仿生材料资料

合集下载

仿生材料

仿生材料

又叫水瓜,寒瓜 , 夏瓜,因在汉代从西 域引入,故称“西瓜”。西瓜味道甘甜 多汁,清爽解渴,是盛夏的佳果,既能 祛暑热烦渴,因此有“天然的白虎汤” 之称。西瓜除不含脂肪和胆固醇外,几 乎含有人体所需的各种营养成分,是一 种富有营养,纯净,食用安全的食品。
仿生材料最新研究领域
光子晶体材料:是一类特殊 的晶体,其原理很像半导体, 有一个光子的能力。蛋白石 就是其中的典型,它的组成 仅仅是宏观透明的二氧化硅, 其立方密堆积结构的周期性 使其具有了光子能带结构丽的色彩 。(这种材料的研发
仿生材料
仿生材料
仿生材料定义:仿生材料指模仿生物的各种特点或特性而开发 的材料。仿生材料学是仿生学的一个重要分支,是化学、材料 学、生物学、物理学等学科的交叉。受生物启发或者模仿生物 的各种特性而开发的材料称仿生材料,仿生材料在21世纪将为 人类做出更大的贡献。 自然界中的物质和天然生物材料,如贝壳,骨骼等经过上 亿年进化的产物,具有适应环境与功能需求的最佳结构,表现 出传统人工合成材料无法比拟的优异强韧性,功能适应性以及 愈合能力。在生物医疗领域,仿照天然生物材料制备出具有生 物功能,甚至是生物活性的材料成为生物材料科学极为活跃的 前沿研究领域。
仿生高超强韧材料:贝壳的成 分主要是碳酸钙和少量的壳基 质构成,这些物质是由外套膜 上皮细胞分泌形成的。贝壳的 结构一般可分为 3 层:最外一层 为角质层,很薄,透明,有光 泽,由壳基质构成,不受酸碱 的侵蚀,可保护贝壳。中间一 层为壳层,又称棱柱层,占贝 壳的大部分,由极细的棱柱状 的方解石(CaCO3, 三方晶系) 构成。最内一层为壳底 , 即珍珠 质层,富光泽,由小平板状的 结构单元累积而成、成层排列, 组成成分是多角片型的文石结 晶体(CaCO3, 斜方晶系)。

纳米仿生材料

纳米仿生材料

纳米仿生材料
纳米仿生材料是指通过模仿生物体内部结构和功能原理,利用纳米技术制备的
材料。

这种材料具有许多优异的性能,如高强度、高韧性、高导电性、高热传导性等,因此在材料科学领域备受关注。

首先,纳米仿生材料具有优异的力学性能。

由于其结构和生物体内部的结构相似,纳米仿生材料能够模拟生物体的结构优势,例如骨骼结构和贝壳结构,从而具有高强度和高韧性。

这种材料不仅可以用于制备轻质高强度的结构材料,还可以应用于生物医学领域,如人工骨骼和人工关节等。

其次,纳米仿生材料具有良好的导电性和热传导性。

由于纳米材料具有高比表
面积和量子尺寸效应,使得纳米仿生材料具有优异的电子传输性能和热传导性能。

这种特性使得纳米仿生材料在电子器件、传感器、热管理材料等领域有着广泛的应用前景。

此外,纳米仿生材料还具有优异的光学性能。

通过模仿生物体内部的光学结构,纳米仿生材料能够实现光子晶体、光子带隙材料等新型光学材料的制备,这些材料在光电子器件、光学传感器等领域有着重要的应用价值。

总的来说,纳米仿生材料以其优异的性能和广泛的应用前景,成为材料科学领
域的研究热点之一。

未来,随着纳米技术的不断发展和进步,纳米仿生材料将会在能源、环境、生物医学等领域发挥更加重要的作用,为人类社会的发展和进步做出贡献。

仿生材料:模仿大自然

仿生材料:模仿大自然

仿生材料:模仿大自然在自然界中,生物体经过亿万年的进化,其形态、构造和功能都表现出极高的适应性和多样性。

科学家们发现,很多自然界中存在的结构和性能可以被模仿并应用到人工材料的开发中。

这种以自然作为蓝本,通过观察和理解生物系统的原理与机制,进而创造出新材料的过程,被称为“仿生材料”科学。

仿生材料涵盖了众多领域的应用,包括航空航天、医疗器械、建筑工程等。

本文将详细探讨仿生材料的起源、发展、示例及其未来潜力。

仿生材料的起源与发展在20世纪前期,人类对材料科学的研究主要集中在金属、塑料、陶瓷等传统材料。

而随着科技的进步与科研理念的更新,尤其是生物学的发展,科学家们逐渐意识到大自然是一个丰富的资源库,可以为人类提供创新灵感。

因此,仿生材料应运而生。

最早的仿生设计可以追溯到古代人类对于动物羽毛和皮肤等特征的模仿。

其中一个显著的例子是“取材于鸟类飞行”的飞行器设计。

从20世纪70年代起,随着纳米技术和有机化学的发展,仿生材料的研究迎来了爆发式增长。

现代科技允许我们深入理解复杂生物体中的微观结构,使得更高性能、更轻便且具有自修复能力的新型材料得以实现。

自然界中的仿生实例1. 荷叶效应荷叶表面的微观结构具有极强的疏水性。

这一特性使得雨水能够形成水珠,在荷叶表面滚动而不留下痕迹。

这种现象被称为“自清洁效应”。

科学界将这一现象应用于涂料和表面处理技术中,开发出多种防水、防污材料。

例如,许多外墙涂料利用荷叶效应来保持表面的清洁,减少维护成本。

2. 蚌壳的坚韧性海洋中的蚌壳以其惊人的坚韧性而闻名。

科学家们发现,蚌壳内部微晶结构与蛋白质组成形成了一种独特的复合材料,使其在承受外力时能够有效分散压力。

这一发现为制造耐冲击材料提供了启示,通过模仿蚌壳的构造,研究者们成功研制出新型陶瓷与复合材料,可应用于防弹衣、飞机部件等领域。

3. 沙漠虫子的水收集生活在极端干旱环境中的沙漠虫子具备独特的水分收集机制,它们通过凹凸不平的体表结构聚集空气中的水分并收集于体内。

四年级仿生学的资料

四年级仿生学的资料

有趣的仿生学的资料1. 滑翔机是根据一种滑翔蝙蝠制造的2. 人们仿蜂巢构造用各种材料制成蜂巢式夹层结构板,强度大、重量轻、不易传导声和热,是建筑及制造航天飞机、宇宙飞船、人造卫星等的理想材料3. 紧急情况,蜘蛛大腿内就会充满液体而使腿由软变硬,爆发出力量一跃而起,仿生学家们模仿这种奇妙的液压腿,研制出一种步行机4. 根据蜻蜓设计了直升飞机5. 根据青蛙的眼睛设计了电子眼6. 根据海星的触角设计了吸盘1由令人讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪。

已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。

2。

从萤火虫到人工冷光;3。

电鱼与伏特电池;4。

水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。

5。

人们根据蛙眼的视觉原理,已研制成功一种电子蛙眼。

这种电子蛙眼能像真的蛙眼那样,准确无误地识别出特定形状的物体。

把电子蛙眼装入雷达系统后,雷达抗干扰能力大大提高。

这种雷达系统能快速而准确地识别出特定形状的飞机、舰船和导弹等。

特别是能够区别真假导弹,防止以假乱真。

电子蛙眼还广泛应用在机场及交通要道上。

在机场,它能监视飞机的起飞与降落,若发现飞机将要发生碰撞,能及时发出警报。

在交通要道,它能指挥车辆的行驶,防止车辆碰撞事故的发生。

6。

根据蝙蝠超声定位器的原理,人们还仿制了盲人用的“探路仪”。

这种探路仪内装一个超声波发射器,盲人带着它可以发现电杆、台阶、桥上的人等。

如今,有类似作用的“超声眼镜”也已制成。

7。

模拟蓝藻的不完全光合器,将设计出仿生光解水的装置,从而可获得大量的氢气。

8。

根据对人体骨胳肌肉系统和生物电控制的研究,已仿制了人力增强器--步行机。

9。

现代起重机的挂钩起源于许多动物的爪子。

10。

屋顶瓦楞模仿动物的鳞甲。

11。

船桨模仿的是鱼的鳍。

12。

锯子学的是螳螂臂,或锯齿草。

13。

苍耳属植物获取灵感发明了尼龙搭扣。

14。

仿生材料专题介绍

仿生材料专题介绍

SPEEDO推出的鲨鱼皮泳衣。
泳衣的核心技术在于模仿鲨鱼的皮肤
生物学家发现,鲨鱼的皮肤非常粗糙,表面排列着无 数个细小的V形皱。当水分子沿着这些棘齿流过时,产生 无数微型的涡流,从而减少了摩擦阻力,使得鲨鱼能高速 地在水中前进。
鲨刻烃(仿生鲨鱼皮)成功量产
生鲨鱼皮电镜照片
鲨鱼外壳在飞机初步实验成果
Benchert等的飞机减阻实验验证了减阻3%的可能效果, 并初略计算出由此产生巨大的经济效应: 3%的减阻→3%油耗→节省1% 操作费用,省下的2.4 吨油 的载重可以多运送15名乘客→多赚6%的利润→每年每机可多 挣100万美元.
四、蜘蛛丝
蜘蛛丝的理化性质与蚕丝相比,具有非常明显的优 势,在力学强度方面,蜘蛛丝纤维与强度最高的碳纤维及 高强合纤Aramid、Kelve,等强度相接近,但它的韧性 明显优于上述几种纤维。 蜘蛛丝的主要化学成分是甘氨酸、丙氨酸及小部分的 丝氨酸,加上其它氨基酸单体蛋白质分子链构成。
功能仿生 功能仿生
使人造的机械能够部分地实现诸如思维、感知、运 使人造的机械能够部分地实现诸如思维、感知、运 动和操作等高级动物功能的仿生技术。 动和操作等高级动物功能的仿生技术。 模拟生物的各种特点或特性而进行各种材料开发, 模拟生物的各种特点或特性而进行各种材料开发, 以阐明生物体的材料构造与形成过程为目标,用生 以阐明生物体的材料构造与形成过程为目标,用生 物材料的观点来考虑材料的设计与制作。 物材料的观点来考虑材料的设计与制作。 研究人体结构与精细结构的静力学性质,以及人体 研究人体结构与精细结构的静力学性质,以及人体 组成部分在体内相对运动和人体运动的动力学性质。 组成部分在体内相对运动和人体运动的动力学性质。
蜘蛛丝
பைடு நூலகம்

仿生材料:模仿大自然

仿生材料:模仿大自然

仿生材料:模仿大自然仿生材料是一种受到大自然启发而设计制造的材料,它模仿生物体的结构、功能和性能,具有优异的特性和广泛的应用前景。

大自然是最伟大的设计师,亿万年的进化造就了各种生物体的复杂结构和功能,这些优秀的设计激发了人类对仿生材料的探索和研究。

通过模仿大自然,科学家们开发出了许多具有前瞻性和创新性的材料,为人类社会的发展带来了巨大的推动力。

一、仿生材料的定义和特点仿生材料是指受到生物体结构、功能和性能启发而设计制造的材料。

它具有以下几个特点:1. 模仿生物体:仿生材料通过模仿生物体的结构和功能,实现类似生物体的性能和效果。

2. 多样性:仿生材料可以模仿各种生物体,如植物、动物、微生物等,具有多样性和广泛性。

3. 创新性:仿生材料的设计和制造需要创新思维和技术手段,具有前瞻性和创新性。

4. 应用广泛:仿生材料在医学、工程、材料科学等领域有着广泛的应用前景。

二、仿生材料的研究领域1. 医学领域:仿生材料在医学领域有着重要的应用,如仿生人工关节、仿生心脏瓣膜等,为医疗技术的发展提供了重要支持。

2. 工程领域:仿生材料在工程领域有着广泛的应用,如仿生结构材料、仿生润滑材料等,提高了工程设备的性能和效率。

3. 材料科学领域:仿生材料在材料科学领域有着重要的研究价值,如仿生纳米材料、仿生智能材料等,为材料科学的发展带来了新的思路和方法。

三、仿生材料的成功案例1. 莲花效应:仿生材料模仿莲花叶片表面微纳结构,设计制造出具有自清洁功能的材料,应用于建筑玻璃、汽车涂层等领域。

2. 鲨鱼皮纹理:仿生材料模仿鲨鱼皮纹理设计制造出减阻纹理材料,应用于飞机表面、船体涂层等领域,降低了流体阻力。

3. 蜻蜓翅膀结构:仿生材料模仿蜻蜓翅膀结构设计制造出具有抗菌、抗污染功能的材料,应用于医疗器械、环境保护等领域。

四、仿生材料的未来发展1. 多功能性:未来的仿生材料将具有更多的功能性,如自修复、自感知、自适应等,为人类社会带来更多的便利和创新。

仿生材料

仿生材料
小组成员 朱燕 演讲 肖立阳 制作ppt 纪皓然 查找资料 赵紫依 整理资料 吴迪 回答问题
• 仿生材料是指模仿生物的各 种特点或特性而研制开发的 材料。通常把仿照生命系统 的运行模式和生物材料的结 构规律而设计制造的人工材 料称为仿生材料。
• 自然界中的动植物经过45亿年的物竞天择 的优化,其结构和功能已经到达了近乎完 美的程度。自然界是人类各种科学技术原 理及发明的源泉。 • • • • 鸟类飞行——飞机 昆虫单复眼——复眼照相机 蝙蝠回声定位4内视镜
• 手触摸含羞草的叶片,它就会像动物那样收缩。在这 一种启发下,日本奥林巴斯公司的植田康弘研制了一 种可以伸到小肠里的内视镜,他在内视镜的筒状部分 使用了一种与含羞草叶片表面结构相似的弹性膜材料, 它在肠道流体的压力下,会沿着轴向自动伸长或弯曲, 从而使内视镜的筒状部分与肠道保持同一形状。
No2.人造骨
• 卵是鸟类和爬虫类生 育在体外的动物的最 大细胞。它的壳,是石 灰质构成的,内部有卵 白和卵黄,卵壳的形 成过程与牙齿和骨头 的发育过程相同,被称 之为钙化过程,与无机 和有机的界面化学相 关,人们通过卵壳制 造人造骨。
No3.竹纤维仿生材料
从竹子的断面来看,一种 称之为纤维束的组织密 布在竹子的表皮,竹子的 内部却很稀少,这样的结 构形成了一种高强度的 复合材料(竹纤维仿生 材料)。
原物 乌龟壳 青蛙眼睛
做一做
仿生材料 电子蛙眼 潜艇
蛛丝
海豚 白蚁
降落伞绳索
干胶炮弹 薄壳建筑
No1.薄膜材料
在陆地上生活的动物有 肺,能够分离空气中的氧 气,水里的鱼有鳃,能够 分离溶解在水中的氧气, 供给身体使用。人们仿 造这种特性,制作了薄膜 材料,用于制造高浓度氧 气、分离超纯水等,以达 到节省能源以及高分离 率的目的 。

仿生材料知识点总结

仿生材料知识点总结

随着科学技术的飞速发展,仿生材料作为一种新型材料,逐渐备受人们的关注。

仿生材料是通过模拟生物体结构和功能设计制备的一种新型材料,具有优异的特性和潜在的广泛应用前景。

本文将从仿生学原理、仿生材料种类、仿生材料的应用及未来发展方向等方面对仿生材料进行全面的介绍和分析。

一、仿生学原理1. 生物结构与功能生物体通过数亿年的进化,形成了各种优异的结构和功能。

比如,鱼类的鳞片具有优秀的流体动力学特性,能够减小水的阻力;鲎的眼睛能够在暗光环境下捕捉光线,具有优异的光学性能;鸟类的羽毛可以保持温暖,还能够实现滑翔等功能。

这些生物结构和功能都是自然界的杰作,值得借鉴和研究。

2. 仿生学原理仿生学是研究生物结构、功能和行为,并将其运用于人工制品设计、制造的一门综合科学。

仿生学原理就是通过模仿生物体的结构和功能,设计制备出具有类似特性的人造材料。

仿生学原理的主要目的是利用生物体中已经证实有效的结构和功能,并将其应用在人工制品中,以实现更好的性能表现和更广泛的应用。

二、仿生材料种类仿生材料种类繁多,主要可以分为三大类:结构仿生材料、功能仿生材料和生物仿生材料。

1. 结构仿生材料结构仿生材料是通过模仿生物体的结构形态而设计制备的一类材料。

比如,模仿鸟类的羽毛结构设计制备出高性能飞行器表面覆盖材料;模仿树叶表面超疏水结构设计制备出具有自清洁功能的材料等。

2. 功能仿生材料功能仿生材料是通过模仿生物体的功能特性而设计制备的一类材料。

比如,模仿蝴蝶翅膀的结构设计制备出具有显色性能的材料;模仿鲎眼睛的结构设计制备出具有光学性能的材料等。

3. 生物仿生材料生物仿生材料是通过模仿生物体的生物化学成分而设计制备的一类材料。

比如,模仿贝壳的钙化机制设计制备出具有高机械性能和生物相容性的生物陶瓷材料;模仿昆虫的外骨骼构造设计制备出具有高强度和轻质的生物复合材料等。

仿生材料在生活和工业中有着广泛的应用,主要涉及领域包括但不限于:航空航天、船舶制造、材料科学、生物医药、建筑工程、环境保护等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“黑寡妇”
天然蜘蛛丝是最坚韧的纤维之一,高强度、高长弹性、 密度小,而且能传递信息、反射紫外线,是人类已知世界上 最优良的纤维。长期以来,科学家一直在研究如何大量制造 蜘蛛丝的方法。1997年初,美国生物学家安妮·穆尔发现, 在美国南部有一种称为“黑寡妇”的蜘蛛,它吐出的丝比任 何蜘蛛丝的强度都高,具有很高的防断裂强度,由这种蜘蛛 丝织成的布,比制造防弹背心所用的纤维的强度还高得多。 “黑寡妇”蜘蛛丝的优良性能,很快引起科学家兴趣,他们 设想,要是有一种办法能生产像蜘蛛丝那样的高强度纤维该 多好。
1997 年德国植物学家Barthlott 发现荷叶表面的自清洁效 应和超疏水现象。
所谓超疏水表面一般是指与水滴的接触角大于 150°且 滚动角小于10°的表面, 这种表面在工农业生产及日常 生活中有着广泛的应用, 例如, 集水功能、微流体装置、 抗结冰等.
研究发现, 这些超疏水性生物表面的微纳米结构对其超 疏水性起着至关重要的作用。
坏它。建筑学家模仿它进行了薄 壳建筑设计。这类建筑有许多优
点:用料少,跨度大,坚固耐用。 薄壳建筑也并非都是拱形,举世闻 名的悉尼歌剧院则像一组泊港的群 帆。
像鸡蛋那样的薄壳结构是如此的丰 富多彩而变化万干,它们以最合理, 最自然,最经济,最有效,最进步,最优 美的形式竞相媲美,争放异彩.
鲨鱼皮泳衣是人们根据其外形特征起的绰
美国麻省国家陆军生物化学指挥中心和加拿大魁北克内 克夏生物科技公司从“黑寡妇”蜘蛛身上抽取出蜘蛛基因植 入山羊体内,让羊奶具有蜘蛛丝蛋白,再利用特殊的纺丝程 序,将羊奶中的蜘蛛丝蛋白纺成人造基因蜘蛛丝,这种丝被
称为生物钢(Bio-Steel)。用这种方法生产的人造基
因蜘蛛丝比钢强4至5倍,而且具有如蚕丝般的柔软和光泽, 而且还可以生物降解,不会带来环境污染。可用于制造高级 防弹衣,还能制造战斗飞行器、坦克、雷达、卫星等装备的 防护罩等。
超疏水材料一般可以通过两种方法来制备: 一种是在粗 糙表面修饰低表面能物质;另一种是在疏水材料(一般其 接触角大于90°)表面构筑粗糙结构.
目前, 已经报道了许多比较成熟的制备技术, 如电化学 沉积法、等离子体和激光刻蚀法、交替沉积法、电纺丝 法、模板法、溶胶-凝胶法等.
号,它的核心技术在于模仿鲨鱼的皮肤。在鲨 鱼的皮肤表面上分布着许多的齿状突起,它们 能够保持好水流的流态,并产生具有卷吸作用 的稳定的涡流,可以有效的减少表面磨擦阻力 和压差阻力。鲨鱼皮泳衣精确的模拟了鲨鱼的 表皮结构,其齿状突起科学的按照鲨鱼表皮的 比例尺寸制造,使其更加符合自然规律,同时, 在接缝处模仿人类的肌腱,为运动员向后划水 时提供动力。
仿生材料的举例
长颈鹿能将血液通过长长的颈输送到头部,是 由于长颈鹿的血压很高,这与长颈鹿身体的结 构有关。长颈鹿血管周围的肌肉非常发达,能 压缩血管,控制血流量;同时长颈鹿腿部及全 身的皮肤和筋膜绷得很紧,利于下肢的血液向 上回流。科学家由此受到启示,在训练宇航员 时,设置一种特殊器械,让宇航员利用这种器 械每天锻炼几小时,以防止宇航员血管周围肌 肉退化;在宇宙飞船升空时,科学家根据长颈 鹿利用紧绷的皮肤可控制血管压力的原理,研
▪ 20世纪80年代以来,生物自然复合材料及其仿生的研究在 国际上引起了极大重视,目前正在逐步形成新的研究领域。
1.2 仿生材料概念
▪ 仿生学(bionics)是研究生物系统的结构和特征、并以此 为工程技术提供新的设计思想、工作原理和系统构成的科 学。它是一门生命科学、物质科学、信息科学、数学和工 程技术等学科相互渗透而结合成的一门边缘科学。
鲨鱼皮泳衣的面料主要采用聚氨酯纤维材料,具有 极强的伸展性,它更好的紧束人体外形,尽可能创 造出流线性效果,同时还可以压缩肌肉,减少肌肉 在水中的摆动。
鲨鱼皮游泳衣是把仿生学理论和流体力学理论运用 到体育领域里中的一次尝试,有专家甚至认为它是 继比基尼问世以来在泳衣设计上的又一次பைடு நூலகம்时代革 命。澳大利亚斯皮多(speedo)公司“鲨鱼皮泳衣” 推出的结果,是世界泳坛多项世界纪录的诞生。
仿生材料(biomimetic material)是指模仿生物的特点和 特性而开发的材料。通常把仿照生命系统的运行模式和 生物材料的结构规律而设计制造的人工材料称为仿生材料。
仿生材料学(biomimetics)是仿生学在材料科学中的分支, 它是指从分子水平上研究生物材料的结构特点、构效关 系, 进而研发出类似或优于原生物材料的一门新兴学科, 是化学、材料学、生物学、物理学等学科的交叉。
仿生材料发展概况及前景展望
仿生材料概述
1.1 仿生材料起源
▪ 20世纪50年代以来,人们已经认识到生物系统是开辟新技 术的主要途径之一,自觉地把生物界作为各种技术思想、 设计原理和创造发明的源泉。
▪ 20世纪60年代,美国科学家J.steele在第一次仿生讨论会上 (1960年9月)正式提出了仿生学的概念,于是仿生学作为 一门独立的学科正式诞生。
制了飞行服——“抗荷服”。抗荷服上安有
充气装置,随着飞船速度的增高,抗荷服可以 充入一定量的气体,从而对血管产生一定的压 力,使宇航员的血压保持正常。同时,宇航员 腹部以下部位是套入抽去空气的密封装置中, 这样可以减小宇航员腿部的血压,利于身体上 部的血液向下肢输送。
龟壳的背甲呈拱形,跨度大,包括 许多力学原理。虽然它只有2 mm 的厚度,但使用铁锤敲砸也很难破
根据国外的资料报道,一只羊每月产下的奶提取的纤维, 可以制成一件防弹背心。专家称,利用这种纤维制成的2.5厘 米粗的绳子,足以让一架准备着陆的战斗机完全停下来。
2.1超疏水仿生界面材料
2020/5/2
超疏水基本模型及理论
液滴在固体表面的润湿现象一般被认为与两个因素有关: 表面化学成分和微 观几何形貌. 但是后者的影响更为显著, 甚至可以实现由亲水性表面向超疏水转 变. 因此, 人们致力于研究表面的微观几何结构对润湿性的影响, 提出了几种比 较经典的润湿理论模型, 如Young’s模型; (b) Wenzel模型; (c) Cassie模型等.
相关文档
最新文档