三角函数最值问题的十种常见解法

合集下载

三角函数最值问题常见的求解策略

三角函数最值问题常见的求解策略

三角函数最值问题常见的求解策略三角函数最值问题是三角函数学习中的难点之一.求三角函数的最值,往往要涉及二次函数、不等式等其他重要知识,是历年高考考查的热点之一.本文试对常见三角函数最值问题作归纳、梳理.1.y=asinx+b型应对策略:令t=sinx,化为求一次函数y=at+b在闭区间上的最值.例1 求函数y=-3sinx+2的最值.解 令t=sinx,则原式化为y=-3t+2,t∈[-1,1],得-1≤y≤5.故ymin=-1,ymax=5.2.y=asinx+bcosx+c型应对策略:引进辅助角φtanφ=b()a,化为y=a2+b槡2sin(x+φ)+c,再利用正弦、余弦函数的有界性.例2 已知x∈-π2,π[]2,求函数f(x)=5sinx+槡53cosx的最值.解 f(x)=5sinx+槡53cosx=10sinx+π()3,令t=x+π3,则y=10sint,t∈-π6,5π[]6.故当t=-π6时,sint有最小值-12,f(x)min=-5;当t=π2时,sint有最大值1,f(x)max=10.3.y=asin2x+bsinx+c型应对策略:令t=sinx,化为求二次函数y=at2+bt+c在闭区间上的最值.例3 求y=2sin2x+sinx+3-π2≤x≤π()6的最值.解 令t=sinx,则由-π2≤x≤π6,得t[∈-1,]12.于是y=2t2+t+3=2t+()142+238.当t=-14时,ymin=238;当t=-1或12时,ymax=4.4.y=asin2x+bsinxcosx+cos2x型应对策略:降次,整理化为类型2,求y=Asin2x+Bcos2x+c的最大值、最小值.例4 函数f(x)=6sinxcosx+8cos2x,求f(x)的周期与最大值.解 f(x)=3sin2x+4cos2x+4=5sin(2x+φ)+4.故周期T=π,f(x)最大值为9.5.y=asinxcosx+b(sinx±cosx)+c型应对策略:令t=sinx±cosx,化为求二次函数y=±a2(t2-1)+bt+c在t∈[-槡2,槡2]上的最值.例5 求函数y=(1+sinx)(1+cosx)的最值.解 y=1+sinxcosx+(sinx+cosx),令t=sinx+cosx,则y=1+t+t2-12=12(t+1)2,t∈[-槡2,槡2].当t=槡2时,ymax=3+槡222;当t=-1时,ymin=0.6.y=asinx+bcsinx+d型应对策略:反解出sinx,利用正弦函数的有界性或用分析法来求解.例6 求函数y=sinx-3sinx+3的最值.解法一:解出sinx=3(y+1)1-y,由|sinx|≤1,得-2≤y≤-12.解法二:(“部分分式”分析法)原式=1-6sinx+3,再由|sinx|≤1,解得-2≤y≤-12.故ymin=-2,ymax=-12.7.y=asinx+bccosx+d型 十种特殊条件下的 三角恒等变换□韩玉宝 三角变换的关键在于发现题目中条件与结论之间在角、函数名称、次数这三方面的差异及联系,然后通过角变换、函数名称变换、升降幂变换等方法找到已知式与所求式之间的联系.三角变换的方法很多,本文将课本中出现的特殊条件下的一些变换方法归纳如下:一、条件或所求中出现“sinα+cosα”,将其平方.例1 设α∈(0,π),sinα+cosα=713,求tanα的值.解 将sinα+cosα=713两边平方,得sinαcosα=-60169,两式联立解得sinα=1213,cosα=-513,从而tanα=-125.二、已知tanα,求asin2α+bsinαcosα+ccos2α的值,先将asin2α+bsinαcosα+ccos2α除以(sin2α+cos2α)(即1),然后分子、分母同除以cos2α.例2 已知tanα=2,求sin2α+3sinαcosα+4的值.解 sin2α+3sinαcosα+4=sin2α+3sinαcosα+4sin2α+cos2α=tan2α+3tanα+4tan2α+1=145.三、化简1+sin槡α,1-sin槡α,1+cos槡α,1-cos槡α,引用倍角公式或将1用平方代换.应对策略:化归为y′=Asinx+Bcosx型求解或用数形结合法(常用到直线斜率的几何意义).例7 求函数y=sinxcosx+2的最大值及最小值.解法一:将原式ycosx-sinx+2y=0化为y2+槡1sin(x+φ)=-2y,即sin(x+φ)=-2yy2+槡1,由|sin(x+φ)|≤1,得-2yy2+槡1≤1,解得-槡33≤y≤槡33.故ymin=-槡33,ymax=槡33.解法二:函数y=sinxcosx+2的几何意义为点P(-2,0)与点Q(cosx,sinx)连线的斜率k,而点Q的轨迹为单位圆,如右图,可知-槡33≤k≤槡33.故ymin=-槡33,ymax=槡33.8.y=asinx+bsinx型应对策略:转化为利用函数y=ax+bx的单调性求最值.例8 求函数y=sinx+4sinxx∈0,π(]()2的最小值.解 令t=sinx,x∈0,π(]2,则y=t+4t,t∈(0,1].利用函数y=ax+bx的单调性得,函数y=t+4t在t∈(0,1]上为单调递减函数.故当t=1时,ymin=5.巩固练习1.若函数y=2sinx+槡acosx+4的最小值为1,求a的值.2.求函数y=-2cos2x+2sinx+3的值域.3.求函数y=(sinx+槡3)(cosx+槡3)的最值.(参考答案见第41页)由π4-α=π12-()α+π6,可得cosα-π()4=-槡3+4310.故所求值为:槡-33+20350.《常见三角函数最值问题的求解策略》1.a=5. 2.y∈12,[]5. 3.ymax=72槡+6,ymin=72槡-6.《十种特殊条件下的三角恒等变换》1.略. 2.116.《“整体思维”巧解三角恒等变换题》1.5972. 2.±712. 3.5665. 4.14. 5.1.《例谈构造法在三角问题中的妙用》1.提示:解析式看作是动点P(cosx,sinx)与定点Q(3,0)连线的斜率,为此构造直线斜率这一几何模型处理.y=sinxcosx-3最小值为-槡24,最大值为槡24.2.提示:已知条件可视为关于sinα2的一元二次方程模型去证明.3.提示:构造几何模型将条件化为(1-cosβ)cosα-sinβsinα+cosβ-32=0.因为点(cosα,sinα)在直线(1-cosβ)x-sinβy+cosβ-32=0上,同时也在圆x2+y2=1上,所以直线和圆有公共点,故d≤r,即cosβ-32(1-cosβ)2+sin2槡β≤1,整理得cosβ-()122≤0,即cosβ=12.又β为锐角,所以β=π3.同理α=π3.《向量问题的几何解法》1.a21+a22=b21+b22. 2.120°. 3.槡6.《一道课本向量题的探究与应用》1.设→AG=→ mGC,→ FG=→ nGE,则→ BG=→ BA+→mBC1+m.又→BG=→ BF+→ nBE1+n=→ BA+→ AF+→nBE1+n=→BA+13→ AD+n2→ BC1+n=→ BA+13+n()2→BC1+n.故11+m=11+n,m1+m=13+n21+烅烄烆n m=n=23.从而→AG=23→ GC,→ AG=25→ AC.单元测试参考答案1.1 2.5665 3.③ 4.槡459 5.116 6.[槡-3,槡3] 7.2 8.π2 9.槡2-12 10.d1d211.因为sinC=sin(A+B)=sinAcosB+cosAsinB,所以sinAcosB=cosAsinB,即sin(A-B)=0.所以三角形是等腰三角形.12.原式=2sin50°+2sin80°cos10°12cos10°+槡32()sin10°槡2cos5°=2sin50°+2sin80°cos10°cos(60°-10°)槡2cos5°=2槡22sin50°+槡22()cos50°cos5°=2cos(50°-45°)cos5°=2.13.因为tanα+β2=槡62,所以cos(α+β)=1-tan2α+β21+tan2α+β2=-15,即cosαcosβ-sinαsinβ=-15.①又因为tanαtanβ=137,所以sinαsinβcosαcosβ=137,即13cosαcosβ-7sinαsinβ=0②联立①、②,解得cosαcosβ=730,sinαsinβ=1330.。

三角函数最值求解常用“十策”

三角函数最值求解常用“十策”
- t
当 s x= 一 i n 1时 , = . Yi 6
评 注 : 果所 给 的 函数是 同名 不 同次或 可化 为 如
同名 不 同次及 其 它能够 进行 配方 的 形 式 , 可采 用 此
方法. 此种 方法在 求 三 角 函数 的值 域 或 最值 问题 中 较 为 常见 , 在 最后 讨论 值域 时 , 但 往往 容 易忽略 自变 量 ( l中以 s x为 自变量 ) 例 i n 的取 值 范 围 而 出现 错
・ . .

_ ; + 。 + cs 。i bo
COS + j X
, 一l OX . 且 ≤CS ≤1
= b+ ̄ a 口+ , b+( / 4 Ⅱ一b i 2 . ) s x n


当 CS OX=一l时 ,一 =1 Y , 当 CS OX=1 , : . 时 Y| 0 n
的最大 值.
>. 0解得÷≤ ≤ (≠ ) y 3y 1.

将 Y=1 人原方 程 解得 t 0= 代 a n 0∈R, 以 Y= 所
解由 = 1c 2 导 c 詈 :)s0 +s s ・s , ,i ( 。 i 。 n = n 2
再 拆项 变形 得
1 函数值. 是
所以 ) 3 =,i . 寺≤, , ≤ 故Y 3 = Y 1
+ ,
题, 分子、 分母的三角函数 同角、 同名 , 类三角 函数一 这
般 先化为部分分式 , 用三 角函数 的有 }去解 . 再利 生
4 换 元法
例 4 试 求 函数 Y=s x+CS i n OX+2i cs s xox+2 n 的最大 值 和最小值 .
评 注 : 用 三 角 函 数 的 有 界 性 如 IixI 1 利 n ≤ , s

求三角函数最值的几种方法

求三角函数最值的几种方法

求三角函数最值的几种方法一、利用函数的增减性例1. 若()x ∈0,π,求sin sin x x +4的最小值。

解:()x ∈0,π ∴>s i nx 0 s i n s i n s i n s i n x x xx +=-⎛⎝ ⎫⎭⎪+4242 设y x x =-2sin sin ,显然函数y xx =-2sin sin 是sinx 的减函数,且2sin sin x x >即20sin sin xx ->,故242sin sin x x -⎛⎝ ⎫⎭⎪+也是sinx 的减函数。

∴当sin x =1,即x =π2时,sin sin x x+4的最小值是5。

二、利用三角函数的有界性例2. 求函数y x x =+-sin cos 34的最值。

解:由已知得:sin cos x y x y -=--43所以()1432++=--y x y sin ϕ()s i n x y y +=-++ϕ4312由()sin x +≤ϕ1,得:-++≤43112y y即1524802y y ++≤所以--≤≤-+122615122615y 则y 的最小值为--122615,最大值为-+122615。

三、巧用换元法 例3. 求函数f x x x x x ()sin cos sin cos =--的最值。

解:设sin cos x x t +=,则-≤≤22t()t x x x x 2212=+=+s i n c o s s i n c o s∴=-s i n cos x x t 212因此,f x t t t t ()()()==--=--ϕ22121211 ()()∴=-=---=+==-f x f x ()()()m a x m i n ϕϕ2122111222112说明:f x ()不是x 的二次函数,但通过换元后可化为t 的二次函数,但应注意换元后新变量的取值范围。

四、运用重要不等式例4. 求函数()y x x x =+<<120cos sin()π的最值。

高三数学三角函数的最值问题

高三数学三角函数的最值问题
四、作业:
;网络招生管理系统 网络招生管理系统 ;
炼器至尊,九品下の实力,凭借手中奇异の宝物,实力居然能比九品上! 风月君主从不参与各大势力の纷争,就算风月大陆各大世家明争暗斗,他都很少管.只要不触犯他订下の几条规矩就没事,一心钻研炼器,所以他炼器の水平已经达到一些极其高深の水平.或许他没有魂帝那么天马行空 变taiの思维,但是他盛在痴迷,一些君主痴迷一件事情数十万年进百万年,不间断の研究,谁也不知道他の水平已经达到什么高度了… 而期间噬大人透露の一些信息,也让白重炙对这个老好人,感官更加好了.恶魔降临之时,一直很少出关の风月君主第一站了出来,开始召集各君主,甚至派 人去了不少秘境请那几位老东西出山.在众位君主忙着清理各自大陆阴煞涧の不咋大的部分恶魔时,他就放言,如果星辰海の恶魔不立即镇压,神界将会迎来历史上第三次灭世大浩劫! 结果…各路巅峰强者,刚准备去风月大陆汇集の时候,妖智开始暴动了! 第一波浩劫来临,就在昨日风 云君主再次传讯了,今日妖月升起之前,不管各大陆の妖智击杀の情况如何,必须去风月潭集合商议对策,否则事情将不可挽回! 所以噬大人给白重炙两天の时候,白重炙听完之后一阵唏嘘.对风月君主の高尚品质很是钦佩,这种人平时不显山不露水,关键の时候却毅然挺身而出,为人类种 族の延续而奋战,这才是真正の大英雄. 三人没过多久就瞬移去了神恩大陆,距离妖月升起の时候还有一些,所以三人并没有多急,而是在神恩大陆充当了一回救火队员.神恩大陆那位自称嫣然女主の君主,虽然是神界唯一一位修魂者君主,当然此刻变成了唯二了,不过白重炙拿点魂技在嫣 然君主面前不值一提.但是毕竟她只是一人,神恩大陆情况很不妙,所以噬大人三人の到来,嫣然君主无比の感激和振奋. 白重炙休息了一不咋大的会,刚刚缓解了一些の精神压力.在神恩大陆战斗了数个数个时辰之后,再次差点灵魂奔溃了. 三位巅峰强者の加入,神恩大陆の妖智攻击在妖 月就要升起之前,终于稳定了下来.四人立即开始传送去风月大陆.白重炙苍白の脸色,让基德和噬大人一阵无奈,但是噬大人却依旧没有打算将他那半吊子空间之力の运用方法,传授给白重炙,只是模糊给他说了一句: "空间之力你呀可以当做另类の神力,本源之力你呀可以当成你呀手中 最锋利の武器,至于法则玄奥,你呀可以当做无比精妙の招式.三种结合起来,你呀の攻击力才会最大化,也能让你呀战斗の更加轻松,利用最少の空间之力,照成更大の攻击力…具体の自己去研究,俺和基德以前没有教你呀运用方法,以后也不会教你呀!" 白重炙虚弱の点了点头,虽然不明 白噬大人为何这么做,但是他知道噬大人不会害他,这就够了! 嫣然君主很少说话,幸运子和夜妖娆差不多,很冷,是这种天然の冷.不过看到白重炙如此样子,虽然没有半句客气感激の话,但是望向白重炙の眸子,已经不再那么冰冷了! 风月潭在风月城外,景色很美,漫山遍野の暗紫色不 咋大的花,高耸入云の古树下,一些深潭边,一座古朴の城堡静静伫立,这就是风月君主の居住地! 白重炙四人来の时候,风月君主亲自前来迎接,白重炙一看果然和基德述说の一模一样,一些老实の不咋大的老头般.丢到炽火城街道内,估计没有人会看第二眼. 风月君主亲自将四人迎进了 古堡内,大殿内有人,有四人.白重炙只认识一些,天启君主莫尚煌,一如既往の大嗓门,爽然性格,亲热笑容.还有三人,有两名仙风道骨の老头,气质飘然,她们几人进来,两人只是淡淡の一笑,点了点头. 白重炙の目光却一下被坐在主位の一些女子吸引住了,如果不是她们进来,那个女子眸 子转动了一下,白重炙肯定会认为这是一具冰雕,一具绝美の冰雕. 冰雪女王出岛了! 并且坐在了风月古堡の主位,似乎她是主人一样.并且所有人包括风月君主都没有半点不满,似乎那是天经地义の事情般. 冰雪女王很冷,甚至噬大人朝她点头,她都没有动一下.宛如一座冰山一样,似乎 对大殿内の这么多君主熟视无睹.偏偏众人感觉还很应该,也习以为常.这场面在白重炙看起来,无比の怪异. 但是,接下来却发生了一幕让所有君主都无比惊恐の事情,就连噬大人都微微错愕の微微张开了不咋大的口,嫣然女主一直很冷の眸子,却亮了起来. 因为冰雪女王,眸子转动の时 候,扫在白重炙身体の时候,停了下来.而后…居然笑了,她居然朝白重炙笑了!虽然笑の很勉强,笑の很冷!但是她这一笑,带给场中这几位神界最巅峰强者の感觉,却比神界浩劫来の更加震撼. 本书来自 聘熟 当前 第壹0叁壹章 灵魂又出事了… 众人落座,莫尚煌是个急幸运子,第一些 开口了:"诸位,星辰海の局势刻不容缓,时候拖延一刻,恶魔就会不断の从空间裂缝中降临.神界の天地元气中の恶魔气息就会越来越浓郁.现在是妖智暴动,估计半年之后再不镇压下去,下次暴动将会是…神界所有の低级练家子.并且,星辰海の空间裂缝被恶魔の控制之下,会变得越来越 大,越来越稳定.不用三个月,绝对能产生能降临恶魔君主の超级大裂缝.恶魔君主の强横不用多说,只要恶魔君主一降临,恐怕到时候神界の一半低级练家子,会瞬间魔化!浩劫啊,有可能灭世の大浩劫啊!" 文章阅读 笑是一件很简单の事情,婴儿在几个月の时候就会笑.看书 有人笑の很温和,不温不火の,比如白重炙,有人笑の儒雅,比如基德.有人笑得很放荡,比如莫尚煌.还有人笑の很…恐怖,比如眼前这位气质上比嫣然君主更甚一筹の冰雪女王. 因为在场中人,包括已经活了近千万年の风月君主,都没有见过冰雪女王…笑过!这位实力深不可测の女王,拥 有这女神般の气质,让无数男人看一眼,就心甘情愿就趴在脚上tian她の脚趾头女人.在场の人见过她不少次,每人都去冰雪岛拜见过她.风月君主见过他次数最多,有几十次,嫣然女主也见过她无数次. 但是…她一直宛如一座冰雕般,将身体包裹在极北之地の寒气之中.能正眼看你呀一眼 已经算是破天荒了,今日,她居然笑了!为一些第一次见面の男人笑了!为一些在场中实力垫底の不咋大的男人笑了! 风月君主最为震惊,他了解这位邻居,心比天高,实力强横,十个他都不是对手.他与世无争の幸运子很受冰雪女王待见,两人一直处の很好.基本来说能算朋友了,也一起 聊过不少次,不过今日他彻底被吓到了. 他想起神界一句古老の传言——当哪天冰女女王笑了,这个世界将会颤抖为之颤抖了! 所有人将目光投向了面色苍白の白重炙,虽然白重炙是神界历史上最为年轻の君主,第一怪才.但是他并没有帅得让人为之惭愧の容颜,也没有宛如开锋の利剑 般让人凛冽の气质.温和の笑容,淡淡の从容让人感觉宛如一些邻家の不咋大的弟弟般. 众人无比疑惑起来,嫣然君主若有所思の望着白重炙,噬大人眼中精光一闪,朝前踏出一步,眸子内闪过一丝警惕. 白重炙有些莫名其妙,不知道为何这个女神对他笑了笑,众人却如此大惊不咋大的怪? 他从来不认为自己身体上有一股王霸之气,虎躯一震,所有の女子都对他趴开那洁白の大腿.所以他朝冰雪女王微微一笑,而后在一边の蝉木椅子上坐了下来. 冰雪女王宛如冰山上の莲花盛开の一笑后,再次成为了一座冰雕.众人也就心思复杂の各自坐了下去,开始闭目眼神或者相互传音 交谈起来. 白重炙没有去看任何一人,而是闭目静坐起来,他不是装十三,而是精神太疲惫了,需要好好静修恢复. 同时他也开始内视身体起来.闭关了六百年,他出关之后就一直在战斗,此刻完全松懈下来,才有想起身体の状况起来. 闭关六百年他成就斐然,成功感悟了一些高级玄奥空间 压迫,如果这消息传出去の话,神界肯定又是一片哗然,要知道雷震如此天赋,第四个高级玄奥都感悟了三千年.法则实力已经成为了六品破仙の实力,原本准备一鼓作气继续参悟下一些高级玄奥の时候,妖姬把他叫醒了. 一查探! 结果,他差点又吓得跳了起来! 身体没事!脑袋也没事, 脑袋内の几个灵魂海洋…又出事了! 灵魂海洋上空の本源之力内の雷电依旧在不停の朝下方劈下,本源之力没有什么变幻,雷电依旧老样子,宛如一条条白色怒龙在本源之力和灵魂海洋内来回游走.灵魂海洋本来是几个褐色の海绵般の物体,宛如两瓣核桃仁般,但是此刻颜色却不对了,土 褐色变成了土黄色,并且似乎…变不咋大的了? 绝对变不咋大的了!并且,不咋大的了整整几多之一! 白重炙迅速做下了判断!而后他几个灵魂海洋开始微微颤抖起来,他恐慌起来.娘希匹の…他这六百年时候,几乎都在灵魂静寂第五层内.他虽然在闭关,但是妖姬却很准时の每隔五年, 施展她の绝世大杀招"观音坐莲"帮助他进入灵魂静寂状态! 按理来说,灵魂静寂第五层下,他の灵魂海洋会不断の扩展,虽然灵魂到达神帝境之后,进展有些缓慢.但是六百年时候,灵魂海洋扩展一倍还是没有问题,现在却马勒戈壁の变不咋大的了?还变色了? 白重炙强忍着内心の恐惧,开 始一边又一边の检查起来,一遍又一遍,最终发现似除了灵魂变不咋大的了,变色了,并没有其他の变化,也没有不良の反应.那座连接几个灵魂の桥梁虽然变得更加闪亮了,那条刚刚冒出头の黑线,也没有继续延伸の趋势… 不对! 突然,白重炙眼睛猛然睁开,将场中の诸位君主弄得一愣一 愣の,但是白重炙利马又闭上了眼睛,内心却又惊愕起来,但是这次除了惊还有喜! 灵魂海洋变不咋大的了?好像灵魂强度…变强了?还不是强了一点两点?灵魂强度不是灵魂海洋越大,就越强吗?难道自己の感觉错了? 白重炙有种当场释放一些魂技,检验一下灵魂强度の冲动.最后没敢贻 笑大方,他沉吟了片刻,最后打算,这次事情完了之后,找美丽の嫣然君主聊一聊.当然并不是谈人生理想,而是谈一谈修魂者の问题. 这位神界最强の修魂者,有这个资格为他传道解惑,当然她会不会倾囊相授就不得而知了. 虽然白重炙很想在继续检查起来,并且细细研究一下.但是随着古 堡外の空间一阵抖动,几道身影の出现,白重炙不得不打断了自己の沉思. 南岭君主血夜君主隐世君主,还有一位宛如远古蛮族般有着古铜色皮肤の巨汉走了进来.场中の所有人都睁开了眼睛,冰雪女王の眸子再次转动了一次,还轻微の点了点头,当然不是为南岭君主,而是对着那个巨汉. "这是神界极南那座神界最高青山の主人,他习惯别人称呼他青山大人!实力…和冰雪女王一样,深不可测!" 基德の传音让白重炙,眼睛微微缩了缩.今日看来神界の大部分巅峰强者都聚

如何解答三角函数最值问题

如何解答三角函数最值问题

解题宝典三角函数最值问题的类型很多.要提高解答三角函数最值问题的效率,需要掌握不同类型三角函数最值问题的特点,对三角函数式进行合理的化简或转化,充分利用三角函数的性质与图象来解题.本文重点探讨一下几类常见三角函数最值问题的解法.一、f ()x =A sin ()ωx +φ+k 型对于形如f ()x =A sin ()ωx +φ+k 、f ()x =A cos(ωx +φ)+k 、f ()x =A tan ()ωx +φ+k 的三角函数最值问题,一般要利用三角函数y =sin x 、y =cos x 、y =tan x 的性质和图象来求其最值.例1.求函数y =12sin æèöø2x +π3在区间[-π4,π6]上的最值.解:∵x ∈[-π4,π6],∴-π6≤2x +π3≤2π3,由正弦函数y =sin x 的图象可知-12≤sin æèöø2x +π3≤1,-14≤12sin æèöø2x +π3≤12,∴函数y =12sin æèöø2x +π3在区间[-π4,π6]上的最大值是12,最小值是-14.解答形如f ()x =A sin ()ωx +φ+k 、f ()x =A cos(ωx +φ)+k 、f ()x =A tan ()ωx +φ+k 的三角函数最值问题,要首先从y =sin x 、y =cos x 、y =tan x 的性质和图象入手,在y =sin x 、y =cos x 、y =tan x 图象的基础上作相应的变换,找出对应的最值点、与坐标轴的交点、对称轴等,从而快速确定函数在定义域内的最值.二、f ()x =λsin x +μcos x +t 型对于f ()x =λsin x +μcos x +t (λ、μ不全为0,t ∈R)型三角函数的最值问题,应先把函数式进行恒等变换,利用辅助角公式,将其转化为f ()x =λ2+μ2⋅sin(x +φ)+t (其中cos φ=λλ2+μ2,sin φ=μλ2+μ2,tan φ=μλ)的形式,或转化为f ()x =μ2+λ2cos(x +φ)+t 的形式;然后根据正弦或余弦函数的有界性来求其最值.例2.在直角坐标系中,曲线C 的参数方程是ìíîïïïïx =1-t 21+t 2,y =4t 1+t 2,(t 为参数)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程是2ρcos θ+3ρsin θ+11=0,求曲线C 上的点到直线l 的最短距离.解:将参数方程设为{x =cos α,y =2sin α,(α为参数,-π<α<π)根据点到直线的距离公式,可得曲线C 上任意一点(cos α,2sin α)到直线l 的距离为d =||||||4cos æèöøα-π3+117,当α=-2π3时,||||||4cos æèöøα-π3+11取得最小值7,则曲线C 到l 的最短距离是7.目标式2cos α+23sin α+11形如f ()x =λsin x+μcos x +t ,要求三角函数的最值,需要先利用辅助角公式进行恒等变换,将目标式转化成余弦函数式4cos æèöøα-π3;然后再根据余弦函数的有界性求其最值.三、f ()x =k sin 2x +m sin x +n (k ≠0)型对于形如f ()x =k sin 2x +m sin x +n (k ≠0)、f ()x =k cos 2x +m cos x +n (k ≠0)的三角函数最值问题,一般采用换元法求解.首先令sin x =t 、cos x =k ,得到二次函数;再利用二次函数和正余弦函数的性质求最值.例3.求函数f ()x =sin æèöø2x +3π2-3cos x的最小值.解:f ()x =sin æèöø2x +3π2-3cos x=-2cos 2x -3cos x +1,令cos x =t ,t ∈[-1,1],得y =-2t 2-3t +1=-2æèöøt +342+178,当t =1时,函数最小值是-4.原函数可化成f ()x =k cos 2x +m cos x +n 的形式,于是通过换元,将三角函数式转化为关于t 的二次函数式,这样便可直接根据二次函数的性质求最值.在解题时,需重点关注二次函数的定义域,此时二次函数的定义域受三角函数cos x =t 的单调性和有界性影响.四、f ()x =λsin x +t μcos x +n 或f ()x =μcos x +nλsin x +t(λμ≠0)型对于此类三角函数最值问题,一般有两种解法.一余涛涛38解题宝典是解析法,将函数f ()x =μcos x +nλsin x +t化成f ()x =μλ.cos x +n μsin x +t λ,再用换元法,令k =cos x +n μsin x +t λ,这样就得到线性函数f ()k =μλ.k (λμ≠0),即可根据线性函数的单调性求最值;或将k 看作是单位圆上的一个动点(sin x ,cos x )与定点(-t λ,-nμ)连线的斜率的最值,通过数形结合来解题.二是利用三角函数的有界性,通过恒等变形,将函数式转化成整式,再根据辅助角公式和三角函数的有界性来求最值.例4.求函数f ()x =sin x -1cos x +1的最大值.解法一:设P ()x ,y 是圆x 2+y 2=1上的动点,点A ()-1,1,k 是P 、A 两点所在直线的斜率,则PA 的直线方程是y -1=k (x +1),整理得kx -y +k +1=0.可知当直线与圆相切时,直线PA 的斜率最大,∵圆心到PA 直线的距离d ==1,解得k =0,∴f ()x =sin x -1cos x +1的最大值是0.解法二:将y =sin x -1cos x +1(x ≠(2k +1)π)变形,可得y +1=sin x -y cos x =1+y 2sin (x +φ),即sin ()x +φ=y +11+y 2,而||||||||y +11+y2=|sin (x +φ)|≤1,得||y +1≤1,则y ≤0,即函数()x =sin x -1cos x +1的最大值是0.解法一主要是运用了解析法,将函数最值问题转化为求单位圆x 2+y 2=1上的动点P (x ,y )与定点A (-1,1)连线斜率的最值,通过数形结合求得最值.解法二主要是利用正弦函数的有界性,通过三角恒等变换,将函数式转化为sin ()x +φ,再根据正弦函数的有界性|sin (x +φ)|≤1,建立关于y 的不等式,从而求得y 的最值.五、f ()x =λsin x +nμsin x 型对于形如f ()x =λsin x +nμsin x 、f ()x =λcos x +n μcos x 、f ()x =λtan x +n μtan x(λ、μ、n 为常数)的三角函数最值问题,通常利用基本不等式来求最值.当不能使用基本不等式求解时,可设t =sin x ,将原函数变为f ()t =λt +n μt ,再利用对勾函数的单调性求最值.还可以利用导数法来求最值.例5.当π4≤x ≤π2时,求函数f ()x =cos x +1cos x 的最小值.解法一:函数可变形为f ()x =cos x +12cos x+12cos x ,由基本不等式得cos x +12cos x≥2,当且仅当cos x=12cos x (即x =π4)等号成立,∵12cos x ≥,∴f ()x.解法二:∵π4≤x ≤π2,∴0<cos x ≤,令t =cos x ,∴0<t ≤,∴f ()t =t+1t为减函数,∴当t =时,f ()t =t +1t 有最小值解法三:对函数求导数,可得f ′()x =sin 3xcos 2x,∵π4≤x ≤π2,∴f ′()x >0,由此可判断出函数f ()x =cos x +1cos x在区间[π4,π2]x =π4时,函数f ()x =cos x +1cos x 取得最小值.解法一主要运用了基本不等式a +b ≥2ab(a >0,b >0),由于cos x +12cos x为两式的和,且其积为定值,在两式相等时可取等号,这就满足了运用基本不等式的应用条件:一正、二定、三相等.解法二主要运用对勾函数f ()x =x +ax的性质.运用对勾函数的性质求最值,需熟记对勾函数的单调性和最值点.解法三主要运用到导数法来求得最值.可见,求解三角函数最值问题是有规律可循的.(1)一般是从三角函数的解析式入手,明确其结构特征,充分利用函数的性质与图象来寻找解题思路;(2)对于比较复杂的三角函数式,需要利用诱导公式、同角的三角函数关系式、两角和差公式、二倍角公式等进行恒等变换,将函数式化简或转化成单一的三角函数式来求最值;(3)在求三角函数最值时,可灵活运用换元法、基本不等式法、解析法、三角函数的有界性进行解题.掌握这些方法与规律就能有效提高求三角函数最值问题的效率.(作者单位:江苏省无锡市洛社高级中学)39。

三角函数的最值问题

三角函数的最值问题
可转化为求函数 yt2t1,t 1,1
上的最值问题。
2、化为一个角的三角函数,再利用有界性求最值:
asinxb co xa2b2sin (x )
如函数 y
1
的最大值是
2sinxcox
3、数形结合
常用到直线斜率的几何意义, 例如求函数
y sin x cox 2
四、作业:
»
一、我们因梦想而伟大,所有的成功者都是大梦想家:在冬夜的火堆旁,在阴天的雨雾中,梦想着未来。有些人让梦想悄然绝灭,有些人则细心培育维护,直到它安然度过困境,迎来光明和希望,而光明和希望总是降临在那些真心相信梦想一定会成真的在我们心底,使我们的心境永远得不到宁静,直到这些梦想成为事实才止;像种子在地下一样,一定要萌芽滋长,伸出地面来,寻找阳光。——林语堂

五十七、一个人的理想越崇高,生活越纯洁。——伏尼契

五十八、梦想一旦被付诸行动,就会变得神圣。——阿·安·普罗克特

五十九、一个人追求的目标越高,他的才力就发展得越快,对社会就越有益。——高尔基

六十、青春是人生最快乐的时光,但这种快乐往往完全是因为它充满着希望,而不是因为得到了什么或逃避了什么。——佚名
0
,
2

82
上的最大值是1?若存在,求出对应
的a值?若不存在,试说明理由。
思维点拨:
闭区间上的二次函数的最值问题字母分 类讨论思路。
3、换元法解决 sixn co x,ssixn co xs
同时出现的题型。
例4、求函数 的最小值。
y 4 3 sx i4 n 3 cx o s

三十三、在劳力上劳心,是一切发明之母。事事在劳力上劳心,变可得事物之真理。——陶行知

三角函数最值问题的十种常见解法-6.18

三角函数最值问题的十种常见解法-6.18

拼搏的你,背影很美!三角函数最值问题的十种常见解法三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一,所涉及的知识广泛,综合性、灵活性较强。

解决三角函数的最值问题不仅会用到三角函数的基本定义、单调性、奇偶性、周期性、有界性和三角函数图像,而且还会用到三角函数的多种恒等变化。

同时,在三角函数的最值问题中常常涉及到初等函数、不等式、方程、几何等方面问题;常用公式1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos( =±;tan tan tan()1tan tan αβαβαβ±±=。

2. 辅助角公式sin cos ),sin a x b x x ϕφφ+=+==3.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。

4.半角公式sin2α=cos 2α=tan 2α= (sin 1cos tan21cos sin ααααα-==+)5. 万能公式22222tan1tan 2tan222sin ,cos ,tan 1tan 1tan 1tan 222ααααααααα-===++-拼搏的你,背影很美!题型一:sin y a x b =+或cos y a x b =+型函数 策略:转化为一次函数在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法,即利用sin 1x ≤或cos 1x ≤便可求解,max min ,y a b y a b =+=-+。

评析:①必须注意字母a 的符号对最值的影响;②必须注意自变量x 对最值的影响。

例1:求函数2cos 1y x =-的值域解析:此为cos y a x b =+型的三角函数求最值问题, 设cos t x =, 由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈-巩固:求sin()cos 6y x x π=-,(,)43x ππ∈的值域解析:111sin()cos sin(2)sin sin(2)6266264y x x x x ππππ⎡⎤=-=--=--⎢⎥⎣⎦ ∵(,)43x ππ∈,∴2(,)632x πππ-∈,∴sin(2)(62x π-∈∴11,)44y -∈拼搏的你,背影很美!题型二:sin cos y a x b x =+型,引入辅助角ϕ ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。

三角函数最值问题的十种常见解法.doc

三角函数最值问题的十种常见解法.doc

三角函数最值问题的十种常见解法三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方血应充分利用三角函数自身的特殊性(如有界性等),另一方血还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题•下面介绍几种常见的求三角函数最值的方法:一.转化一次函数在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征一一有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法.例1.求函数j = 2cosx-l的值域[分析]此为y = acosx + h型的三角函数求最值问题,设r = cosx,由三角函数的有界性得re [-1,1],则y = 2^-16 [-3,1]二.转化y = Asin(ex + 0) + b(辅助角法)观察三角函数名和角,先化简,使三角函数的名和角统一.例2. (2017年全国II卷)求函数/(x) = 2cosx + sinx的最大值为______________ .[分析]此为y二dsinx + bcos兀型的三角函数求最值问题,通过引入辅助角公式把三角函数化为y = 4sin(Qx + 0)+ B的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用\asinx + bcosx\< yja2+b2求最值./(X)< J2? + 1 = yf5 •三.转化二次函数(配方法)若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.例3.求函数y = -sin2 x-3cosx + 3的最小值.[分析闲用 sin 2 x + cos 2 x = 1 将原函数转化为 y = cos 2 x-3cosx + 2 ,令t = cosx,( 3 V i则—1 = 3( + 2,配方,得),=t — — ——,V -1<Z <15A 当 t=l 时,即 ~ l 2丿 4cosx=l 时,y min = 0四. 引入参数转化(换元法)对于表达式屮同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式 (sin x ± cos %)2 = 1 ± 2 sin x cos %,—般都可釆用换元法转化为t 的二次函数去求最值,但 必须要注意换元后新变量的取值范围.例4.求函数y = sinx + cosx + sinx.cosx 的最大值.[分 析]解:令(sinx + cosx)2 =l + 2sinxcosx ,设 / = sinx + cosx.则其屮 / w [— V2,V2]五. 利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同吋要注意等号成立的条件,否则会陷入误区.例5.已知兀丘(0,龙),求函数y = sinx + —!—的最小值. 2 sin %[分析]此题为sin% +旦型三角函数求最值问题,当sinx>(),a>l,不能用均值不等式求最 sinx 值,适合用函数在区间内的单调性来求解.设sinx = (0< Z 51),y = Z + — n 2^t.— = V2,当且仅当 t —时等号成立. 六. 利用函数在区间内的单调性2 例6.已知XG (0,^),求函Sy = sinx + ———的最小值. sinx当 t = V2,sin x + —I 4丿sin A : cos x = [-Q 同,.・・y =存[分析]此题为sinx + ——型三角函数求最值问题,当sinx>(),a>l,不能用均值不等式求最 sinx 值,适合用函数在区间内的单调性来求解.设 sin 兀二 f,(0 v f 5 l),y 二 f + -,在(0, 1)上为减函数,当匸1 时,y min = 3.七. 转化部分分式例7.求函数〉」心+ 1的值域 2cosx-ln CQQ r 4-[分析]此为型的三角函数求最值问题,分子、分母的三角函数同名、 ccosx-d同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反八.数形结合由于sin 2 x + cos 2 x = 1 ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含 有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得. ■例& 求函数兀(0<兀<龙)的最小值.2 一 cos x0 — ein Y[分析]法一:将表达式改写成丿= ---------- ,y 可看成连接两点A(2,0)与点(cosx,sinx) 2-cosx的直线的斜率.由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是 在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的切线与半圆相切与点B,则k AB <y<0.£7 所以y 的最小值为-+ (此时法二:该题也可利用关系式asinx+bcosx= -Ja 2 +/?2 sin(x + (即引入辅助角法)和有解法,再用三角函数的有界性去解.9解法一:原函数变形为歹=1+——=—, 2cosx-l•/ |cosx| < 1 ,可直接得到:y>3^y<^.解法一:原函数变形为cosx-(2(y-1) V COSX < 1,/. / \ 2(y-1)< 1,/. y >3i^y < —. 可求得仏BRan 竺」 6 3界性来求解.九.判别式法亠弋皿 tan 2 x-tanx + l s _例9. 求函数y = ------- ----------- 白、J 取值. tan" x +tanx + 1[分析]同一变量分子、分母最高次数齐次,常用判别式法和常数分离法.tan 2 x-tanx+1 y =——; ------------ tan~x + tanx + l解:/.(y-l)tan 2 兀+ (y + l)tanx + (y-l) = O・•・ y = l,tanx = O,x = k;r(kw 龙)J 工1吋此吋一元二次方程总有实数解 /. A = (y +1)2 - 4(y -1)2 > 0,/.(3y - l)(y -3)< 0 /. — < y < 3. 3由 y=3, tanx=-l, x = k/r+ e z), y max = 3. 1 . . 7t 1由 y = -,tanx = l,/.x = ^ + -,y 「nin = §・ 十.分类讨论法含参数的三角函数的值域问题,需要对参数进行讨论.a j ( 兀、例10 •设f(x) = — cos 〜无+ dsin x ---------------------------------------------- 0W 42 2, (1) 当 ^>1,即 d»2,g(/)在[0, 1]上递增,M@)=g(l) =手—I 2丿 解:f(x) = -sin 2 x + asinx- —+ 丄.令 sinx=t,则 0 < Z < 1, 八 4 2g(J = / W = -z 2 +〃_# + * =a 2 a 1H---------- 1 - 4 4 2当05 — 51,即05d52时,g(f)在[0 ,1]上先增后减,(3) 当-<0,即 a50,g(J 在[0, 1]上递减,M (a)=g (0)=丄—2 22 4* 3d 1 ”------ ,ci n 2 4 2a 2 a 1八, 八--------- 1— 4 4 2Id c2 4 以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见•解决这 类问题最关键的在于对三角函数的灵活应用及抓住题日关键和本质所在.挑战自我:1. 求函数y=5sinx+cos2x 的最值2. 已知函数y 二㊁cos? x +=-sinrcosx + l(xw/?)当函数y 取得最大值时,求自变 量x 的集合.3.已知函数/(x) = 2sin x(sinx + cos x),求函数f(x)的最小正周期和最大值.参考答案:1 •[分 析]:观察三角函数名和角,其中一个为正眩,一个为余眩,角分别是单角和倍 角,所以先化简,使三角函数的名和角达到统一.2•[分析]此类问题为y = asin ,x + /?sinx-cosx + ccos 2 x 的三角函数求最值问题,它可通M@)=g [彳a 2 a 1 T~4 + 2, 5) sinx-- 4丿 v -1 < sinx < 1,・°・ sinx = -l,x = Zk7V~ — 9ke z, y m [n = -2x 2 . [ "冗 i 1 33 . sinx = 1 ••• x - 2K 7T H ——e z, v m .1Y = -2x ------- 1 --- = 4 2 16 8>' =5 sin x + (1 - 2 sin 2 x) = -2 sin 2 x + 5 sin x +1 = -2 si 33 H --- 833 乙 + ——=-6 16 8过降次化简整理为y = asinx + bcosx 型求解.1 + cos 2x V3 sin 2x t 1 o V3 . 5 ----------- + --------------- + 1 = — coszxH ----- s in 2x + —2 2 2 4 4 4・・• f(x)的最小正周期为龙,最大值为1 + V2.3•[分析]在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二 次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式.x + 2sinxcosx = 1-cos2x + sin 2x = l + 42sm 2x ---------- I 4 — —cos 2x + — sin 2x 2 2 1 —sin 2 「2兀+耳+二・・・2兀+三 4, •二壬 + 2航,・•・ x 二? + k 兀(k w z), y max o 2 o 解: /(x) = 2sin 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- - 总结
三角函数最值问题的十种常见解法
福州高级中学 陈锦平
三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法:
一.转化一次函数
在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法.
例1.求函数2cos 1y x =-的值域
[分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =,由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈-
二. 转化sin()y A x b ωϕ=++(辅助角法)
观察三角函数名和角,先化简,使三角函数的名和角统一.
例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为 .
[分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ωϕ=++的形式,再借助三角函数图象研究性质,解题时注意
观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +求最值.
()f x ≤
三. 转化二次函数(配方法)
若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.
- - 总结
例3. 求函数3cos 3sin 2
+--=x x y 的最小值. [分析]利用22sin cos 1x x +=将原函数转化为2cos 3cos 2
+-=x x y ,令cos t x =,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭
⎫ ⎝⎛-=t y , ∴≤≤-,11t 当t=1时,即cosx=1时,0min =y
四. 引入参数转化(换元法)
对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围.
例4. 求函数sin cos sin .cos y x x x x =++的最大值.
[分析]解:令().cos sin 21cos sin 2
x x x x +=+,设sin cos .t x x =+则[]()t t y t t x x +-=∴-∈-=2
1,2,221cos sin 22,其中[]2,2-∈t 当.221,14sin ,2max +=∴=⎪⎭⎫ ⎝
⎛+=y x t π 五. 利用基本不等式法
利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区.
例5. 已知()π,0∈x ,求函数1sin 2sin y x x =+
的最小值. [分析] 此题为x
a x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解. 设(
)1sin ,01,2x t t y t t =<≤=+
≥=
t =. 六.利用函数在区间内的单调性
- - 总结
例6. 已知()π,0∈x ,求函数x x y sin 2sin +
=的最小值. [分析] 此题为x
a x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解. 设()t t y t t x 1
,10,sin +=≤<=,在(0,1)上为减函数,当t=1时,3min =y .
七.转化部分分式
例7.求函数1
cos 21cos 2-+=x x y 的值域 [分析] 此为d
x c b x a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反解法,再用三角函数的有界性去解. 解法一:原函数变形为1cos ,1cos 221≤-+
=x x y ,可直接得到:3≥y 或.31≤y 解法一:原函数变形为()()
∴≤-+∴≤-+=
,1121,1cos ,121cos y y x y y x 3≥y 或.31≤y 八. 数形结合
由于1cos sin 22=+x x ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得.
例8. 求函数()π<<--=x x
x y 0cos 2sin 的最小值. [分析] 法一:将表达式改写成,cos 2sin 0x
x y --=y 可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率.由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.
设过点A 的切线与半圆相切与点B,则.0<≤y k AB 可求得.3
365tan -==πAB k 所以y 的最小值为33-
(此时3π=x ).
- - 总结
法二:该题也可利用关系式asinx+bcosx=()φ++x b a sin 22(即引入辅助角法)和有界性来求解.
九. 判别式法
例9. 求函数22tan tan 1tan tan 1
x x y x x -+=++的最值. [分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法. 解:()()()()
222tan tan 1tan tan 1
1tan 1tan 101,tan 0,x x y x x y x y x y y x x k k ππ-+=++∴-+++-=∴===∈
1≠y 时此时一元二次方程总有实数解
()()()().33
10313,01412
2≤≤∴≤--∴≥--+=∆∴y y y y y 由y=3,tanx=-1,()3,4max =∈+
=∴y z k k x ππ 由.3
1,4,1tan ,31min =+=∴==y k x x y ππ 十. 分类讨论法
含参数的三角函数的值域问题,需要对参数进行讨论.
例10.设()⎪⎭
⎫ ⎝⎛≤≤--+-=20214sin cos 2πx a x a x x f ,用a 表示f(x)的最大值M(a). 解:().2
14sin sin 2+-+-=a x a x x f 令sinx=t,则,10≤≤t ()().21442214222
+-+⎪⎭⎫ ⎝⎛--=+-+-==a a a t a at t x f t g
- - 总结
(1) 当
12
≥a ,即()t g a ,2≥在[0,1]上递增, ()();21431-==a g a M (2) 当,120≤≤a 即20≤≤a 时,()t g 在[0,1]上先增后减,();2
14422+-=⎪⎭⎫ ⎝⎛=a a a g a M (3) 当,02≤a 即()t g a ,0≤在[0,1]上递减,()().4
210a g a M -== ()⎪⎪⎪⎩
⎪⎪⎪⎨⎧≤-≤≤+-≥-=∴0,42120,2
1442
,21432a a a a a a a a M 以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见.解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在.
挑战自我:
1. 求函数y=5sinx+cos2x 的最值
2.已知函数()R x x x x y ∈+⋅+=
1cos sin 2
3cos 212当函数y 取得最大值时,求自变量x 的集合.
3.已知函数())cos (sin sin 2x x x x f +=,求函数f(x)的最小正周期和最大值.
参考答案:
1.[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一.
- - 总结 ()48331612,,221sin 68
3316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 2
22=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝
⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππ 2.[分析] 此类问题为x c x x b x a y 2
2cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解.
解:
().4
7,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭
⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ∴ f(x)的最小正周期为π,最大值为21+.
3.[分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式. 解:()⎪⎭⎫ ⎝
⎛-+=+-=+=42212sin 2cos 1cos sin 2sin 22πx sn x x x x x x f。

相关文档
最新文档