糠醛渣热解特性分析

合集下载

糠醛渣基木质素

糠醛渣基木质素

第62卷 第1期吉林大学学报(理学版)V o l .62 N o .12024年1月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )J a n 2024d o i :10.13413/j .c n k i .jd x b l x b .2023064糠醛渣基木质素/纤维素复合材料的表征及氧还原电催化性能曲 霞1,2,任素霞1,李 政1,2,冯宇伟1,2,杨延涛1,雷廷宙1(1.常州大学城乡矿山研究院,江苏常州213164;2.常州大学石油化工学院,江苏常州213164)摘要:为解决糠醛渣堆放导致的环境污染问题,并拓展废弃物资源的高值化利用途径,通过超微研磨和高压均质等预处理过程制备糠醛渣基木质素/纤维素复合材料.采用扫描电子显微镜(S E M )和原子力显微镜(A F M )表征样品形貌,用范式洗涤法和元素分析对复合材料的组分以及元素含量进行分析,通过F o u r i e r 变换红外光谱(F T I R )和紫外光谱(U V )对复合材料的表面官能团进行分析,采用非等温条件下的多重升温速率热重法(T G )进行热动力学分析.结果表明,糠醛渣基木质素/纤维素复合材料中C 的质量分数较高(55.95%),可作为一种理想碳源,且该材料含有丰富的木质素(53.18%)和纤维素(39.48%),可利用价值较高,整体表观活化能较低(30k J /m o l ),其在0.1m o l /L 的K O H 碱性电解质中半波电位(E 1/2=0.83V )达到商业P t /C (E 1/2=0.86V )的96.5%,因此以糠醛渣基木质素/纤维素复合材料为生物质前驱体制备的碳材料可作为理想的燃料电池氧还原催化剂.关键词:糠醛渣;生物质;木质素/纤维素;动力学分析;氧还原活性中图分类号:O 469 文献标志码:A 文章编号:1671-5489(2024)01-0156-09C h a r a c t e r i z a t i o no f F u r f u r a lR e s i d u eB a s e dL i gn i n /C e l l u l o s e C o m p o s i t e a n dO x y g e nR e d u c t i o nE l e c t r o c a t a l yt i cP e r f o r m a n c e Q U X i a 1,2,R E NS u x i a 1,L I Z h e n g 1,2,F E N G Y u w e i 1,2,Y A N G Y a n t a o 1,L E IT i n gz h o u 1(1.U r b a na n dR u r a lM i n i n g R e s e a r c h I n s t i t u t e ,C h a n g z h o uU n i v e r s i t y ,C h a n g z h o u 213164,J i a n gs uP r o v i n c e ,C h i n a ;2.S c h o o l o f P e t r o c h e m i c a lE n g i n e e r i n g ,C h a n g z h o uU n i v e r s i t y ,C h a n g z h o u 213164,J i a n gs uP r o v i n c e ,C h i n a )收稿日期:2023-02-23.第一作者简介:曲 霞(1998 ),女,汉族,硕士研究生,从事生物质功能材料的研究,E -m a i l :2621903540@q q.c o m.通信作者简介:杨延涛(1980 ),男,汉族,博士,副研究员,从事生物质资源化利用的研究,E -m a i l :y y t @c c z u .e d u .c n ;雷廷宙(1963 ),男,汉族,博士,研究员,从事生物质能源技术开发利用的研究,E -m a i l :l e i t i n gz h o u @163.c o m.基金项目:国家重点研发计划项目(批准号:2021Y F C 2101604).A b s t r a c t :I no r d e r t o s o l v e t h e e n v i r o n m e n t a l p o l l u t i o n c a u s e db y t h e s t a c k i n g of f u r f u r a l r e s i d u e a n d e x p a n dt h e h igh -v a l u e u t i l i z a t i o n o f w a s t er e s o u r c e s ,t h ef u r f u r a lr e s i d u e b a s e dl i g n i n /c e l l u l o s e c o m p o s i t ew a s p r e p a r e dt h r o u g ht h e p r e t r e a t m e n t p r o c e s s e ss u c ha su l t r a -f i n e g r i n d i n g a n dh i g h -p r e s s u r eh o m o g e n i z a t i o n .T h es a m p l e m o r p h o l o g y w a sc h a r a c t e r i z e d b y u s i n g s c a n n i n g e l e c t r o n m i c r o s c o p y (S E M )a n da t o m i c f o r c e m i c r o s c o p y (A F M ),t h ec o m po s i t i o na n de l e m e n t a l c o n t e n to f t h ec o m p o s i t e w e r ea n a l y z e d b y u s i n g n o r m a lf o r m w a s h i n g m e t h o da n de l e m e n t a la n a l ys i s ,t h e s u r f a c ef u n c t i o n a l g r o u p s o ft h e c o m p o s i t e w e r e a n a l y z e d b y u s i n g Fo u r i e rt r a n s f o r m i n f r a r e d s p e c t r o s c o p y (F T I R )a n d u l t r a v i o l e ts p e c t r o s c o p y (U V ),a n d t h et h e r m o k i n e t i c a n a l ys i s w a s p e r f o r m e db y u s i n g m u l t i p l eh e a t i n g r a t e t h e r m o g r a v i m e t r y (T G )u n d e rn o n -i s o t h e r m a l c o n d i t i o n s .T h e r e s u l t s s h o wt h a t t h e m a s s f r a c t i o no fCi nf u r f u r a l r e s i d u eb a s e dl i g n i n /c e l l u l o s ec o m po s i t e i s h i g h (55.95%),w h i c hc a nb eu s e d a s a n i d e a l c a r b o ns o u r c e .T h em a t e r i a l c o n t a i n s a b u n d a n t l i gn i n (53.18%)a n dc e l l u l o s e (39.48%),a n dh a sh i g hu t i l i z a t i o nv a l u e .T h eo v e r a l l a p pa r e n ta c t i v a t i o n e n e r g y i s l o w (30k J /m o l ),a n d t h eh a l f -w a v e p o t e n t i a l (E 1/2=0.83V )i n0.1m o l /L K O Ha l k a l i n e e l e c t r o l y t e r e a c h e s 96.5%o f c o mm e r c i a l P t /C (E 1/2=0.86V ).T h e r e f o r e ,c a r b o nm a t e r i a l s p r e p a r e d b y u s i n g f u r f u r a l r e s i d u eb a s e d l i g n i n /c e l l u l o s e c o m po s i t e s a s b i o m a s s p r e c u r s o r s c a nb eu s e d a s i d e a l o x y g e n r e d u c t i o n c a t a l ys t s f o r f u e l c e l l s .K e yw o r d s :f u r f u r a l r e s i d u e ;b i o m a s s ;l i g n i n /c e l l u l o s e ;k i n e t i c a n a l y s i s ;o x y g e n r e d u c i n g a c t i v i t y 糠醛是一种多用途的工业化学品,是一种可再生㊁不可或缺的平台化合物,用于有机合成㊁溶剂㊁炼油和制药.通常糠醛由玉米芯㊁甘蔗渣㊁稻壳和其他农业废物中戊糖(半纤维素)脱水制备[1],大多数糠醛的转化率只有50%~60%[2-3],由于糠醛生产的主要催化剂为硫酸,因此糠醛渣呈高酸性以及富含盐类物质的特征[4],大量堆积易污染土壤和空气,导致严重的环境问题[5].在糠醛生产过程中,除生物质中的半纤维素大部分转化为糠醛外,木质素和纤维素大部分被保留,导致糠醛渣富含木质素和纤维素,具有较高的再利用价值.在生产糠醛过程中,生物质原料中的半纤维素发生水解,导致糠醛渣形成丰富的孔结构,具有相对较高的比表面积,成为制备生物质碳材料的良好前驱体.Y i n 等[6]以糠醛渣为原料,研究了通过回收热解气体自活化制备具有可控比表面积和中孔比的生物炭样品,活化后生物炭的比表面积为567m 2/g ,比孔体积为0.380c m 3/g;Z h o u 等[7]将经磷酸处理的糠醛渣进行了快速热解,制备了介孔率超高(93.90%)㊁孔径分布窄㊁比表面积大(1769.40m 2/g)的P 掺杂糠醛渣基碳材料,其对亚甲基蓝具有良好的吸附性能,平衡吸附容量为486m g /g,去除率为97.2%;C h e n 等[8]用碱性过氧化氢在不同温度和时间下提取糠醛渣中的木质素,结果表明,木质素的产率随反应时间和温度的增加而增大,在80ħ反应3h ,木质素的产率最大为41.40%,提取的木质素平均相对分子质量约为糠醛残渣磨碎木质素的1/4,表明糠醛残渣木质素在处理过程中发生严重降解;L i 等[9]用碱煮技术从工业糠醛渣中提取木质素,研究了不同碱处理条件对提取木质素的影响,结果表明,提取的木质素含有丰富愈创木酰㊁丁香酰和对羟基苯基结构单元,并且富含羟基;L i u 等[10]以漂白玉米芯残渣(C C R )为前驱体,采用4种不同方法(硫酸水解㊁甲酸水解㊁2,2,6,6-四甲基哌啶氧化物介导氧化和纸浆精制)制备纳米纤维素,并对纳米纤维素产品进行比较,结果表明,糠醛渣可作为制备纳米纤维素的原料.目前对糠醛渣提取纤维素和木质素或利用糠醛渣制备多孔碳的研究较多,但对糠醛渣的化学组成㊁表面化学性质及热动力学的研究文献报道较少.基于此,本文以糠醛渣为原料制备的糠醛渣基木质素/纤维素复合材料为研究对象,对其化学组成㊁表面化学性质㊁热动力学和电化学性能进行研究.1 实 验1.1 材料与仪器糠醛渣购自河南宏业控股集团有限公司;三聚氰胺(C 3H 6N 6)㊁硫脲(C H 4N 2S )和氢氧化钾(K O H )均为分析纯,购自上海麦克林生化科技有限公司;无水乙醇(C 2H 6O )为分析纯,购自江苏强盛功能化学股份有限公司;N a f i o n (质量分数为5%)分析纯,购自美国杜邦公司;氮气(N 2)和氧气(O 2)购自常州市华阳气体有限公司.MK Z A 10-15J 型超微研磨机(日本M a s u k o 公司);M -110P 型高压微射流均质机(美国M F I C公司);D H G -9030A 型鼓风干燥箱(上海一恒科学仪器有限公司);O T F -1200X 型真空管式炉(合肥科晶技术有限公司);C H I 760E 型电化学工作站(上海辰华设备有限公司).1.2 实验步骤1.2.1 糠醛渣基木质素/纤维素复合材料的制备称取200g 糠醛渣,加入200g 去离子水,搅拌均匀后抽滤并反复洗涤至中性,将糠醛渣分散成751 第1期 曲 霞,等:糠醛渣基木质素/纤维素复合材料的表征及氧还原电催化性能851吉林大学学报(理学版)第62卷质量分数为8%的悬浮液.用MK Z A10-15J型超微研磨机对悬浮液进行超微研磨,在研磨间隙加入约1000g去离子水用以稀释悬浮液,得到质量分数约为3%含木质素的纤维素粗产物悬浮液,向悬浮液中倒入适量去离子水并用M-110P型高压均质机对其进行高压均质,最终得到质量分数为1%的糠醛渣木质素/纤维素复合材料.糠醛渣基木质素/纤维素复合材料的制备流程如图1所示.图1糠醛渣基木质素/纤维素复合材料的制备流程F i g.1P r e p a r a t i o n p r o c e s s o f f u r f u r a l r e s i d u e b a s e d l i g n i n/c e l l u l o s e c o m p o s i t e s1.2.2糠醛渣基木质素/纤维素碳材料的制备将200m L糠醛渣基木质素/纤维素复合材料置于鼓风干燥箱(80ħ)中干燥24h,得到固体产物,将产物转移到石英舟中,在N2气氛下,以5ħ/m i n升温至特定温度,保持2h,自然冷却至室温.将碳化后的样品用1m o l/L H C l酸洗后水洗至中性,最终得到糠醛渣基木质素/纤维素碳材料(F R/C).1.2.3糠醛渣基木质素/纤维素氮硫共掺杂碳材料的制备将8g三聚氰胺和8g硫脲溶解在200m L糠醛渣基木质素/纤维素复合材料中,加热搅拌至均匀,将混合物置于鼓风干燥箱(80ħ)中干燥24h,得到固体产物,将产物转移到石英舟中,在N2气氛下,以5ħ/m i n升温至特定温度,保持2h,自然冷却至室温.将碳化后的样品用1m o l/L H C l酸洗后水洗至中性,最终得到糠醛渣基木质素/纤维素氮硫共掺杂碳材料(F R/C-N-S).1.3样品表征与分析利用场发射电子显微镜(S i g m a300型,德国Z e i s s公司)㊁元素分析仪(V a r i oE Lc u b e型,德国U N I C U B E公司)㊁F o u r i e r红外变换光谱仪(T e n s o r27型,德国B r u k e r公司)和紫外可见分光光度计(U V-2450型,日本S h i m a d z u公司)对糠醛渣基木质素/纤维素复合材料进行结构表征;使用S D T Q600型差热热重联用仪(美国T A仪器公司)对糠醛渣基木质素/纤维素复合材料进行热性能分析测试;参考G B/T20806 2006,D B37/T2969 2017和G B/T20805 2006对糠醛渣基木质素/纤维素复合材料中三大元素的质量分数进行测量;参考G B/T28731 2012对糠醛渣基木质素/纤维素复合材料进行工业分析和元素分析.采用C o a t s-R e d f e r n法和F l y n n-W a l l-O z a w a(F WO)法对糠醛渣基木质素/纤维素复合材料进行动力学分析,由于聚合物的热解反应可视为一级动力学反应,因此糠醛渣基木质素/纤维素复合材料的热解反应方程可表示为A(s)ңB(s)+C(g),(1)dαd t=k(1-α),(2)由于k =A e x p-E {}R T,(3)因此,式(2)可转化为d αd t=A e x p -E {}R T (1-α),(4)其中α=W 0-W W 0-W ɕ,W 0为初始样品质量(m g ),W 为t 时刻样品质量(m g),W ɕ为反应结束时的样品质量(m g),T 为反应温度(K ),A 为指前因子(s -1),E 为活化能(J /m o l ),R =8.314J /(m o l ㊃K )为气体常数[11-12].将升温速率常数β=d T d t(K /m i n )代入式(4)可得d αd T =Aβe x p -E {}R T (1-α).(5)用C o a t s -R e d f e r n 法对式(5)进行处理可得l n -l n (1-α)T éëêêùûúú2=l n A R βE 1-2R T æèçöø÷éëêêùûúúE -E R T.(6) 对多数的裂解反应[13],R T /E ≫1,1-2R T /E ʈ1,由于式(6)右端第一项几乎均为常数,因此式(6)可表示为l n -l n (1-α)T éëêêùûúú2=l n A R βE -E R T ,(7)由l n -l n (1-α)T éëêêùûúú2对T -1做图可得到一条直线,令Y =l n -l n (1-α)T éëêêùûúú2,α=-E R ,X =1T ,b =l n A R βE ,则有Y =αX +b ,由式(7)做图可直接得到该直线的斜率-E R 和截距l n A R βE [14],进而求出E 和A .当用F WO 法求E 时,不涉及反应机理函数,避免了相对误差,由于温度积分采用近似方法,因此引入了近似误差.对温度积分后可得G (a )=A E βR P (u )=A E βR e -u u 21u 0-2!u 1+3!u 2-4!u 3+æèçöø÷ ,(8)对式(8)两边取对数可得l n P (u )=-u +l n (u -2)-3l n u ,(9)若20≪u ≪60,则用T a yl o r 级数展开对数项并取一阶近似,可得l g P (u )=-2.315-0.4567E R T,(10)l g β与1/T 呈线性相关,通过曲线斜率可求出转化率对应的表观活化能[15].用辰华C H I 760E 型电化学工作站进行电化学测试,将2m g 糠醛渣基木质素/纤维素碳材料与乙醇(50μL )㊁去离子水(50μL )和N a f i o n (50μL )混合制备浆液,超声均匀后将12μL 的浆液滴到打磨抛光后的玻碳上,自然干燥.采用三电极体系(玻碳电极作为工作电极,铂片作为对电极,H g /H g 2C l 2作为参比电极)测试样品氧还原(O R R )性能,电解质溶液为0.1m o l /LK O H ,电位均已校正为可逆氢电极(R H E )的电位.2 结果与讨论2.1 木质素㊁纤维素和半纤维素的质量分数分析糠醛渣基木质素/纤维素复合材料的化学组成分析列于表1.由表1可见,木质素和纤维素的质量分数较高,木质素和纤维素的质量分数分别为53.18%和39.48%,远高于其他普通植物,因此用糠醛渣可提取木质素和纤维素.在制备糠醛过程中生物质中的半纤维素大部分被水解成戊糖,因此半纤维素的质量分数较低,仅占4.16%,由于糠醛渣中存在一定量的灰分等其他物质,不利于糠醛渣的高值951 第1期 曲 霞,等:糠醛渣基木质素/纤维素复合材料的表征及氧还原电催化性能化利用,因此可采取合适的方法去除.表1 糠醛渣基木质素/纤维素复合材料的化学组成分析T a b l e 1 C h e m i c a l c o mo s i t i o na n a l s i s o f f u r f u r a l r e s i d u e b a s e d l i n i n /c e l l u l o s e c o m o s i t e s 2.2 元素分析糠醛渣基木质素/纤维素复合材料与未处理糠醛渣的元素分析列于表2.由表2可见,糠醛渣基木质素/纤维素复合材料主要由C ,H ,O 三种元素组成,并含有微量的N 和S 元素.其中C 元素为主要成分,其质量分数为55.98%,糠醛渣基木质素/纤维素复合材料与未经处理糠醛渣元素中C 元素的质量分数相差较小,均可作为一种良好的可再生碳源加以利用.表2 糠醛渣基木质素/纤维素复合材料的元素分析T a b l e 2 E l e m e n t a l a n a l y s i s o f f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m po s i t e s %样品工业分析M a dA dV d a f元素分析C d a fH d a fN d a fS t ,dO d a f糠醛渣基木质素/纤维素复合材料5.993.1964.6255.985.110.500.1338.28糠醛渣4.4617.1576.1656.805.870.740.2036.392.3 微观结构分析糠醛渣及糠醛渣基木质素/纤维素复合材料的扫描电子显微镜(S E M )照片和原子力显微镜(A F M )照片分别如图2和图3所示.图2 糠醛渣(A )及糠醛渣基木质素/纤维素复合材料(B )的S E M 照片F i g .2 S E Mi m a g e s o f f u r f u r a l r e s i d u e (A )a n d f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m po s i t e s (B )图3 糠醛渣基木质素/纤维素复合材料的A F M 照片F i g .3 A F Mi m a ge of f u r f u r a l r e s i d u e b a s e d l ig n i n /c e l l u l o s e c o m po s i t e s 由图2(A )可见,糠醛渣表面较粗糙㊁致密,呈不规则的块状结构.由图2(B )可见,糠醛渣基木质素/纤维素复合材料呈明显的纤维状结构,其周围分散较多颗粒.由图3可见,糠醛渣基木质素/纤维素复合材料为粗细不同㊁长短不一的纤维素纤维,其周围分散大小不一的木质素颗粒.根据A F M 照片统计出糠醛渣基木质素/纤维素复合材料中木质素粒径和纤维素粒径分布,如图4所示.由图4(A )可见,木质素直径为20~300n m ,直径集中在(100ʃ15)n m 处;由图4(B )可见,纤维素长度为0~1200n m ,长度集中在(250ʃ150)n m 处;由图4(C )可见,纤维素直径为0~100n m ,直径集中在(35ʃ15)n m 处.2.4 红外光谱分析糠醛渣基木质素/纤维素复合材料的红外光谱如图5所示.由图5可见:糠醛渣宽频吸收带在3340~3460c m -1处,对应纤维素和木质素中061 吉林大学学报(理学版) 第62卷图4 糠醛渣基木质素/纤维素复合材料中木质素和纤维素的粒径分布F i g .4 P a r t i c l e s i z e d i s t r i b u t i o no f l i g n i na n d c e l l u l o s e i n f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m po s i t e s O H 的伸缩振动[16],表明糠醛渣中存在大量属于苯酚类和脂肪族结构的羟基;在2934c m -1附近出现的吸收峰主要是由于侧链的甲基和亚甲基中C H 拉伸振动[17]所致;在1703c m -1附近出现了木质素中非共轭酮和羧基中C O 伸缩振动的特征[16,18];在1621c m -1附近纤维素㊁半纤维素和木质素中出现了芳香环骨架C C 伸缩振动的特征;在1463c m -1附近出现了纤维素和木质素中甲基和亚甲基的C H 弯曲振动;在1325c m -1附近的特征峰为木质素中苯环骨架振动吸附所致[19];在1265,1064c m -1附近的强吸收峰可能为木质素中苯环甲氧基的C O 键伸缩振动导致[9].2.5 紫外光谱分析糠醛渣基木质素/纤维素复合材料的紫外光谱如图6所示.根据元素分析可知糠醛渣基木质素/纤维素复合材料中含有大量的木质素,木质素作为芳香族化合物含有丰富的苯环结构,可强烈吸收紫外光,因此通过紫外光谱可进一步了解复合材料的表面官能团.由图6可见,糠醛渣基木质素/纤维素复合材料在300n m 处出现一个明显的紫外光谱特征吸收峰,表明糠醛渣基木质素/纤维素复合材料的侧链结构中存在较多共轭烯键[20].图5 糠醛渣基木质素/纤维素复合材料的红外光谱F i g .5 I n f r a r e d s pe c t r u mof f u r f u r a l r e s i d u e b a s e d l ig n i n /c e l l u l o s e c o m po s i t es 图6 糠醛渣基木质素/纤维素复合材料的紫外光谱F i g .6 U Vs pe c t r u mof f u r f u r a l r e s i d u e b a s e d l ig n i n /c e l l u l o s e c o m po s i t e s 2.6 热解过程及热解动力学分析不同升温速率下糠醛渣基木质素/纤维素复合材料的热重(T G )曲线和热重微分(D T G )曲线如图7所示.由图7可见,不同升温速率下的T G 和D T G 曲线趋势大致相同,主要分为3个阶段[21].第一阶段发生在室温~190ħ,总质量损失为3.95%,主要是水分的去除.第二阶段发生在190~460ħ,总质量损失为47.60%,这是由于糠醛渣基木质素/纤维素复合材料中纤维素㊁半纤维素和木质素在该阶段产生分解所致.随着升温速率从5ħ/m i n 增加到30ħ/m i n ,D T G 曲线的峰值温度从341ħ增加到378ħ,这是由于生物质的热导率较低,糠醛渣作为一种生物质,若升温速率太快则受热时存在时间延迟,从而出现热滞后现象.第三阶段(>460ħ)对应炭化过程,随着加热速率从5ħ/m i n 增加到30ħ/m i n,固体残渣的质量占比变大,这是由于温度相同时,样品升温越慢,物料传热和传质过程越充分所致[22].为进一步验证第二阶段(190~460ħ)的活化能,用C o a t s -R e d f e r n 法对糠醛渣基木质素/纤维素161 第1期 曲 霞,等:糠醛渣基木质素/纤维素复合材料的表征及氧还原电催化性能复合材料进行动力学分析,结果列于表3.图7 糠醛渣基木质素/纤维素复合材料在不同升温速率下的T G (A )和D T G (B )曲线F i g .7 T G (A )a n dD T G (B )c u r v e s o f f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m p o s i t e s a t d i f f e r e n t h e a t i n g ra t e s 表3 用C o a t s -R e d f e r n 法对糠醛渣基木质素/纤维素复合材料进行热解反应动力学分析T a b l e3 P y r o l y s i s r e a c t i o nk i n e t i c s a n a l y s i s o f f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m p o s i t e s b y u s i n g Co a t s -R e d f e r nm e t h o d β/(ħ㊃m i n -1)θ/ħnE /(k J ㊃m o l-1)A /m i n-1R 25205~465132.21903.160.9510224~484134.121935.850.9415210~490131.541933.450.9420220~500129.811782.450.9425220~500134.185049.110.9530220~500133.525132.430.94由表3可见,实验条件下升温速率对表观活化能的影响较小,但热解开始和结束的温度随升温图8 糠醛渣基木质素/纤维素复合材料在不同升温速率下l n β和1000/T 的关系F i g .8 R e l a t i o n s h i p be t w e e n l n βa n d1000/T of f u r f u r a l r e s i d u eb a s e dl ig n i n /c e l l u l o s ec o m p o s i t e sa td i f f e r e n th e a ti n g ra t e s 速率的增加而增加,主要失质量区间随升温速率的增加向高温区移动.整体表观活化能较低(30k J /m o l ),与文献[23]的结果一致,表明糠醛渣基木质素/纤维素复合材料的热解反应较易进行.糠醛渣基木质素/纤维素复合材料在不同升温速率下l n β和1000/T 的关系如图8所示.由图8可见,线性拟合较好.用F WO 法对糠醛渣基木质素/纤维素复合材料进行热解反应动力学分析,结果列于表4.由表4可见,通过F WO 法计算出的活化能为22.30~40.17k J /m o l ,其整体上随转化率的升高而增大,最大值为40.17k J /m o l .采用两种方法拟合的曲线线性相关系数R 2均较大(>0.93),因此糠醛渣基木质素/纤维素复合材料的主要热解阶段可视为一级动力学反应,表明单段一级动力学模型可靠.表4 用F W O 法对糠醛渣基木质素/纤维素复合材料进行热解反应动力学分析T a b l e 4 P y r o l y s i s r e a c t i o nk i n e t i c s a n a l y s i s o f f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m p o s i t e s b y u s i n g FW O m e t h o d2.7 糠醛渣基木质素/纤维素氮硫共掺杂碳材料电催化氧还原性能纯糠醛渣基木质素/纤维素复合碳材料(F R /C )与糠醛渣基木质素/纤维素氮硫共掺杂多孔碳材料(F R /C -N -S )的循环伏安(C V )曲线和1600r /m i n 下的线性扫描伏安(L S V )曲线如图9所示.由261 吉林大学学报(理学版) 第62卷图9(A )可见,碳材料在O 2饱和的0.1m o l /LK O H 电解液中出现明显还原峰,表明两种碳材料均具有电催化氧还原(O R R )活性.由图9(B )可见,F R /C -N -S 的起始电位(E o n s e t )为0.93V ,半波电位(E 1/2)为0.83V ,极限电流密度为1.75m A /c m 2,与商业P t /C (E o n s e t =1.04V 和E 1/2=0.86V )相近,远高于F R /C 的氧还原催化活性(起始电位为0.74V ,半波电位为0.6V ,极限电流密度为1.14m A /c m 2),可见掺杂杂原子增强了糠醛渣基木质素/纤维素复合碳材料的电催化氧还原性能,表明以糠醛渣基木质素/纤维素复合材料为生物质前驱制备的碳材料可作为理想的燃料电池氧还原催化剂.图9 碳材料的C V 曲线(A )和1600r /m i n 下的L S V 曲线(B )F i g.9 C Vc u r v e s (A )o f c a r b o nm a t e r i a l a n dL S Vc u r v e s (B )a t 1600r /m i n 综上,本文通过超微研磨和高压均质预处理过程制备了糠醛渣基木质素/纤维素复合材料,并研究了其化学组成㊁表面化学性质及热动力学性质等.结果表明:糠醛渣基木质素/纤维素复合材料含有丰富的纤维素和木质素,木质素和纤维素的质量分数分别为53.18%和39.48%;糠醛渣基木质素/纤维素复合材料主要由C ,H ,O 三种元素组成,并含有少量的N 和S 元素;糠醛渣基木质素/纤维素复合材料中含有O H ,CO ,C C 和C H 等官能团;升温速率对糠醛渣基木质素/纤维素复合材料的热解特性影响较大,其表观活化能较低,相关系数R 2>0.93;以糠醛渣基木质素/纤维素复合材料为生物质前驱体制备的碳材料起始电位为0.93V ,半波电位为0.83V ,极限电流密度为1.75m A /c m 2,氧还原催化活性较高.因此,以糠醛渣基木质素/纤维素复合材料为生物质前驱体制备的碳材料在电催化氧还原性能方面具有较好的应用前景.参考文献[1] R A C HAMO N T R E EP ,D O U Z O U T ,C H E E N K A C HO R N K ,e t a l .F u r f u r a l :AS u s t a i n a b l eP l a t f o r m C h e m i c a l a n dF u e l [J ].A p p l i e dS c i e n c e a n dE n g i n e e r i n g P r o gr e s s ,2020,13(1):3-10.[2] B I SX ,L I U W Y ,WA N GC H ,e t a l .A V e r s a t i l eA p p r o a c h t o t h eS y n t h e s i s o f B i o m a s sD e r i v e d f r o m F u r f u r a l R e s i d u e s a s aP o t e n t i a lA d s o r b e n t [J ].J o u r n a l o fE n v i r o n m e n t a l C h e m i c a l E n g i n e e r i n g,2018,6(4):5049-5052.[3] MA O L Y ,Z HA N G L ,G A O N B ,e ta l .F e C l 3a n d A c e t i c A c i d C o -c a t a l y z e d H y d r o l y s i so fC o r n c o bf o r I m p r o v i n g F u r f u r a lP r o d u c t i o na n d L i g n i n R e m o v a lf r o m R e s i d u e [J ].B i o r e s o u r c e T e c h n o l o g y,2012,123:324-331.[4] WA N G Q ,L I U Y Y ,L I U S N ,e ta l .C o m p r e h e n s i v eT h e r m o c h e m i c a lU t i l i z a t i o no fB i o m a s sR e s i d u e sf r o m F u r f u r a l P l a n t s a n dE L W T e c h n o l o g y [J ].F u e l ,2019,252:116-124.[5] A O W Y ,F U J ,MA O X ,e ta l .C h a r a c t e r i z a t i o na n d A n a l y s i so fA c t i v a t e dC a r b o n sP r e pa r e df r o m F u r f u r a l R e s i d u e sb y M ic r o w a v e -A s s i s t e dP y r o l y s i sa nd A c t i v a t i o n [J ].F ue lP r o c e s s i n g T e c h n o l o g y ,2021,213:106640-1-106640-13.[6] Y I N YL ,G A O Y ,L IA M.S e l f -a c t i v a t i o no fB i o c h a r f r o m F u r f u r a lR e s i d u e sb y R e c y c l e dP y r o l y s i sG a s [J ].W a s t eM a n a ge m e n t ,2018,77:312-321.[7] Z HO U X ,L I U X H ,Q IFL ,e t a l .Ef f i c i e n tP r e p a r a t i o no fP -D o p e dC a r b o nw i t hU l t r a -h igh M e s o p o r o u sR a ti o f r o m F u r f u r a lR e s i d u ef o rD y e R e m o v a l [J ].S e p a r a t i o na n d P u r i f i c a t i o n T e c h n o l o g y,2022,292:120954-1-120954-9.361 第1期 曲 霞,等:糠醛渣基木质素/纤维素复合材料的表征及氧还原电催化性能461吉林大学学报(理学版)第62卷[8] C H E NCZ,L IM F,WU Y Y,e t a l.S t r u c t u r a lC h a r a c t e r i z a t i o no fL i g n i nE x t r a c t e dw i t h A l k a l i n e H y d r o g e nP e r o x i d e f r o m F u r f u r a lR e s i d u e[J].C e l l u l o s eC h e m i s t r y a n dT e c h n o l o g y,2015,49(2):153-163.[9] L IR,WA N G X H,L I N Q X,e t a l.S t r u c t u r a l F e a t u r e s o fL i g n i nF r a c t i o n a t e d f r o mI n d u s t r i a l F u r f u r a lR e s i d u eU s i n g A l k a l i n eC o o k i n g T e c h n o l o g y a n d I t sA n t i o x i d a n t P e r f o r m a n c e[J].F r o n t i e r s i nE n e r g y R e s e a r c h,2020,8: 83-1-83-10.[10] L I U C,L IB,D U H S,e t a l.P r o p e r t i e so fN a n o c e l l u l o s e I s o l a t e df r o m C o r n c o bR e s i d u eU s i n g S u l f u r i cA c i d,F o r m i cA c i d,O x i d a t i v e a n d M e c h a n i c a lM e t h o d s[J].C a r b o h y d r a t eP o l y m e r s,2016,151:716-724.[11]肖瑞瑞,杨伟,陈雪莉,等.三种常见生物质热解动力学特性的研究[J].化学世界,2012,53(11):663-694.(X I A O R R,Y A N G W,C H E N X L,e ta l.R e s e a r c ho n P y r o l y s i s K i n e t i c sC h a r a c t e r i s t i c so fT h r e e T y p e sB i o m a s s[J].C h e m i s t r y W o r l d,2012,53(11):663-694.)[12]袁聪聪,王宇栋,张丁川,等.木屑颗粒热解过程动力学计算及热解气体分析[J].过程工程学报,2017,17(5):1102-1108.(Y U A NCC,WA N G Y D,Z HA N G D C,e t a l.P y r o l y s i sD y n a m i c sC a l c u l a t i o na n dP y r o l y s i sG a sA n a l y s i s o fW o o dP a r t i c l e s[J].T h eC h i n e s e J o u r n a l o fP r o c e s sE n g i n e e r i n g,2017,17(5):1102-1108.)[13]杨兴卫,杨茂立,安海,等.玉米芯炭质燃料的理化性能及热解过程分析[J].过程工程学报,2018,18(4):851-857.(Y A N G X W,Y A N G M L,A N H,e t a l.A n a l y s i s o f P h y s i c o c h e m i c a l P r o p e r t i e s a n dP y r o l y s i sP r o c e s s o fC o r n c o bC a r b o nF u e l[J].T h eC h i n e s e J o u r n a l o fP r o c e s sE n g i n e e r i n g,2018,18(4):851-857.) [14]王承志,李法社,张帅,等.生物质燃油热重特性分析[J].昆明理工大学学报(自然科学版),2016,41(2):15-19.(WA N GCZ,L IFS,Z HA N GS,e t a l.A n a l y s i so fT h e r m o g r a v i m e t r i cC h a r a c t e r i s t i c so fB i o m a s sF u e l [J].J o u r n a l o fK u n m i n g U n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y(N a t u r a l S c i e n c e),2016,41(2):15-19.) [15]蒋荣亮,魏刚,徐洪耀.N H-P O S S基耐高温环氧树脂的制备及动力学分析[J].当代化工,2019,48(9):1959-1963.(J I A N G R L,W E I G,X U H Y.P r e p a r a t i o na n d K i n e t i c s A n a l y s i so f N H-P O S S B a s e d H i g h T e m p e r a t u r eR e s i s t a n tE p o x y R e s i n[J].C o n t e m p o r a r y C h e m i c a l I n d u s t r y,2019,48(9):1959-1963.) [16] C H E N X Y,L IH P,L I U W Y,e t a l.E f f e c t i v eR e m o v a l o f M e t h y lO r a n g ea n dR h o d a m i n eBf r o m A q u e o u sS o l u t i o nU s i n g F u r f u r a l I n d u s t r i a l P r o c e s s i n g W a s t e:F u r f u r a l R e s i d u e a s a nE c o-F r i e n d l y B i o s o r b e n t[J].C o l l o i d sa n dS u r f a c e sA:P h y s i c o c h e m i c a l a n dE n g i n e e r i n g A s p e c t s,2019,583(C):123976-1-123976-9.[17] L I U Y,S O N G Y M,R A NC M,e t a l.C h a r a c t e r i z a t i o n a n dA n a l y s i s o f C o n d e n s a t e s a n dN o n-c o n d e n s a b l eG a s e sf r o m F u r f u r a lR e s i d u ev i aF a s tP y r o l y s i s i naB u b b l i ng F l u i d i z e dB e d R e a c t o r[J].W a s t e M a n a g e m e n t,2021,125:77-86.[18] WA N G Y,X UZY,S O N GX,e t a l.T h eP r e p a r a t i o n o f L o w-C o s tA d s o r b e n t f o rH e a v y M e t a l B a s e d o nF u r f u r a lR e s i d u e[J].M a t e r i a l s a n d M a n u f a c t u r i n g P r o c e s s e s,2017,32(1):87-92.[19]张晓君,赵明珠,赵志海,等.稻草制浆黑液中木质素/二氧化硅复合材料的制备[J].吉林大学学报(理学版),2015,53(2):340-343.(Z HA N GXJ,Z HA O MZ,Z HA OZH,e t a l.P r e p a r a t i o n o f L i g n i n/S i l i c aH y b r i d f r o mB l a c kL i q u o r o fR i c eS t r a wP u l p i n g[J].J o u r n a l o f J i l i nU n i v e r s i t y(S c i e n c eE d i t i o n),2015,53(2):340-343.)[20] X I O N GFQ,HA N Y M,WA N GS Q,e t a l.P r e p a r a t i o na n dF o r m a t i o n M e c h a n i s m o fS i z e-C o n t r o l l e dL i g n i nN a n o s p h e r e sb y S e l f-a s s e m b l y[J].I n d u s t r i a l C r o p s a n dP r o d u c t s,2017,100:146-152.[21]郭平,王观竹,许梦,等.不同热解温度下生物质废弃物制备的生物质炭组成及结构特征[J].吉林大学学报(理学版),2014,52(4):855-860.(G U O P,WA N G G Z,X U M,e t a l.S t r u c t u r e a n d C o m p o s i t i o nC h a r a c t e r i s t i c s o f B i o c h a r sD e r i v e d f r o mB i o m a s sW a s t e s a tD i f f e r e n t P y r o l y s i sT e m p e r a t u r e s[J].J o u r n a l o f J i l i nU n i v e r s i t y(S c i e n c eE d i t i o n),2014,52(4):855-860.)[22]徐期勇,章佳文,刘虎,等.市政污泥与木屑共热解特性及动力学分析[J].可再生能源,2021,39(9):1150-1156.(X U Q Y,Z HA N G J W,L I U H,e ta l.C o-p y r o l y s i s C h a r a c t e r i s t i c sa n d K i n e t i c s A n a l y s i so f M u n i c i p a l S l u d g e a n d W o o dC h i p s[J].R e n e w a b l eE n e r g y R e s o u r c e s,2021,39(9):1150-1156.) [23]杜海清.木质类生物质催化热解动力学研究[D].哈尔滨:黑龙江大学,2008.(D U H Q.S t u d y o nC a t a l y t i cP y r o l y s i sK i n e t i c s o fW o o d y B i o m a s s[D].H a r b i n:H e i l o n g j i a n g U n i v e r s i t y,2008.)(责任编辑:王健)。

《糠醛渣热解特性及双流化床解耦燃烧原位控氮》

《糠醛渣热解特性及双流化床解耦燃烧原位控氮》

《糠醛渣热解特性及双流化床解耦燃烧原位控氮》一、引言随着环保意识的日益增强和能源需求的持续增长,废弃物资源化利用已成为当前研究的热点。

糠醛渣作为一种农业废弃物,具有较高的热值和潜在的能源利用价值。

研究其热解特性,开发高效、环保的处置方式,对农业废弃物的资源化利用具有重要意义。

本文以糠醛渣为研究对象,探讨其热解特性和在双流化床解耦燃烧中的原位控氮技术。

二、糠醛渣热解特性研究1. 实验材料与方法采用糠醛渣为实验原料,通过热重分析仪进行热解实验。

在实验过程中,对糠醛渣进行程序升温,并记录其质量变化、热量变化及气体产物生成情况。

2. 实验结果与分析(1)热解过程分析糠醛渣热解过程主要分为干燥、热解和炭化三个阶段。

在干燥阶段,糠醛渣失去水分;在热解阶段,糠醛渣中的有机物发生裂解,生成气体、液体和固体产物;在炭化阶段,糠醛渣中的碳元素进一步转化为炭黑。

(2)热解特性参数通过热重分析,得到糠醛渣的热解特性参数,如起始热解温度、最大热解速率温度和终了热解温度等。

这些参数对于了解糠醛渣的热解过程、优化热解条件具有重要意义。

(3)气体产物分析糠醛渣热解过程中产生的气体产物主要包括氢气、一氧化碳、二氧化碳等。

通过气相色谱仪对气体产物进行分析,可以得到各组分的含量及生成规律。

三、双流化床解耦燃烧原位控氮技术1. 双流化床解耦燃烧原理双流化床解耦燃烧技术是一种新型的燃烧技术,通过将燃料和空气分别引入两个流化床中,实现燃料与空气的分离控制,从而达到降低氮氧化物排放的目的。

该技术具有较高的燃烧效率和较低的污染物排放。

2. 原位控氮技术在双流化床解耦燃烧过程中,通过调整燃料和空气的比例、流速等参数,实现原位控氮。

通过控制燃烧过程中的氧气浓度和燃烧温度,降低氮氧化物(NOx)的生成量。

同时,通过在流化床中添加吸附剂或催化剂,进一步提高氮氧化物的去除效率。

四、结论本文通过对糠醛渣的热解特性及双流化床解耦燃烧原位控氮技术进行研究,得出以下结论:(1)糠醛渣具有较高的热值和潜在的能源利用价值,其热解过程可分为干燥、热解和炭化三个阶段。

糠醛渣和废菌棒的热解气化多联产再利用

糠醛渣和废菌棒的热解气化多联产再利用
生物质能是唯一一种可产出固、液、气三相燃料产 品的可再生能源[6],木质纤维素类生物质的热解气化技术 则是当前生物质能研究的热点。现有的生物质气化技术,
收稿日期:2017-06-13 修订日期:2017-10-02 基金项目:江苏高校优势学科建设工程资助项目(PAPD) 作者简介:成 亮,男,甘肃徽县人,助理研究员,博士后,从事生物质热 解与植物资源学研究。Email:8899cllc@ ※通信作者:周建斌,男,江西吉安人,教授,博士,博士生导师,从事生 物质能源与炭材料研究。Email:13705178820@
炭与可燃气。糠醛渣的 C 元素含量较高而挥发分含量较低,糠醛渣的热值(20.87 MJ/kg)高于废菌棒(18.01 MJ/kg)。
糠醛渣的半纤维素失重肩峰明显消失,其最大质量损失速率高于废菌棒,质量损失总量低于废菌棒。糠醛渣和废菌棒的
气化产炭率分别为 29.99%和 22.26%,糠醛渣炭的热值为 26.18 MJ/kg,高于废菌棒炭的 20.09 MJ/kg,糠醛渣炭的比表面 积为 253.58 m2/g,高于废菌棒炭的 189.08 m2/g。糠醛渣可燃气和废菌棒可燃气的产率分别为 2.49 和 2.25 m3/kg,其热值 含量基本处于同一水平,分别为 4.86 和 4.92 MJ/m3。糠醛渣和废菌棒可分别用于机制炭和炭基肥料等的生产,同时产出
生物质可燃气。
关键词:生物质;燃料;气化;糠醛渣;废菌棒;生物质炭;生物质可燃气
doi:10.11975/j.issn.1002-6819.2017.21.028
中图分类号:TK6
文献标志码:A
文章编号:1002-6819(2017)-21-0231-06
成 亮,周建斌,章一蒙,田 霖,马欢欢,宋建忠,张齐生. 糠醛渣和废菌棒的热解气化多联产再利用[J]. 农业工程 学报,2017,33(21):231-236. doi:10.11975/j.issn.1002-6819.2017.21.028 Cheng Liang, Zhou Jianbin, Zhang Yimeng, Tian Lin, Ma Huanhuan, Song Jianzhong, Zhang Qisheng. Re-utilization of furfural residues and wasted mushroom inoculation bags by multi-production gasification technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 231-236. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.028

糠醛渣与煤混烧特性的热重研究

糠醛渣与煤混烧特性的热重研究

煤单 独燃 烧情 况 下 , 烧 分 成 两 个 阶 段 , 燃 D TG 曲线 呈 现 双 峰 , 一 阶 段 主 要 是 挥 第 发分 的析 出和燃 烧 阶段 , 二 阶段是 固定 第 碳 的燃 烧 阶段 ; 煤及 褐煤 与糠 醛渣 混烧 褐 时D TG 曲线形 态 呈 单 峰 , 是 挥 发分 和 这
的热 量较难 满 足工 业 锅 炉 供 热 和 发 电 的 需要 , 因此 考 虑将糠 醛渣 和煤 混合 作为 燃料 。本 文采 用 热 重分 析 法
对糠醛 渣 和烟煤 、 醛 渣 和褐 煤 混 烧 的 燃 烧 特性 进 行 糠 试验研 究 , 为其 今后 的工 业应 用 提供一 定 的理论依 据 。
法 同 时满足 不 同性 能 燃 料 对 配 风 的不 同
温度/ ℃ 温 度 /℃
E- a l m i: Yiq@ C u t e u c x s s. d . n
维普资讯
2 试 验 结果 及 分 析
2 1 热重分 析 曲线 . 部分 试样 的燃 烧 特 性 曲线 分 别 见 图 1 a ~ () () f 。从 图 1 以看 出 , 醛 渣 、 可 糠 烟
试 验 气氛 为氧 气 , 量 约 7 / n 流 0mL mi。
试 验 采用 北京 光 学 仪 器 厂 生 产 的 WC T一2型 差 热 天平 , 微机 差热 天平 为 高温 型微 机化 DT 该 A—TG— DT 同时 分析 仪 , 以对微量 试 样 同时进 行 差热 分 析 G 可
[ 文献标 识码 ] A [ 章 编 号] 10 文 0 2—3 6 ( 0 7 O 3 4 2 0 ) 7—0 2 0 5—0 4
生物 质是 一 种 可大 规 模 利 用 的清 洁 可 再 生 能 源 , 包括 农产 品废 弃物 、 市垃圾 、 业废 弃物 以及 畜牧 业 城 林 废弃 物等 [ 。糠 醛 渣 是 玉 米 芯经 水 解 生 产 糠 醛 ( 喃 1 ] 呋 甲醛 ) 的副产 品 , 国是 糠 醛 生 产 大 国 , 醛 年 总 产 量 中 糠 超过 2 ×1 t糠 醛渣 的年 生产 量 约 2 0 0 , O 0 , 0 ×1 t 目前

糠醛废渣的综合利用原理

糠醛废渣的综合利用原理

糠醛废渣综合利用原理一生产活性炭以玉米芯为原料硫酸法生产糠醛为例,其废渣组成的一个典型分析结果为:腐植酸 11.63%,木质素37.88%,纤维素 35.84%,多缩戊糖 2.05%,磷(P2O5) 0.36%,钾 1.18%,氨 0.61%,醋酸 3.34%,游离酸(SO42-) 1.27%,pH为2.1。

另糠醛渣的理化性质经室内化验分析:糠醛渣粒径2~3mm ,容重0. 35~0.42g/ cm3,有机质含量764.50~781.30g/ kg ,全氮4.50~5. 20g/kg ,全磷0.72~0.74g/ kg , 全钾12.20~15.48g/ kg。

碱解氮328~533mg/ kg,P2O5109~393mg/kg,K2O700~750mg/kg。

有效硼、锰、锌、铁含量分别是1.50 、9.80 、1.24 、14.20 μg/ g,游离酸35.00~42.10g/kg ,pH 值1.86~3.15 。

因糠醛废渣中所含的多缩戊糖、纤维素及木素等组分使废渣具有一定的粘性,故在不外加粘结剂的条件下,可加压成型成型后的颗粒在高温下炭化,此时,渣中的纤维素与木质素等有机物发生脱水反应,并伴随C一O一C键断裂,H2O、CO2及烷烃等挥发性物质大量逸出,使其中碳的相对含量不断增大。

与此同时,颗粒体积收缩,强度不断提高,最终形成坚硬的炭粒。

在高温活化时,炭化后的颗粒具有很高的反应活性,与活化所用的气体(水蒸汽或CO2)进行强烈反应,随着活化反应的不断深化,微孔不断增多,从而形成比表面很大、强度很高的活性炭。

废渣水分的高低对生产出的活性炭影响很大。

因水分含量高,易加压成型,但成型后过于粘软,在炭化时,当大量水蒸汽排出后,会形成较多的初孔,使堆积密度较低。

当水含量大于50%时,堆积密度会低于500克/升。

初孔过多有利于活化,但炭粒强度有所下降。

废渣含水量低,成型压力需要提高。

一般含水量在35—45%范围内较为适宜。

糠醛渣在流化床中燃烧特性的试验研究①

糠醛渣在流化床中燃烧特性的试验研究①

文章编号:025420096(2001)0320291205糠醛渣在流化床中燃烧特性的试验研究①别如山,杨励丹,陆慧林,李炳熙,鲍亦令(哈尔滨工业大学,哈尔滨150001)摘 要:介绍了糠醛渣生物质燃料的工业分析、临界流化速度、着火温度、与煤掺烧时的烧结特性、灰成分分析以及热天平分析。

重点研究了糠醛渣燃烧后灰成分分析及热重分析。

解释了没有烧结的根本原因在于,糠醛渣燃烧后形成的灰中,钾盐主要以硫酸盐物质存在,熔点较高所致。

试验发现,糠醛渣中氯含量较高,燃烧后灰中氯含量很低,说明主要以HCl 气体析出,同时糠醛渣中含有呋喃甲醛,当燃烧不充分时将会产生多氯二苯并呋喃(PC DFs —二恶英),提出合理的燃烧温度及停留时间。

试验结果为设计流化床糠醛渣锅炉奠定了基础。

关键词:糠醛渣;临界流化速度;着火温度;烧结;热天平分析;PC DFs 中图分类号:TK 6 文献标识码:A0 前 言采用玉米芯经水解生产糠醛(呋喃甲醛)的副产品糠醛渣,由于含水率很高,发热值低,通常采用流化床燃烧方式进行燃烧,并要求掺烧一部分煤。

由于生物质燃料中通常富含Na 、K 等碱金属元素,燃烧过程中将形成碱金属盐类,在流化床燃烧温度下,可能使床料烧结,严重时将会导致床料结焦,从而影响锅炉的正常运行。

本文报道了糠醛渣生物质燃料的工业分析、临界流化速度、流化床内着火特性、在流化床内与煤掺烧时的烧结特性、灰成分分析以及热天平分析。

为正确设计燃糠醛渣流化床锅炉提供理论依据。

1 糠醛渣工业分析采用法定常规工业分析方法分析。

结果列于表1表1 糠醛渣工业分析结果T able 1Proximate analysis of furural residue名 称符 号数 量收到基水分/%M ar 60161收到基灰分/%A ar3121收到基挥发分/%V ar 27161收到基固定碳/%FC ar 8157无灰干燥基挥发分/%V daf 66164收到基低位发热值/k J ·kg -1Q net.ar5671 工业分析结果表明此糠醛渣含水率特高,灰分含量比一般生物燃料稍高,燃料低位发热值约有一半为挥发份放出的。

糠醛渣燃烧物理化学性质

糠醛渣燃烧物理化学性质

糠醛渣燃烧物理化学性质一概述所有的生物质几乎都是由纤维素、半纤维素和木质素三种主要成分以及各种提取物或附加成分和灰分组成,其组成元素也基本上都是碳、氢、氧、氮等,糠醛渣也不例外。

糠醛渣加热后会发生热解,生成可燃气体(主要成分CO,H2,CH4,C n H m 等)、焦油和多孔固体焦炭。

糠醛渣燃烧后形成的灰中钾盐主要以硫酸盐物质存在,实际中发现糠醛渣中氧含量较高,而燃烧后灰中氧含量很低,说明主要以HCI气体析出,同时糠醛渣中含有呋哺甲醛,当燃烧不充分时将会产生多氧二苯并呋哺(PCDFs- 二恶英),所以使用糠醛渣时应具备合理的燃烧温度及停留时间。

二糠醛渣燃烧物化性质1、采用玉米芯经水解生产糠醛(呋喃甲醛)的副产品糠醛渣,由于含水率很高,发热值低,通常采用流化床燃烧方式进行燃烧,并要求掺烧一部分煤。

由于生物质燃料中通常富含Na、K等碱金属元素,燃烧过程中易形成碱金属盐类,对产生的糠醛渣试样经研磨筛选,工业分析如下表所示:上表糠醛渣工业分析表明此糠醛渣含水率特高,灰分含量比一般生物燃料稍高,燃料低位发热值约有一半为挥发份放出的,工业应用时可抽取尾部烟气作为干燥介质引至炉前干燥设备,将糠醛渣经干燥设备后进人炉内燃烧。

经干燥后的糠醛渣不加辅助燃料就可以稳定燃烧,如在进入床内的糠醛渣迅速着火燃烧,同时还伴有浓烟产生,通过降低给料速度,调整送风量,浓烟可消除。

并观察床内流化良好,床层压降波动正常,未发现床料烧结现象。

2、糠醛渣在不同的升温速率下的热解失重及失重微商与温度之间的关系是当升温速率影响糠醛渣热解的初始温度、失重峰值温度及热解终止温度,同时影响到某一温度时刻的失重量,而在相同的温度下,升温速率越低,热解越充分,挥发分析出越多,余重越少。

这是因为升温速率不同,热量至外向内传递的速度就不同,升温速率直接影响锅壁和试样、外层试样与内部试样间的传热和温度梯度,升温速率慢。

3、当糠醛渣失重60%时,升温速率50℃/min所需要的时间仅为5℃/min的1/10;同样,达到失重峰值的时间也大大缩短,即完成整个热解的时间也明显缩短了。

糠醛渣的纤维素酶水解及其最优纤维素转化条件

糠醛渣的纤维素酶水解及其最优纤维素转化条件

第25卷第10期农业工程学报V ol.25No.10 2262009年10月Transactions of the CSAE Oct.2009糠醛渣的纤维素酶水解及其最优纤维素转化条件仉磊1,李涛2,王磊3,李十中1※(1.清华大学核能与新能源技术研究院,北京100084;2.天津科技大学教育部工业微生物重点实验室,天津300457;3.河南农业大学生命科学学院,郑州450002)摘要:该文对糠醛渣的纤维素酶水解特性进行了研究,探索利用玉米芯制糠醛联产燃料乙醇工业化生产的可行性。

分析糠醛渣组分,表明其半纤维素质量分数为3.1%,纤维素为31.6%,说明糠醛生产过程对玉米芯的预处理基本满足高效酶解糖化糠醛渣并转化乙醇的要求;通过纤维素酶用量、温度、pH值、固液比、转速等因素进行条件优化,确定最佳水解条件:每克底物酶用量为6.7FPU,固液质量体积比1︰6,pH5.2,转速80r/min;在糠醛渣水解体系中加入吐温80,结果表明在酶施用量较低情况下(6.7FPU/g),吐温80对提高糠醛渣水解转化率效果更为明显;通过最优化水解条件,使糠醛渣纤维素转化率达到78%,据此初步判定以糠醛渣为原料转化乙醇的工业化生产具有较大潜力。

关键词:水解,乙醇,纤维素,糠醛渣doi:10.3969/j.issn.1002-6819.2009.10.041中图分类号:S216.2文献标识码:A文章编号:1002-6819(2009)-10-0226-05仉磊,李涛,王磊,等.糠醛渣的纤维素酶水解及其最优纤维素转化条件[J].农业工程学报,2009,25(10):226-230.Zhang Lei,Li Tao,Wang Lei,et al.Enzymatic hydrolysis of corncob residues of furfural manufacture and optimum conditions for cellulose conversion[J].Transactions of the CSAE,2009,25(10):226-230.(in Chinese with English abstract)0引言为了避免使用淀粉质粮食作物作为燃料乙醇的原材料而危及粮食安全,以纤维素质农作物产品废料生产乙醇被认为是最具前途的第二代生物燃料技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FC,/%
S.,a!%
*Jt1~!4:~9:f'F7J~Et: .~~mt;fl:7;
80ml/min. fl-iiJt$1-i:i:7J 5 Dmin ,20 'Omin ,50 'Omin ,80 '0
nun.
3
~~i~rt* ~51\.iffr -$(iA7J ,JL.>JL JlJT1f 8"1 ~ !1W ~*-1*4~~~ S3 £ttl~ --~tttt~fo*~~ -=~ .± ~ JJX;?t ~111Hlf!tJf~!IWEJ<;i!ft
m~: f¥;:~:1'~!:¥lf~3.=:lt
#~~~Ei ~:&1~\i~
·1£if!!Lfritfffl·~~wttai!B•-Pt:lS=:5lL' ~:JT&:J
z
·
!lt#tl~:N~' W1f~fta!r91i::d~~'ttl-' §C?~fta"EfN';j-}#:li§';j-}~~~· &J-:flliJt:P~-fta'W!:r-:f~';j-}'_k;,' ';j-}lJ*.' ';j-}~' m ~W't!fu'ttl-' ~!:r-:fftSJJ:lPf~-W't!.fuJf~Ww . &n~~l·H!fbftS~fU&wfJf~' t:P#~D•n~&it' ~~;¢~' t'>k~fta r;t(.~f¥;:M:lt't! of ~H&tta &n~ttr~H1fwf ~l~±~:W¥!t~i!~D• · ~rlfi\Ittawfnf¥wf:t±~' ff±W~:IE~ 'fhtgJafta:PJ-~:¥lf~±$EiJ' ~®'2::J~11ijJ)[L¥J.=' ~$f,M#~Of &fl~~~~~i!~D-¥-fW .£El;i:r l!lill0Y: ~on ~~¥'f~:W#i!~D•' ::P; J!Ptl0Y:~ 01 ~~"!' ;J' ::P; l!!ill0i£ oz :r-:ffi~@t#~'D•' *_j;J~B·~~ ovi ~:ff@1$.f,WEl . !!ill 000£1 f¥;:~~-i!~fta~;J;i:r-_fji.f}a!lnJ OOOI :W;J::P;~-. !ff2'!1¥4a~~lfl\fb~~~flfl\f¥;: *::P;:YHl} . "'$!&t,~;J~B-' @1¥1fl\~W@1$.f . '&#~ftagCDEI:l~~2V2s:JB.isk!f({I';j-}
tiiN
~z
'lOA
*
nlk#-tf
M,/%
A,/%
1 -~~~#-tf*ll~?:HJi'
~7}-tf
.fl£{1'1:~~-(kT/kg)
9.88 10.86 54.48 24.78
c./% H.,l% N,/%
0,/%
47.51 5.34 0.52 25.07 0. 82 15371
V,/%
. 917.
'1lllJ'fHtllf#~f#'ll:
f!:JU:2£:!1!!' Jll/i~~l!'~':ltቤተ መጻሕፍቲ ባይዱ~]Lr!Mf';!H~f' 4' ( - c:960~9#¥ .J.f~
01
-w -woc:=fltEIQ *
. f¥1'0 fux6 #Ml~$ft::m:~~· lliJ~unu~ ·o~o #iJW';j-}~£f7Jf ¥f~il ±f!!'Z~it~ .I *Ofilf¥~4a :YH7~~fl :YHflfi\I:lt' i!~B-fta#~ _jji-~13~ !fl; IDltJl f¥;:it~fta &7lf~Jf . ~!¥f~flfl\~ifWJ-:Hif'ti.lliJlN~fl~WfWHf:lt' fht~~ij~~fMiflN:r-:fWfiflN~w!Iff$'_k;,fl~ ?EN' 4f£9;f.::L~WfwOftfta fgJ±fllft'_k;,ftS fgJ±#'ti fuMJiw . fit~~ ij :M~!V:I'~&*' ~g~~YH7:m:wfHtf . ~~fl$\li~:¥tfid*~f:). 0~ S£d*~- OOOI ij f¥1 UJUI~I #fu: [ElJ~d*~!g£ Ti~ft:~it~¥~: -~~~!ilni ·o: lJ~g"hk~!uJUIIJ. ooz~ I ·o:~IDW~ !Wf-l:tJ. OOOI~o: i!WiflN:W . 7S}:YHf¥w \Dl I - s~ Cta::J~[g0(lOCUfii U~l<ld)~~~~Sf@1~&*~li:t
W'd!®~J~f±f'
tP!-fJ~ft}W)[L~~i!~.Fi-tl~~m· :¥HW¥' 2*~0Ji~#fi!~$W4,' tP!-ftat:P~~~~Ir91i~Wi!B.
~w~~rr:t l;ffX ~:m:f¥;:~-t:~,J. ~~f:{f/'i~,~~.~Jlflt'!&[,~i!ft~~~s ~Y9~~~,_wm ~:riwiftJ~ll WWt
m.t I s!Jhd &*4:slz · tJ!1:zJ.~ ftllg[ CD EI:J ~tl¥iJ ~iODJm#.)f[II':lt#-ftll~~Htb1lllJ;ft?~tJ!1,1~1/l2t$%"2' #-ftll q, IU;Iii;f;>g'{l@f#'flW~DJm= ili .W
±f$f~tf!11fYW . D~J~!a!~,'it(i~~±i!(dit:JY~-f±f~¥1JE¥~~W M¥-f · ¥-Jfifil±#'ttl-~~fta~~~.pt~y· ~ ~ID¥l~,_w3;t;~E~jl5:ijht~~\:>~~fta~~+100fr~~¥' l!l!ll!tl:ki;f.WftaQ?W~:ri' ~~tl~#~~YW!&t,~~
t~M~:JJo~FR~~~tMm .~JJX;PJ~Et:f*c.±~JJX;?t
:JJoJJX;5tfOh'(:5Hil.JJX;a"J 141 ,t~M~-tE,/F'W~>'r.
CRt ,CnHm ~) ,~nlJfO~fL!lmf*~~.
~
m .Hz ,m,
1 ~tfjfj-NftJt$7; 20 Dmin a"J~fm~£ TGBEf&ll;f§:XiEiZa<J~£1J1@jfftlf&;DTGBEf&. ~£1tBf&;...t8"J --t-allfr .:tt~£1J1@jfftlr&...t~-1-*. ~ 9=' a"J TG ltBf&PJ~;j'tfj ,M.~:I:_lNft1JtNf$¥tl-1-:fJJ~itii1Jt (~'-) 110 "C) , TG ltBf&rfff ,DTG ltBf&tfj ;EJn;J, dlt ,*IM~~~~~J\8"1~£ ,PJ~7J.Tf*!lfr~. i~~~-~~§ S3-ft7.k$fpit:·f$,1iff]tf*;kflt91~!lfr¥!i ,im ?lt:t£~~9=' I¥Jlvt lMJ1~11tJt1*~U lM~~ 8"115-J.k$ ;1± ! 1.0.:C¥tl- ~is· 'c(I"J1.~ffl¥1¥t~:;~tM~Ji~~1J l1l:8"J~£, ~£ ltBf&JL.>f-JJX;--Sfa ,JttllttfM~~1:~~, i(:@ ~,]!£.EJ.·~·JStJJ5(*4t1"J&t':l: ,J!Bi~$:tfj ;J\:)t.:Y.fli¥11-t-ft !IW ,3m :Hzo,m fO CDz ~ ;rm-R1VJQ~.lU=#:~"J 2~5 ·c::~))5~fM~9='1¥J1ftJ1Jil.f?t:;;f~~~~*8"1~5tM .7Hit %JJX;~7css~:m:. rnJs-tmoit8 ,~'tJt'g]:~~-s~~~"tm*:EJnili sJHI.ssMflfr~t':l: ,Jt~m:sJBHf!' ~ssWtocffi[ji]5J" 1!J1±t"J 225 ·c---:)80 ·y;:rSJ J~EJttmioclR ,£~&B:JiJT~a"JWtoc~ff,\; ,1!H~M&B:8"JJ!1Jtt_x:tic ,iJc1t~£.i.1~ 7c ,r5m:1-~M~~~£fl~£fg:*$5t. tz;J7JtfM~a"J.±~JJX;5t~H£1E~ ,#-tfti~fO*lvt~ ,Jt~M~~
(itlJ~(f''$~~* ·z;~ ZOOv£I ~Hlf t:l'~' ~~';JtitlJ~]t!l!(t';Jt~ ·I)
相关文档
最新文档