(完整版)基于ANSYS的重轨淬火温度场和应力场仿真分析毕业设计论文
基于ANSYS的焊接温度场和应力的数值模拟研究

基于ANSYS的焊接温度场和应力的数值模拟研究一、本文概述随着现代工业技术的飞速发展,焊接作为一种重要的连接工艺,在航空、汽车、船舶、石油化工等领域的应用日益广泛。
然而,焊接过程中产生的温度场和应力场对焊接结构的性能有着至关重要的影响。
为了深入理解焊接过程中的热-力行为,预测焊接结构的变形和残余应力,进而优化焊接工艺参数和提高产品质量,本文旨在利用ANSYS有限元分析软件,对焊接过程中的温度场和应力场进行数值模拟研究。
本文首先简要介绍了焊接数值模拟的意义和现状,包括焊接数值模拟的重要性、国内外研究现状和存在的问题等。
随后,详细阐述了ANSYS 软件在焊接数值模拟中的应用,包括其基本原理、分析流程、模型建立、参数设置等方面。
在此基础上,本文以某典型焊接结构为例,详细阐述了焊接温度场和应力场的数值模拟过程,包括模型的建立、边界条件的设定、求解参数的选择、结果的后处理等。
对模拟结果进行了详细的分析和讨论,验证了数值模拟方法的准确性和可靠性,为实际工程应用提供了有益的参考。
本文的研究不仅有助于深入理解焊接过程中的热-力行为,为优化焊接工艺参数和提高产品质量提供理论支持,同时也为ANSYS软件在焊接数值模拟领域的应用推广和进一步发展奠定了基础。
二、焊接理论基础焊接是一种通过加热、加压或两者并用,使两块或多块金属在原子层面结合形成永久性连接的工艺过程。
焊接过程涉及复杂的物理和化学变化,包括金属的熔化、凝固、相变以及应力和变形的产生等。
因此,深入了解焊接过程的理论基础对于准确模拟焊接过程中的温度场和应力分布至关重要。
焊接过程中,热源将能量传递给工件,导致工件局部快速升温并熔化。
熔池形成后,随着热源的移动,熔池中的液态金属逐渐凝固形成焊缝。
焊接热源的类型和移动速度、工件的材质和厚度等因素都会影响焊接过程的温度场分布。
为了准确模拟这一过程,需要了解各种热源模型(如移动热源模型、体积热源模型等)及其适用范围,并选择合适的模型进行数值模拟。
《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言焊接作为一种重要的工艺方法,广泛应用于各种工程结构中。
然而,焊接过程中产生的温度场和应力分布对焊接结构的质量、性能和使用寿命有着重要的影响。
因此,对焊接温度场和应力的研究具有非常重要的意义。
本文将通过ANSYS软件进行焊接温度场和应力的数值模拟研究,以期为焊接工艺的优化提供理论依据。
二、焊接温度场的数值模拟1. 建模与材料属性设定在ANSYS中建立焊接结构的几何模型,设定材料的热学性能参数,如热导率、比热容等。
同时,设定焊接过程中的热源模型,如高斯热源模型等。
2. 网格划分与边界条件设定对模型进行合理的网格划分,以便更好地捕捉温度场的分布情况。
设定边界条件,包括环境温度、对流换热系数等。
3. 求解与结果分析通过ANSYS的瞬态热分析模块进行求解,得到焊接过程中的温度场分布情况。
分析温度场的变化规律,研究焊接过程中的热循环行为。
三、焊接应力的数值模拟1. 建模与材料属性设定在ANSYS中建立与温度场分析相同的几何模型,设定材料的力学性能参数,如弹性模量、泊松比等。
同时,导入温度场分析的结果作为应力分析的初始条件。
2. 网格划分与约束条件设定对应力分析模型进行网格划分,并设定约束条件,如固定支座等。
这些约束条件将影响应力的分布情况。
3. 求解与结果分析通过ANSYS的结构分析模块进行求解,得到焊接过程中的应力分布情况。
分析应力的变化规律,研究焊接过程中的残余应力分布情况。
同时,结合温度场分析结果,研究温度与应力之间的关系。
四、结果与讨论1. 温度场分析结果通过ANSYS的数值模拟,得到了焊接过程中的温度场分布情况。
结果表明,在焊接过程中,焊缝处的温度较高,随着距离焊缝的增大,温度逐渐降低。
同时,随着时间的变化,温度场呈现出明显的热循环行为。
2. 应力分析结果在应力分析中,我们发现焊接过程中会产生较大的残余应力。
这些残余应力主要分布在焊缝及其附近区域,并呈现出一定的规律性。
《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言随着制造业和机械工程的不断发展,焊接作为连接各种金属材料的主要方法之一,其过程和结果的研究显得尤为重要。
焊接过程中,由于局部高温和材料相变,会产生复杂的温度场和应力分布。
这些因素对焊接接头的质量、强度和耐久性有着重要影响。
因此,对焊接温度场和应力的数值模拟研究具有重要的理论和实践意义。
本文将基于ANSYS软件,对焊接过程中的温度场和应力进行数值模拟研究。
二、焊接温度场的数值模拟研究1. 模型建立在ANSYS中,我们首先需要建立焊接过程的物理模型。
根据实际焊接条件和材料属性,设定合理的几何尺寸和材料参数。
同时,考虑到焊接过程中的热源分布、热传导和热对流等因素,我们采用适当的热源模型和边界条件。
2. 网格划分与求解在模型建立完成后,我们需要对模型进行网格划分。
网格的精细程度将直接影响模拟结果的准确性。
接着,我们设定求解器,根据热传导方程和边界条件进行求解。
通过求解,我们可以得到焊接过程中的温度场分布。
三、焊接应力的数值模拟研究1. 热弹性-塑性本构关系焊接过程中,由于温度的变化,材料将发生热膨胀和收缩。
这种热膨胀和收缩将导致应力的产生。
在ANSYS中,我们需要设定合理的热弹性-塑性本构关系,以描述材料的热膨胀和收缩行为。
2. 应力求解与分析根据热弹性-塑性本构关系和温度场分布,我们可以求解出焊接过程中的应力分布。
通过对应力结果进行分析,我们可以了解焊接接头的应力分布情况,从而评估焊接接头的质量和强度。
四、结果与讨论1. 温度场分布通过ANSYS模拟,我们可以得到焊接过程中的温度场分布。
温度场分布将直接影响焊接接头的质量和性能。
我们可以观察到,在焊接过程中,局部高温将导致材料发生相变和热膨胀。
同时,热对流和热传导将影响温度场的分布。
2. 应力分布在得到温度场分布的基础上,我们可以进一步求解出焊接过程中的应力分布。
应力分布将直接影响焊接接头的强度和耐久性。
《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言随着制造业和工业自动化技术的飞速发展,焊接技术已经成为一种关键的加工手段,被广泛应用于机械、船舶、航空和汽车等领域。
焊接过程中的温度场和应力分布直接影响焊接质量和性能。
因此,通过数值模拟研究焊接过程中的温度场和应力分布具有重要意义。
本文利用ANSYS软件对焊接过程进行数值模拟,分析温度场和应力的变化规律,为优化焊接工艺和提高焊接质量提供理论依据。
二、ANSYS在焊接模拟中的应用ANSYS是一款广泛应用于工程领域的有限元分析软件,具有强大的热-结构耦合分析能力。
在焊接模拟中,ANSYS可以通过建立三维模型、设定材料属性、加载边界条件等方式,对焊接过程中的温度场和应力进行数值模拟。
通过ANSYS软件,我们可以更加直观地了解焊接过程中的温度分布和应力变化,为优化焊接工艺提供理论支持。
三、焊接温度场的数值模拟研究(一)模型建立与材料属性设定在ANSYS中建立焊接过程的有限元模型,设定材料属性,包括热导率、比热容、热膨胀系数等。
根据实际焊接工艺,设定加热速度、焊接速度、电流等工艺参数。
(二)温度场模拟与结果分析在设定的边界条件下,模拟焊接过程中的温度场变化。
通过分析温度场的分布规律,可以得出焊接过程中各部位的加热速度、峰值温度等信息。
结合实际工艺参数,可以优化焊接工艺,提高焊接质量和效率。
四、焊接应力的数值模拟研究(一)模型建立与材料属性设定与温度场模拟类似,在ANSYS中建立焊接过程的有限元模型,并设定材料属性。
考虑到焊接过程中的热-结构耦合效应,需要设定材料的热弹塑性本构关系。
(二)应力模拟与结果分析在模拟过程中,考虑热-结构耦合效应,分析焊接过程中的应力分布和变化规律。
通过分析应力场的分布、大小和变化趋势,可以得出焊接过程中各部位的应力状态和变形情况。
结合实际工艺参数和应力分布规律,可以优化焊接工艺,减少焊接过程中的残余应力和变形。
五、结论本文利用ANSYS软件对焊接过程中的温度场和应力进行了数值模拟研究。
《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言随着科技的发展,焊接技术作为制造行业中的关键工艺之一,其质量和效率直接关系到产品的性能和寿命。
因此,对焊接过程中的温度场和应力分布进行精确的数值模拟显得尤为重要。
ANSYS作为一种功能强大的工程仿真软件,被广泛应用于焊接过程的数值模拟。
本文将基于ANSYS,对焊接温度场和应力进行数值模拟研究,以期为实际生产提供理论依据。
二、焊接温度场的数值模拟1. 模型建立在ANSYS中建立焊接过程的有限元模型,包括焊件、焊缝、热源等部分。
其中,焊件采用实体单元进行建模,焊缝则通过线单元进行描述。
热源模型的选择对于模拟结果的准确性至关重要,应根据具体的焊接工艺选择合适的热源模型。
2. 材料属性及边界条件根据实际材料,设定焊件和焊缝的热导率、比热容、热扩散率等物理参数。
同时,设定初始温度、环境温度等边界条件。
3. 数值模拟过程根据焊接过程的实际情况,设定加载步和时间步长,模拟焊接过程中的温度变化。
通过ANSYS的热分析模块,得到焊接过程中的温度场分布。
三、焊接应力的数值模拟1. 耦合分析焊接过程中,温度场的变化会导致应力的产生。
因此,在ANSYS中,需要将在热分析中得到的温度场结果作为应力分析的输入条件,进行热-结构耦合分析。
2. 本构关系与材料模型根据材料的本构关系和力学性能,设定材料的弹性模量、泊松比、热膨胀系数等参数。
同时,选择合适的材料模型,如各向同性模型或各向异性模型。
3. 应力分析通过ANSYS的结构分析模块,结合耦合后的温度场结果,进行应力分析。
得到焊接过程中的应力分布和变化情况。
四、结果与讨论1. 温度场结果分析通过ANSYS的后处理功能,可以得到焊接过程中的温度场分布图。
分析温度场的分布情况,可以了解焊接过程中的热传导和热扩散情况,为优化焊接工艺提供依据。
2. 应力结果分析同样,通过后处理功能可以得到焊接过程中的应力分布图。
分析应力的分布和变化情况,可以了解焊接过程中产生的残余应力和变形情况。
基于ANSYS的温度场仿真分析

式中 : [ C] 为 比热 矩 阵 , 考 虑 系 统 内能 的增 加 : [ K] 为 传 导 矩
阵, 包含导热系数 、 对流 系数及辐射率 和形 状 系数 ; { T} 为节点温
度向量 ; { T} 为温度对时间的导数 ; { Q( t ) } 为 节 点 热 流 率 向量 , 包 含 热 生成 。 温 度箱 中温 度 场 的热 分 析 属 于 瞬态 热 传 导过 程 。
绝 缘 材 料 在 高 温 条 件 下 长 期 运 行 会 造 成 热 老 化 ,使 绝 缘 性 能下降 , 在 高压 作 用 下 易 击 穿 。 为 进 一 步 研 究 绝 缘 材 料 热 老 化 特 性, 需 将 绝 缘 材 料 放 置 在 温 度 箱 内长 时 间加 热 , 再 进 行 绝 缘 特 性
元 类 型 、定 义 材 料 相
导热 系数 比热 容
( Wl m・ x、 J / k g ‘ K
0 . 1 2 1 0 3 0
生热 率
W/ m3
密度
k g / m
1 . 2 型 通 用 有 限元 分 析 软 件 , 能 够 进 行 机 械 应
1 0 4
基 于 AN S Y S的 温 度 场 仿 真 分 析
基于 A N S Y S的温度场仿真分析
T e mp e r a t u r e F i el d Si mu l a t i o n An a l y s i s B a s e d o n ANS YS
潘从 芳 娄 毅 蔺 红 张起 瑞 杨 一 胡 贺 明
( 新 疆 大学 电 气工程 学 院 , 新疆 鸟 鲁木 齐 8 3 0 0 4 7 )
重轨淬火过程中的温度场模拟

时阿】/s 图4时间一温度曲线
Fig.4 The curves of time.temperature
表2理论计算与实测温度的比较
Tab.2 Comparison of calculating temperature and measuring temperature
位置 节点 计算温度/℃ 实测温度/℃
由于实验中控温效果很好,并采用将热电偶 焊接到重轨试样上的方式测温,因此认为实测温 度比较准确。时间10 S,测温点位置共包括5个 点,即如网3(a)所示1、2、3、4、5节点。测温热电偶 对5个节点进行测量,实测结果与仿真结果的比 较见表2。可看出,轨头中心的温度最高,重轨表 面及外缘处的温度较低.这是因为这些面与冷空 气直接接触。还可以以破坏重轨为条件,将重轨
实践证明.重轨的理想金相组织是索氏体.因 为它不仅有较高的硬度和耐磨性。而且还有较好 的力学性能。重轨冷却到610℃左右也是保证热
4 结束语
模拟计算能较准确地模拟重轨淬火过程中的 温度变化趋势,而且模拟计算得到的温度与实测 温度接近。模拟计算值和实测值吻合得很好,表明 模型的有效性。模型能够对重轨淬火过程的温度 场进行较准确的模拟计算。通过不断调整淬火热 处理参数和优化仿真模型,最终获得最佳工艺参 数。因此温度场的模拟是一种科学、经济、高效的 手段。可以为钢厂创造更大的价值,并对重轨淬火 丁艺和重轨生产T艺的制定都具有重要的价值和 指导意义。
[4】 张国智,胡f_喜,陈继刚,等.ANSYSl0.0热力学有限元 分析实例指导教程[M].北京:机械工业出版社,2007.
12—13.田
《热加工工艺》2008年第37卷第22期
79
万方数据
重轨淬火过程中的温度场模拟
作者:
CAE-在铸造系统温度场和应力场数值模拟中对ANSYS的理论验证

瞬态温度场分析结果
•左图为 t=1.9s(第10步)时刻的温度云图。 •右图为 t=(第60步)时刻的温度云图。
温度云图
瞬态应力场分析结果
•由数值模拟的分析结果可以看出:初始时铸件温度高,铸型温度低,由于热传导的作用,铸件因温度降低 而收缩,铸型因温度升高而膨胀。 • 系统产生热应力的原因有二个:1.由于铸件左边壁面收缩时受到铸型的阻碍,在环向产生拉应力;2.铸件 热传导使其内部温度分布不均匀,中心温度高,靠壁面温度低,由于收缩程度不同,在铸件外层环向产生 拉应力,内层环向产生压应力。应力云图与理论分析完全吻合。
• 图示系统,由于铸件与铸型的材料不同, 二者之间的界面需采用接触单元分析。
• 在模拟分析中发现,无论采用直接法还是 间接法求解,当界面之间出现裂缝时,接 触单元失效,程序无法继续进行。
• 因此需要探索在这种情况下如何正确使用 ANSYS来求解问题,对其进行理论验证。
本文对ANSYS软件进行理论验证的方法是:
1.考虑较为简单的工况,其结果具有解析解,然后将ANSYS的分析结果 与解析解进行比较;
2.其次考虑稍微复杂一些的工程算例,对其结果可以进行直观判断和定性 分析。
验证的目的在于考察系统物理性质的非线性、接触单元模拟的正确性以 及热-应力耦合场的分析功能。
二、简单算例的理论验证
• 假设有一实心圆柱体A1,外面依次套上两个环形圆柱体A2和A3,该模型可视为厚壁筒, 这是一个二维轴对称问题,根据弹性力学的计算公式可以求出其解析解。
• 采用ANSYS对其进行求解,A1、A3视为铸型,材料为45钢,初始温度30,A2为铸件, 材料为铝合金,初始温度650 。各圆柱体之间的界面采用接触单元。
• 下图为几何模型和有限元模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业论文(设计)论文题目:基于ANSYS的重轨淬火温度场和应力场仿真分析基于ANSYS的重轨淬火温度场和应力场仿真分析摘要本文以规格为50kgm的重轨为研究对象,通过综合考虑材料热物性参数随温度的非线性变化、热传导及高压气体冷却等动态边界条件,运用ANSYS软件,采用有限单元法,建立了淬火重轨的瞬态温度场和应力场的三维模型。
通过ANSYA软件仿真淬火重轨各个时间段的温度场。
根据重轨温度场的变化规律,选择合理的喷风压强,最终得到理想的索氏体组织。
在数值模拟计算的过程中,输入在不同的喷风压力下的对流换热系数,得到相应的温度场和应力场结果,并对结果进行了分析。
计算了强制冷却、空气自然对流等淬火过程的温度场和应力场分布情况,分析淬火时间对温度场和应力场的影响。
得到最佳的喷风冷却时压强,从而为实际生产制定合理的重轨淬火工艺提供了依据。
关键词:重轨,淬火,温度场,应力场,ANSYSSimulation of quenching temperature field and stress fieldfor the ANSYSAbstractThe specification of 50kgm— as investigated subject in this paper.In this model.the equivalent thermal capacity method was used to deal with the influence of latent temperature filed and the transformation stress which resulted from phase transformation was taken into account using the equivalent linear expansion coefficient method.The impact of material’s non-1inear parameter on temperature field was considered.The results show that the simulation result is identical with the measuring temperature.According to the distribution of temperature field,the timeof compressed air should be controlled.The ideal sorbite can be gained.During the process of calculating in numerical simulation,inputtedthe convective in such different operating modes.Get the best , cooling, natural air time and the result can be used to guide the quenching process design.Key words:Heavy rail,Quenching,Temperature field,Stress filed,ANSYS目录第一章绪论 (1)1.1课题研究意义 (1)1.2影响重轨淬火技术的主要因素 (2)1.3重轨淬火数值模拟的国内外研究现状 (3)1.4研究内容 (6)第二章重轨淬火温度场和应力场的理论基础 (6)2.1重轨淬火温度场理论基础 (6)2.1.1热传递方式 (6)2.1.2重轨淬火时定解条件 (7)2.1.3淬火时热传导初始条件 (8)2.1.4重轨淬火的边界条件 (8)2.2重轨淬火应力场理论基础 (10)2.2.1热弹性和热塑性问题 (10)2.2.2热弹塑性问题的求解 (11)2.3组织场求解理论基础 (13)第三章重轨温度场和应力场ANSYS仿真过程 (13)3.1用ANSYS模拟分析重轨温度场和应力场的方法 (13)3.2用ANSYS模拟分析重轨温度场和应力场的步骤 (13)3.2.1建立重轨的三维模型 (13)3.2.2确定重轨的各项材料参数及初始条件 (15)3.2.3ANSYS仿真重轨温度场和应力场的基本步骤 (15)第四章重轨淬火过程的温度场和应力场分析 (26)4.1研究不同压强下温度场和应力场的前提条件 (26)4.2不同压强下喷风温度场对比分析 (28)4.3不同压强下喷风应力场对比分析 (31)第五章全文总结 (34)5.1论文研究结论 (34)5.2论文研究的不足及展望 (34)致谢 (35)参考文献 (35)第一章绪论1.1课题研究意义淬火是机械零件生产加工过程中的关键环节之一, 它涉及到传热学、金属相变动力学、化学、力学等多种学科. 淬火过程是一个温度、应力、相变相互影响的高度非线性问题, 在理论上对温度场、组织场、应力场耦合求解几乎是不可能的。
近几年随着计算机技术、有限元技术、人工智能技术的发展, 使各国学者可根据淬火过程数学模型,利用有限元技术计算各场量, 再利用计算机图形学理论动态显示零件淬火过程中温度、组织、应力应变、残余应力及零件变形随时间变化的情况. 根据数值模拟的结果, 找出适合工艺要求的工艺参数, 并为实际生产过程提供参考或指导实际生产.我国是一个以铁路运输为主的国家。
随着我国经济的发展、铁路运力的提高和火车速度的提高,对重轨性能的要求也在提高。
无论是欧洲的传统型铁路,还是城市型铁路都要求重轨具有更高的硬度。
由于硬度的普遍提高,重轨的脆性、韧性以及净度等问题又重新突出了,重轨在冷却不均匀的情况下,重轨内部的温度场变化情况不仅直接影响相变,而且对内应力也产生很大的影响。
这些淬火过程出现的问题,可能会导致重轨轨头出现掉块、裂纹等现象,从而影响列车的正常运行、降低铁路的使用效率,甚至对列车的安全运行造成隐患。
重轨淬火是提高其韧性和耐磨性的主要途径之一。
实践证明,在重轨轨头使用淬火热处理的重轨不仅提高了重轨的强度和使用寿命,而且大大提高了安全使用性能。
因此研究重轨内部的温度场和应力场对实际生产有重要意义。
目前普遍采用比较成熟的有限元法【1】求解控制方程来模拟淬火过程的变化所使用的有限元软件有ANSYS、MARC、ADINA等,大多数的模拟结果都得到了实验测试数据的支持,取得了令人满意的效果。
尽管如此,淬火过程仍存在很多问题需要解决,原因之一就是淬火是一个工件温度场、应力场、组织场及淬火介质流场耦合的过程,但是关于这一耦合过程尚缺乏成熟的定量的统一理论【2】。
淬火处理的实质就是通过适度调整和控制淬火介质的流速、温度以调整和控制淬火试件的温度场、显微组织场和内应力(应变)场,使得试件获得所需要的组织、性能和较小的残余应力及残余形变。
生产实践表明,淬火过程是热处理过程【3】中返修率最高和废品率最高的工序,是热处理质量控制中最难掌握的环节,它涉及到试件的温度场、显微组织场和内应力(应变)场和介质的流场等,测量和理论分析难度都很大。
淬火过程是一个各种场相互耦合的复杂过程,要在理论上求解各场量的解析解是非常困难的,甚至是不可能的。
因此,淬火过程的深入研究对工程实际大有重要的指导意义,利用计算机进行数值模拟【4】有助于淬火工艺设计,便于选择合适的淬火工艺调整方案,可以大大减少试验量,具有一定的实用价值,已成为当今热处理领域的研究热点之一。
1.2影响重轨淬火技术的主要因素重轨的淬火过程是个相当复杂的过程,一般有风冷、雾冷、水冷三种方式【5】。
风冷具有温度和湿度常常是变化不定的特点;雾冷的特点是导热性能不稳定和热能挥发出现紊流现象;水冷的特点是水不易挥发,状态不稳定,可能导致热处理不够或过度,喷水时间稍长就容易引起淬火部位出现马氏体组织,但是水的导热性能比雾气好。
如果热处理不当,残余应力比较大,出现开裂现象,或者硬度不够。
而工人师傅完全凭经验判断,于是产品质量不高或次品率较大,重轨生产效率大大降低。
实践证明,采用压缩空气冷却可以克服上述缺点。
因为压缩空气冷却喷风器不像喷雾器那样会发生阻塞,冷却速度基本恒定,对重轨表面状态不敏感,可以保证淬火质量。
当工艺参数优选后,只要重轨含碳量大于0.7%,使用压缩空气可以使奥氏体实现向索氏体的转变,并且能够保证热处理后的材质内部结构均匀。
淬火轨硬度可至合适并均匀一致。
不会出现马氏体组织。
目前国外除独联体外,日、美、澳等国均采用风淬。
采用单一的介质风淬,工艺稳定,操作简便,确保了产品的优质性能。
但是,冷却后的硬度值普遍偏低,且由于冷却时间过长,无法保证较高的生产率。
对大断面的60Kgm,75Kgm淬火轨来说,仅仅采用风淬则无法达到对淬硬层深度的要求,而且有许多待改进之处,所以出现了“先喷风,后喷水"的工艺。
可是就是这种工艺也不是很完善的。
主要的问题仍然是淬火重轨的硬度偏低。
这是因为,一方面是对冷却介质的应用还存在着一定的片面性,另一方面是对冷却介质的应用在水平上还没有达到很深的层次上,甚至还停留在表面的层次上。
1.3重轨淬火数值模拟的国内外研究现状热处理的实质是使钢在固态范围内,通过加热、保温和快速冷却的方法,改变内部组织结构,从而改变其性能的一种工艺。
在热处理过程中,试件内部会发生十分复杂的物理现象,如瞬态温度场的变化、组织的转变、力学性能的改变以及残余应力的产生等。
这些物理现象也正是材料实现淬火硬化的主要依据。
20世纪70年代以来,由于计算机技术的迅速发展,热处理过程的数值模拟也随之成为一个举世关注的研究领域。
对于一些与热处理相关的学科,如数值计算方法、传热学、热应力理论、相变动力学、计算流体力学等在国内外都丌展了较为深入的研究,从而为热处理过程的计算机模拟和仿真技术的发展奠定了坚实的基础。
淬火过程的计算机模拟是热处理过程计算机模拟的重要组成部分。
它能对试件的温度场、显微组织场和内应力场进行耦合计算,给出每一瞬间的温度场面、显微组织场和内应力场,并能直接地观察到各场量在淬火过程中的变化情况,这样就可以在节省大量的人力、物力、财务和时问的情况下对试件进行全面的分析,预测试件淬火后的组织性能,从而可对淬火工艺方案进行优化,使工艺更加高效合理。
国外对淬火试件淬火数值模拟计算比较早,数值模拟研究始于70年代,。
20世纪70年代初,当组织转变数值模拟提到日程上来时,就有两种描述组织转变过程的方法,即TTT曲线法和CCT曲线法,为组织转变的数值模拟提供了两种途径。
CCT曲线法模拟的难题后,TTT曲线在淬火试件显微组织场模拟中迅速得到推广。
1978年瑞典学者计算了渗碳钢的淬火残余应力,在计算时使用了最初用于根据等温转变的孕育期预测连续冷却时转变温度的叠加法则,将连续冷却离散成每一小时间段的阶梯冷却,借助虚拟时间的概念成功地解决了如何利用”盯曲线预测连续冷却过程组织转变量的问题。