电化学传感器
电化学传感器

电化学传感器技术及原理应用一、基本原理化学传感器主要由两部分组成:识别系统;传导或转换系统。
识别系统反待测物的某一化学参数(常常是浓度)与传导系统连结起来。
它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。
分子识别系统是决定整个化学传感器的关键因素。
因此,化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。
化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。
二、化学传感器在环境与卫生监测中的应用(一)空气检验1、湿度传感器湿度是空气环境的一个重要指标,空气的湿度与人体蒸发热之间有着密切关系,高温高湿时,由于人体水分蒸发困难而感到闷热,低温高湿时,人体散热过程剧烈,容易引起感冒和冻伤。
人体最适宜的气温是18~22℃,相对湿度为35%~65%RH。
在环境与卫生监测中,常用于湿球温湿度计、手摇湿温度计和通风湿温度计等仪器测定空气湿度。
近年来,大量文献报道用传感器测定空气湿度。
用于测定相对湿度的涂覆压电石英晶体用传感器,通过光刻和化学蚀刻技术制成小型石英夺电晶体,在AT切割的10MHZ石英晶体上涂有4种物质,对湿度具有较高的质量敏感性.该晶体是振荡电路中的共振器,其频率随质量变化,选择适当涂层,该传感器可用于测定不同气体的相对湿度.该传感器的灵敏度、响应线性、响应时间、选择性、滞后现象和使用寿命等孝怪癖于涂层化学物质的性质。
1986年,德国ErbenUwe[提出了一种测定湿度用的传感器,并获得专利。
该传感器采用以硅为基体的金属-绝缘体-半导体(MIS)型结构。
在MIS型结构中涂有二氧化硅和敏湿层,敏湿层的材料包含有金属氧化物、氧化物以及低极性组分的聚合物。
电化学生物传感器的工作原理

电化学生物传感器的工作原理
电化学生物传感器是一种基于生物分子识别和电化学信号转换的传感器。
它可以通过检测生物分子的存在和浓度来实现对生物体内生化过程的监测和分析。
电化学生物传感器的工作原理主要包括生物分子识别、信号转换和信号检测三个步骤。
生物分子识别是电化学生物传感器的第一步。
它通过生物分子与传感器表面的生物识别元件(如抗体、酶、核酸等)的特异性结合来实现。
当生物分子与生物识别元件结合时,会引起传感器表面的电化学信号变化,这种变化可以被转换成电信号。
信号转换是电化学生物传感器的第二步。
它将生物分子与生物识别元件结合引起的电化学信号变化转换成电信号。
这种转换通常是通过电化学反应实现的。
电化学反应是指在电极表面发生的化学反应,它可以通过电流和电势的变化来检测生物分子的存在和浓度。
信号检测是电化学生物传感器的第三步。
它通过检测电化学反应引起的电流和电势变化来确定生物分子的存在和浓度。
这种检测通常是通过电化学测量实现的。
电化学测量是指通过电极与电解质溶液之间的电化学反应来测量电流和电势的变化。
总的来说,电化学生物传感器的工作原理是基于生物分子识别和电化学信号转换的。
它可以通过检测生物分子的存在和浓度来实现对生物体内生化过程的监测和分析。
电化学生物传感器在医学、环境
监测、食品安全等领域有着广泛的应用前景。
电化学传感器的制备及应用

电化学传感器的制备及应用电化学传感器是一种通过电流与物质相互作用来实现检测并转换成可读信息的传感器。
利用电化学传感器可以实现对各种物质的定量和定性检测,具有高度的灵敏度和选择性。
该技术已经广泛应用于环境监测、医学诊断、食品安全、化学制品生产等领域。
电化学传感器的制备主要分为三个步骤:传感器材料的制备、传感膜的制备和传感器的组装。
传感器材料的制备可以通过化学合成、生物发酵、物理合成等方式实现。
传感材料的选取可以根据需要检测的物质性质和需求来进行选择,以实现最佳的检测效果。
传感膜的制备主要是将传感材料涂覆在电极表面,通常通过溶液旋涂、溶液滴涂、浸渍、电化学沉积等方法实现。
电化学传感器的应用十分广泛。
在环境监测领域,电化学传感器可以应用于重金属、无机污染物、有机物等物质的检测。
在医学诊断领域,电化学传感器可以用于患者血液中各种生物分子的检测,如血糖、胆固醇、葡萄糖等。
在食品安全领域,电化学传感器可以检测各种化学品残留、化学品添加剂、放射性核素等物质。
在化学品生产领域,电化学传感器可以在生产过程中对反应产物的浓度和纯度进行监测,有助于提高产品质量和提高生产效率。
除了应用范围广泛之外,电化学传感器还有许多优点。
首先,它具有非常高的选择性和灵敏度。
其次,电化学传感器具有操作简单、快速检测、准确可靠的特点。
最后,电化学传感器还可以实现实时监测和远程监测,提高监测效率和减少误差。
尽管电化学传感器在各个领域都有着广泛的应用,但是还存在许多需要改进的方面。
例如,在选择传感材料时需要考虑其价格和成本,以提高传感器的商业竞争力。
同时,传感器的响应时间也需要尽可能地缩短,以便快速检测各种物质。
此外,传感器需要与计算机等系统进行联接,以提高自动化程度和数据的处理能力。
总之,电化学传感器是一种非常重要的传感器技术,已经成为物质检测的重要手段。
随着技术的不断进步和应用范围的扩大,相信电化学传感器将在未来取得更加广泛的应用和发展。
电化学传感器结构

电化学传感器结构
电化学传感器一般由电极、传感层和电解质组成。
1. 电极:电化学传感器通常由贵金属电极和反应电极组成。
贵金属电极一般使用铂、金、银等材料,具有良好的电导性和化学稳定性,用于传递电流和测量电位。
反应电极用于与待测物质发生化学反应,一般可以选择合适的材料和膜层来增强其选择性和灵敏度。
2. 传感层:传感层是电化学传感器中的重要部分,其功能是实现待测物质与电极之间的反应。
传感层可以是固体或液体,通常包括催化剂、膜层、生物分子或化学物质等。
传感层的选择取决于待测物质的性质和检测要求。
3. 电解质:电荷转移过程是电化学传感器工作的基础,需要在传感层和电极之间提供离子传导的介质。
电解质可以是液体、凝胶或固体电解质,其选择与传感层和电极材料密切相关。
综上所述,电化学传感器的结构设计要考虑电极材料的选择、传感层的设计和电解质的配合,以实现对待测物质的高灵敏度和高选择性测量。
电化学传感器

背景:最早的电化学传感器可以追溯到20世纪50年代,当时用于氧气监测。
到了20世纪80年代中期,小型电化学传感器开始用于检测PEL范围内的多种不同有毒气体,并显示出了良好的敏感性与选择性。
目前,为保护人身安全起见,各种电化学传感器广泛应用于许多静态与移动应用场合。
电化学传感器的工作原理:电化学传感器通过与被测气体发生反应并产生与气体浓度成正比的电信号来工作。
典型的电化学传感器由传感电极(或工作电极)和反电极组成,并由一个薄电解层隔开。
气体首先通过微小的毛管型开孔与传感器发生反应,然后是疏水屏障层,最终到达电极表面。
采用这种方法可以允许适量气体与传感电极发生反应,以形成充分的电信号,同时防止电解质漏出传感器。
穿过屏障扩散的气体与传感电极发生反应,传感电极可以采用氧化机理或还原机理。
这些反应由针对被测气体而设计的电极材料进行催化。
通过电极间连接的电阻器,与被测气浓度成正比的电流会在正极与负极间流动。
测量该电流即可确定气体浓度。
由于该过程中会产生电流,电化学传感器又常被称为电流气体传感器或微型燃料电池。
在实际中,由于电极表面连续发生电化发应,传感电极电势并不能保持恒定,在经过一段较长时间后,它会导致传感器性能退化。
为改善传感器性能,人们引入了参考电极。
参考电极安装在电解质中,与传感电极邻近。
固定的稳定恒电势作用于传感电极。
参考电极可以保持传感电极上的这种固定电压值。
参考电极间没有电流流动。
气体分子与传感电极发生反应,同时测量反电极,测量结果通常与气体浓度直接相关。
施加于传感电极的电压值可以使传感器针对目标气体。
分类:电化学传感器可分为以下几个类型①吸附型:通过吸附方式将修饰物质结合在电极表面得到的修饰电极为吸附型化学修饰电极。
可以制备单分子层和多分子层。
根据吸附作用力的不同,又可分为平衡吸附型、静电吸附型、LB膜型、SA膜型、涂层型。
②共价键合型:在电极的表面通过键合反应把预定功能团接在电极表面而得到的化学修饰电极为共价型化学修饰电极。
电化学传感器

在实际中,由于电极 表面连续发生电化发应, 传感电极电势并不能保持 恒定,在经过一段较长时 间后,它会导致传感器性 能退化。为改善传感器性 能,人们引入了参考电极 ,通过控制使工作电极和 参比电极之间的电位保持 一定,故传感电极间的电 位保持一定,构成恒电位 仪电路 。
恒电位仪
这是一个电压跟随电路,参比电极与 工作电极的电压差Vout等于输入的给定电 压 U0, 处于接地电位的工作电极相对参比 电极有一个 -U0的电位,因此输入电压在 电池中被反相。在电路中没有给出测量流 出传感器工作电极的电流装置。 可以看出,要得到恒定的电压,电路 上必须满足两个条件,一是具有基准电压 (有时也称给定电压),使恒定的电压值 可调,二是满足恒电位的调节规律,也就 是当电路的参数变化时(如电源电压变化 或由于电化学变化的延续引起电极电位漂 移),恒电位仪应具有自动调节的能力, 使电极电位保持恒定。通常恒电位的调节 是依靠深度电压负反馈来实现的 。
葡萄糖酶电极。其敏感膜为葡萄糖氧化酶,它固定在聚乙烯酰胺 凝胶上。转换电极为Clark氧电极(为测定水中溶解氧含量而设计的一种极谱电极 ), 其Pt阴极上覆盖一层透氧聚四氟乙烯膜。当酶电极插入被测葡萄糖 溶液中时,溶液中的葡萄糖因葡萄糖氧化酶作用而被氧化,此过程 中将消耗氧气。此时在氧电极附近的氧气量由于酶促反应而减少, 通过测量电流值的变化就可以确定葡萄糖浓度。葡萄糖传感器的核 心是酶膜,提高酶膜的性能是提高酶电极性能的关键。
以电阻应变计为转换元件的电阻应变式传感器,主要由弹性元件 、粘贴于其上的电阻应变片、输出电信号的电桥电路及补偿电路构 成。其中感受被测物理量的弹性元件是其关键部分,结构形式有多样, 旨在提高感受被测物理量的灵敏性和稳定性。 电阻应变式传感器工作原理是:由于被测物理量 (如载荷,位移,压力 等)能够在弹性元件上产生弹性变形 (应变),而粘贴在弹性元件表面的 电阻应变计可以将感受到弹性变形转变成电阻值的变化,这样电阻应 变式传感器就将被测物理量的变化转换成电信号的变化量,再通过电 桥电路及补偿电路输出电信号。通过测量此电量值达到测量非电量 值的目的。
电化学传感器的工作原理

电化学传感器的工作原理
电化学传感器是一种利用电化学原理来检测某种分子的传感器。
它的工作原理是,当它接触某种物质时,它就会发生电化学反应,产生电流或电压。
这些电流或电压可以用来检测物质的浓度或其他信息。
电化学传感器的工作原理是基于电化学反应的原理。
当它接触到某种物质时,就会发生电化学反应。
这种反应产生了电流或电压,这些电流或电压可以用来检测物质的浓度或其他信息。
电化学传感器包括电极,电极由电解质和电解质溶液组成,电极的电解质会吸收周围的物质。
当它吸收到物质时,就会发生电化学反应,产生电流或电压。
这些电流或电压可以用来检测物质的浓度或其他信息。
此外,电化学传感器还可以用来检测多种物质,如氧气、硫酸、硝酸等。
这些传感器可以检测到这些物质的浓度,从而实现对环境的监测和控制。
总之,电化学传感器的工作原理是基于电化学反应的原理,由电极和电解质构成,当接触到物质时,就会发生电化学反应,产生电流或电压,从而可以检测物质的浓度或其他信息。
电化学传感器

22
2、酶固定化技术
直接、间接两种方法。
直接法:通过化学修饰方法直接固定在电极表面; 间接法:将酶先固定在载体上,再组装在电极上。
常用方法:
(1)、聚合物包埋法:将酶等生物分子包埋并固定在高分 子聚合物三维网络结构中。 聚丙烯酰胺、聚吡咯、聚苯胺等; (2)、共价键合法:将酶等生物分子通过共价键与电极表 面结合,从而实现固定化。
24
实例:葡萄糖氧化酶(GOD)传感器 1. 将载有葡萄糖氧化酶的酶电极浸入含有溶解氧的葡萄 糖待测溶液中; 2. GOD 催化葡萄糖氧化反应:
CH2OH(CHOH)4CHO+H2O+O2CH2OH(CHOH)4COOH+H2O2
3. 溶液中剩余的氧气或产生的 H2O2 穿过透过性膜到达传 感电极(如 Pt,Ag)上发生氧化或还原反应; 4. 通过电化学方法测定出氧气量的减少或 H2O2 量的增加, 从而间接测定出葡萄糖的浓度。
pH玻璃电极—对H+有响应的氢离子选择性电极, 其敏感膜就是玻璃膜; 与pH玻璃电极相似,其他各类离子选择性电极在 其敏感膜上同样也不发生电子转移,而只是在膜 表面上发生离子交换而形成膜电位。
8
构成:
由参比电极、内部标准溶液、离子选择性膜构成。 内部标准溶液:含相同离子的强电解质溶液(0.1mol· kg-1)。 参比电极:饱和甘汞电极(SCE)或者 Ag-AgCl 电极。 内部参比电极与外部参比电极之间的电位差即为膜电位
9
原理:
假设电极膜对某种阳离子 Mn+有选择性, 则膜电位可用能 斯特方程表示为: 膜= -2.303RT/ZF lg1/aMn+
膜
中包含膜内表面的膜电位、 内参比电极的电极电势以及除浓度外其
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
11
电导分析法(电导)
普通电导法:高纯水质测定,弱酸测定 高频电导法:电极不与试样接触
B
12
计时分析法(chronoanalysis)
在电分析化学中,记录电流或电极电势等与时间的关系 曲线的方法称为计时分析法.
• 记录电流一时间的关系方法,称为计时电流法. • 记录电势一时间的关系方法,称为计时电势法。 • 记录电量一时间关系的方法,称为计时库仑法。 是研究电极过程和吸附的极好方法。
B
3
二、电化学分析法分类
根据所测电物理量不同分: • 电位分析法 • 电解与库仑分析法 • 极谱与伏安分析法 • 电导分析法
B
4
电化学传感器
• 由膜电极和电解液灌封而成。 • 浓度(气体)信号将电解液分解成阴阳带
电离子,通过电极将信号传出。 • 它的优点是:反映速度快、准确(可用于
ppm级),稳定性好、能够定量检测,但 寿命较短(大于等于两年)。 • 它主要适用于毒性气体的检测。目前国际 上绝大部分毒气检测采用该类型传感器。
B
21
几个概念
• 氧化还原电对:氧化剂与它的还原产物及还原剂与 它的氧化产物组成,简称为电对。
• 电极:相应的氧化还原电对构成电极
• 电对表示方法:氧化型物质在左侧,还原型物质在 右侧,中间用斜线“/”隔开,即Ox/Red。
Zn电极: Zn 2 Zn
Cu电极: Cu 2 Cu
B
22
• 电极反应(半电池反应):分别在两个半电池 中发生的氧化反应或还原反应。
B
18
如何实现信号转化
电化学传感器就是将分析对象的化学信息转换成电 信号的传感装置。从1906年第一支化学传感器产生 以来,大半个世纪中化学传感器的信号转换均集中 在将化学信息直接以电信号(如电流、电位、电阻 等)表达的方式上。
直到最近30多年,随着光纤通信技术和物理传感 器(如石英晶体微天平、压电表面声波器件等)的 发展,化学家们才将化学传感器的信号转换由单纯 的电信号拓展到光信号、热信号、质量信号等多个 领域。
根据信号转换技术的不同,可将化学传感器分为
电化学传感器、光化学传感器、质量化学传感器和
热化学传感器。
B
19
三、电化学分析法原理
• 化学电池与电化学分析装置 • 相间电位和液间电位 • 电池电动势与电极电位 • 电极类型
B
20
1、化学电池与电化学分析装置
化学电池:原电池 和电解电池。 电化学基本装置: 两支电极、盐桥、电 源、记录装置
电化学传感器
B
1
一、 概 述 一、电化学分析法概述
什么是电化学分析 ?
定义: 应用电化学的基本原理和实验技术,依据 物质的电化学性质(电流、电位、电导、电量),在 溶液中有电流或无电流流动的情况下,来测定物质 组成及含量的分析方法称之为电化学分析或电分析 化学。
B
2
电化学分析法的特点:
灵敏度、准确度高,选择性好,应用广泛。 被测物质的最低量可以达到10-12 mol/L数量级。 电化学仪器装置较为简单,操作方便,尤其适合于 化工生产中的自动控制和在线分析。 适用范围广(无机离子的分析;有机电化学分析 ;药物分析;应用于活体分析)
极谱法:使用滴汞电极的一 种特殊的伏安分析法。
B
8
循环伏安法(CV)
• 循环伏安法可用于研究化合物电极过程的机理、双电层、吸附现象 和电极反应动力学.成为最有用的电化学方法之一。
• 扫描电压呈等腰三角形。如果前半部扫描(电压上升部分)为去极化剂 在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物 重新被氧化的阳极过程。因此.一次三角波扫描完成一个还原过程和氧 化过程的循环,故称为循环伏安法。
B
9
有机物的氧化电位测定
Current density/mA*cm-2
4.5
4.0 Blank-solution
3.5ቤተ መጻሕፍቲ ባይዱ
Dye-solution
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Potential(vs. SCE)/V
B
10
• 两个峰电流值及其比值,两个峰电位值及其差值 是循环伏安法中最为重要的参数。
• 电池反应:原电池的两极所发生的总的氧化还 原反应。在原电池中,流出电子的电极称为负 极,流入电子的电极称为正极。原电池的正极 发生还原反应,负极发生氧化反应。
B
13
• 计时电流法和计时库仑法
计时电流法是一种控制电位的分析方法,电位是控制的对象,电流是被测定 的对象,记录的是i—t曲线。
电位阶跃产生极限电流,对于平面电极的线性扩散,其极限扩散电流可用 Cottrell方程式表示:
如电位阶跃未达到极限电流,则:
如对电流积分:
B
14
B
15
三电极体系
B
16
极上析出,实现定量分离测定目的的方法。
电重量分析法:
电解过程中在阴极上析出的物质量通常可以
用称重的方法来确定。
库仑分析法:
依据法拉第电解定律,由电解过程中电极上
通过的电量来确定电极上析出的物质量。
电流滴定或库仑滴定:
在恒电流下,电解产生的滴定剂与被测物作
用。
B
7
极谱与伏安分析(电流-电压曲线)
伏安分析:通过测定特殊条 件下的电流—电压曲线来分析 电解质的组成和含量的一类分 析方法的总称。
种类繁多的化学传感器的出现,突破了人的感官的局限,使 人类的化学感觉在广度上和深度上都得到了延伸。简单而言, 化学传感器是模仿人类化学感觉器官的人造仪器。例如,半导 体气味传感器对人鼻嗅之无味的一氧化碳,其检测灵敏度可低 至百万分之几,这一数值远低于空气中允许存在的一氧化碳浓
度。安装这样的传感器可有效地防止一氧化碳中毒。
人的味觉
B
17
在人类的感觉中,视觉、听觉和触觉获取的是物理信息,与 之相关的传感器被分类为物理传感器.嗅觉、味觉获取的是化 学信息,称为化学传感器。
人的嗅觉和味觉,即人的化学感觉有种种局限,它对许多有味 物质的感觉比较迟钝同时能感觉的化学对象的种类亦有局限. 比如人的嗅觉不能识别有毒的一氧化碳,因而常常在不知不觉 中中毒。
B
5
二、电化学分析法分类
电位分析法(电极电位)
直接电位法: 电极电位与溶液中电活性物质 的活度有关。
电位滴定: 用电位测量装置指示滴定分析过 程中被测组分的浓度变化。
研制各种高灵敏度、高选择性的 电极是电位分析法最活跃的研究 领域之一。
B
6
电解与库仑分析法(电量)
电解分析:
在恒电流或控制电位的条件下,被测物在电