,提高室内工作和生活环境的质量。
1.2文章结构文章结构部分的内容可以编写如下:文章结构部分旨在向读者介绍本文的组织框架和主要内容,从而帮助读者更好地理解本文的结构和连贯性。
首先,本文将分为引言、正文和结论三个主要部分。
引言部分将提供对制冷机组中噪音大的问题进行概述,并说明本文的目的和意义。
正文部分将详细介绍制冷机组中噪音产生的两个主要原因。
最后,结论部分将对本文的主要观点进行总结,并提出一些建议。
有关净化空调机组降噪问题的探讨

有关净化空调机组降噪问题的探讨净化空调机组的降噪问题是一个复杂且多方面的工程,需要综合考虑噪声源、传播路径和治理措施。
以下将从多个角度详细探讨如何有效降低净化空调机组的噪声。
1. 噪声源分析根据现有研究,空调机组产生的噪声主要来源于压缩机运行和风扇旋转。
此外,管道振动也会引起一定的噪声。
因此,首先需要对噪声源进行详细评估和测试,以确定具体的噪声大小、频率成分及其传播路径。
2. 隔声与隔音措施2.1 隔声罩和隔声屏障搭建高隔音效果的隔声罩或隔声屏障是常见的降噪方法之一。
隔声罩可以将机组本体笼罩在里面,锁住空气传播的声音,从而大幅降低噪声传播率。
同时,隔声罩应设计符合机组外形,并留有通风散热口,以确保设备正常运行。
2.2 消声器在进风和排风口安装消声器是控制噪声的有效手段。
消声器可以有效减少通过通风管道传到空调服务区及风道内气流噪声。
消声器的消声量一般在10~30dB(A)之间,但其压力损失应控制在50Pa以内,否则会影响室外机的散热效果。
3. 减振措施3.1 减震装置对于固体传声引起的噪声,设置减振装置是最佳解决方案。
例如,在空调机组底部安装减振底座和减震垫,或者在四周和天花板安装减震层。
此外,还可以使用合适的减震器来处理管道振动引起的噪声,使整个设备的隔振效率达到99%左右。
4. 吸声材料的应用在某些场景中,吸声材料也是必要的降噪手段。
例如,在管道包扎处理时,可以使用隔音毡对管道进行包扎,并在管道进出处填充减振隔音材料。
此外,还可以在建筑空间内贴玻璃棉等吸声材料来增强隔音效果。
5. 设备优化与维护5.1 设备选择与调整选择能满足气流要求且噪声最低的风机,并采用弹性减振基础。
同时,定期检查和维护压缩机和风扇的零件,如更换损坏的备件、加润滑油等,以避免因零件故障导致的额外噪声。
5.2 管道设计优化优化管道设计也是降低噪声的重要措施之一。
例如,主风管风速应≤4m/s,支管风速应≤3.5m/s,冷冻水流速控制在1.5m/s左右。
滚动转子式压缩机噪音分析与降噪措施

滚动转子式压缩机噪音分析与降噪措施发布时间:2021-05-02T03:03:26.607Z 来源:《中国科技人才》2021年第4期作者:刘鹏[导读] 压缩机的振动、噪声水平是衡量企业设计制造水平的重要指标,也是压缩机行业一直关注、研发的重点。
为进一步抢占市场先机,占得有利地位,压缩机制造企业需要积极提升技术水平,在不影响压缩机制冷性能,不增加成本的前提下,有效降低压缩机的振动、噪音,从而全面提高企业制造能力,提升市场竞争力。
南昌海立电器有限公司江西南昌 330000摘要:现代社会的发展,推动空调、制冷产业不断发展,飞速发展,形式各样的制冷压缩机产品不断推出市场,这对压缩机制造企业技术水平提出较高要求。
但是压缩机的振动、噪声等问题,不断出现,严重影响了压缩机水平。
因此,非常有必要分析出导致压缩机产生噪声的原因,并制定出相应的降噪措施,提高压缩机工作质量。
本文针对此展开了相关分析,希望可以为压缩机制造企业提供参考。
关键词:滚动转子式压缩机;噪音;原因;降噪措施压缩机的振动、噪声水平是衡量企业设计制造水平的重要指标,也是压缩机行业一直关注、研发的重点。
为进一步抢占市场先机,占得有利地位,压缩机制造企业需要积极提升技术水平,在不影响压缩机制冷性能,不增加成本的前提下,有效降低压缩机的振动、噪音,从而全面提高企业制造能力,提升市场竞争力。
可见,本文对滚动转子式压缩机噪音与降噪措施的分析,具有重要意义。
一、曲轴滚动转子式压缩机当中包含了很多部件,不同的部件受到一些因素影响后便会产生噪声,其中曲轴产生噪声的主要原因是,受到了旋转惯性力的影响,从而导致压缩机出现振动和噪声。
由于旋转惯性力属于周期性的不平衡力,会导致压缩机出现较高频率的振动,如果受振零部件原本的固有频率,与周期性不平衡力频率呈倍数关系时,此时压缩机零部件就会发生剧烈的共振,导致出现噪声,此种噪声为机械噪声[1]。
为达到降噪的目的,需要明白的是,此类噪声属于动平衡问题,所以,可以通过设计平衡块来平衡一阶惯性力,最终起到降噪的效果。
离心式压缩机常见故障分析及处理方法

离心式压缩机常见故障分析及处理方法离心式压缩机是一种常用的空气压缩机,它具有结构简单、运行稳定、效率高等优点。
然而,在运行过程中,离心式压缩机也可能会出现一些故障,如噪音过大、振动过大、温度升高等。
本文将针对离心式压缩机常见的故障进行分析,并提供相应的处理方法。
第一类故障:噪音过大原因:1.叶轮损坏或磨损过大;2.安装不当;3.轴承损坏;4.摩擦部件润滑不良;5.操作过程中出现杂物。
处理方法:1.更换叶轮或磨损过大的叶轮片;2.重新安装压缩机,并确保安装时叶轮与定子之间的间隙符合要求;3.检查轴承,如有损坏应及时更换;4.清理和润滑摩擦部件;5.定期检查和清理操作环境,避免杂物进入压缩机。
第二类故障:振动过大原因:1.安装不平衡;2.轴承损坏;3.叶轮损坏或磨损过大;4.电机失衡;5.齿轮箱故障。
处理方法:1.重新安装压缩机,确保安装平衡,并进行动平衡处理;2.检查轴承,如有损坏应及时更换;3.更换叶轮或磨损过大的叶轮片;4.检查电机是否失衡,并进行调整;5.检查齿轮箱的润滑情况,如需要更换润滑油或修复齿轮箱。
第三类故障:温度升高原因:1.压缩机周围环境温度过高;2.冷却系统故障;3.压缩机内部油温升高。
处理方法:1.增加压缩机周围的通风设施,确保空气流通畅;2.检查冷却系统,如需要更换或修复;3.加强压缩机的冷却措施,如加装风扇、降低压缩机转速等。
上述是离心式压缩机常见故障的分析及处理方法,当然还有其他可能出现的故障,处理方法也会有所不同。
为了确保压缩机的正常运行,建议定期进行检查和维护,及时发现故障并采取相应的处理措施,以保证压缩机的正常运行和长久使用。
空气源热泵机组压缩机故障分析

空气源热泵机组压缩机故障分析1.压缩机启动困难或无法启动这可能是由于电源故障(包括供电不足、电缆接触不良等)导致的。
在发现机组无法启动时,首先要检查电源是否正常,并检查电线和插头是否正常连接。
如果仍无法解决问题,可能需要检查电控板或压缩机本身的故障。
2.压缩机运转过程中发出异常噪音当压缩机在运转过程中发出异常噪音时,可能是由于压缩机内部零部件损坏导致的。
压缩机内部的运转装置和活塞可能会因长时间使用或使用环境恶劣而磨损。
解决这个问题可能需要更换损坏的零部件。
3.压缩机运行时发热量过大压缩机在运转时会产生一定的发热量,但如果发热量过大可能是由于压缩机内部过载、润滑剂不足或阀门故障等原因引起的。
需要先排除压缩机过载的可能性,检查压缩机的润滑系统是否正常运作,并检查阀门是否正常。
4.压缩机功率不足如果压缩机运行时输出的功率不足,可能会导致机组无法提供足够的供暖或供冷能力。
这可能是由于压缩机内部损坏、制冷剂不足、冷凝器或蒸发器故障等原因引起的。
解决这个问题可能需要更换压缩机或进行维修。
5.压缩机漏氟压缩机运行时如果发现系统压力下降,可能是由于压缩机内部出现漏氟现象。
这可能是由于密封件老化、管道连接不紧密、制冷剂泄漏等原因引起的。
需要检查系统中是否存在制冷剂泄漏的迹象,并及时修复漏点。
总之,空气源热泵机组压缩机的故障可能会导致整个系统无法正常工作。
对于故障的原因和解决方法,建议请专业的空气源热泵维修人员进行检查和维修,以确保设备能够正常运行。
同时,定期的维护和保养也能有效延长压缩机的使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空气压缩机的噪音分析和处理
噪音被认为是令人讨厌或干扰的声音。
用户完全愿意整夜坐在迪斯科舞厅,边抽烟边欣赏高达95分贝的迪斯科音乐,但是不可思议的是他竟无法容忍第二天早上的65分贝的复印机噪音。
用户喜欢迪斯科的噪音而不喜欢复印机的噪音。
典型的鸡尾酒会噪音值为90分贝,摇滚乐队的噪音为100到138分贝之间。
那么什么是分贝呢
分贝的定义可以解释为对两种能量比值的对数(以10为底)后乘以10。
W2
dB=10log-------
W1
增加10分贝表示能量的增加10:1,增加20分贝表示能量增加100:1,增加30分贝则增加1000:1。
对我们的应用来说,我们是讨论声功率级-设定的W1参照值为10-12,其公式就变成了:
PWL(dB)=10logW/10-12
例如,如果我们有一个声源,发出一个10-5瓦特的功率级,那声功率是:
10-5
PWL=10log-------=70dB
10-12
当耳朵背对着噪音,人们发现耳朵就自动地听不到低频的噪声,非常类似下面的A级网络。
为此,对工业噪声的测量选择的标准是A级噪声水平,并使用dBA术语。
由于反射的噪声能容易地被测试探头捕获,所以设置另一个标准。
该标准要求所有噪声测量就在空旷野外条件下进行。
测量气体设备声音的ANSIS51规则指出:噪声应该在离机器一米远,一点五米高处测量。
因此,这里我们确定了测试探头位置和测量地点并且以A级网络测量噪声。
所有制造商使用这些相同的基本规定测量噪声。
如果两台同样噪声水平的机器并排运行,噪声水平的结果将增加了3dBA(两倍)
例如:在我们原来的公式:
10-5
PWL=10log-------=70dB
10-12
如果,我们加倍我们声音功率水平到2×10-5
2×10-5
PWL=10log---------=73dB
10-12
一个压缩机制造商声明:噪声水平担保为+3dBA 是指其噪声水平将是其所声明的噪声水平的两倍或二分之一。
两台以不同速度运转的机组,可能有同样的噪声水平,但听起来完全不同。
一台可能比另一台更刺耳。
这是因为噪声是根据把频谱中所有的频率相加得出的一个数目来形成dBA。
为测量噪声水平,将测量到每一个音阶带的噪声,
以A反评定并对比相加以得出答数(dBA)。
所有这些意味着什么:
1、这意味着,由于反射我们不能将一台压缩机安置在房间里,然后期望有和在空旷野外条件下相同的噪声水平。
2、我们不能光凭两台不同的机组(以不同的速度,不同的驱动,不同的组件和不同的外壳)就能对噪声
水平做出一个聪明的猜测。
测量噪声的唯一方法是使用一台声音测量设备。
我们怎样克服噪声水平中明显的差异
1、通过准确测量噪声水平
2、通过知道噪声水平是怎样构成的来理智地指定频率的差别和刺耳的因素。
3、知道两个有相同噪声水平,然而不同频率特性
的机组噪声对耳朵的伤害是相同的,即使其中一个确实听起来更轻一些。
我们怎样才能进一步降低噪声
1、保机体中的所有接头是安全的,叉车孔关闭,机组在地面的基体是固封住的。
2、通过管道输送进气和排气。
3、减少反射噪声。
声音和噪声测量充其量只不过是一种非常不精确的科学。
对于这个课题的讨论希望能避免野外问题,野外修正的大量费用和用户的不满意。
1、所有噪声水平测量使用ANSLS51标准。
这是一个工业标准。
我们应该通过这个标准的参考了引用所用的噪声水平。
简短的说,该标准要求空旷野外测量(无反射墙和屋顶),机组周围的多点测量,并对测量值取平均值。
应该在机组一米以外,地面和基础水平
上的一点五米处测量。
任何单点测量可以起过引用的A 噪声水平。
只要平均读数能满足或低于引用水平。
此外,所采用的测量是所衡量噪声的应该宽频带的平均值。
当要求或给予应该频率带分析时,一些中频带的读数能而且通常确实比噪声衡量平均值更高。
再一次指出,这是标准所接受的。
2、在标准结构中没有给予和适用的公差
3、没有真正的在野外安置的机组应写上空旷野外
安置。
实际上规则地点的噪声水平总是要更高一些,因为从附近墙壁和或屋顶以及附近设备分布的反射。
4、可能提交的噪声水平数据是当测量应该特定压缩机时采用实际的测量得到的并在一个同类型压缩机在同样的条件下重复运行可被解释为典型的噪声水平。
注意
对于任何多点测量或重复压缩机测量时,有一定的误差联系。
这些误差指出了为了担保噪声水平对一个特定压缩机的问题,应该在总的dBA衡量值上加上3分贝。
当给予一个用户噪声水平担保时,服从以上要求是绝对必要的。
经验公式
一台0.7MPa之空压机每马力生产0.1416M3气量
每0.007MPa压降等于0.5%功率
风冷压缩机的热载荷=HP×2545BTU/时(1BTU=1.055KJ)
水冷压缩机的GPM(每分钟用水升数)
HP×2545
500×△T水
或,如△T水=11.1℃(闭环路),为HP/4
如△T水=22.2℃(城市供水系统)为HP/8
经后冷却器后65%之冷凝水已去除
经冷冻式干燥器后96%的冷凝水已去除
排气温度每升高11℃,含水量会翻倍
每0.028M3=7.48加仑=28.31升=1立方英尺
空压机每M3进气量需配133.5升筒体贮气能力
从理想气体定律推导出的泵气公式
体积(立方米)×压力上升(MPa)
时间(分)=
气量(立方米)×0.1013(MPa)
电机皮带轮尺寸(英寸)×压缩机转速(RPM)电机皮带轮尺寸(英寸)=
------------------------------------ 电机转速(RPM)。