2018高考一轮复习 立体几何
(课标通用)2018年高考数学一轮复习 第八章 立体几何大题冲关 理

第八章立体几何高考中立体几何问题的热点题型1.立体几何是高考的重要内容,每年基本上都是一个解答题,两个选择题或填空题.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性的存在问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).热点一空间点、线、面的位置关系以空间几何体(主要是柱、锥或简单组合体)为载体,通过空间平行、垂直关系的论证命制试题,主要考查公理4及线面平行与垂直的判定定理与性质定理,常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等.[典题1] 如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)[证明]在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,AB⊂平面ABC,所以BB1⊥AB.又AB⊥BC,BC∩BB1=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)[证明]证法一:如图①,取AB中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1. 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG .又EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .①②证法二:如图②,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 分别是AC ,BC 的中点, 所以HF ∥AB .又E ,H 分别是A 1C 1,AC 的中点, 所以EC 1綊AH ,所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE .又C 1H ∩HF =H ,AE ∩AB =A , 所以平面ABE ∥平面C 1HF . 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .(3)[解] 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.1.证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.2.计算几何体的体积时,能直接用公式时,关键是确定几何体的高,若不能直接用公式时,注意进行体积的转化.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需要说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论; (3)证明:直线DF ⊥平面BEG . (1)解:点F ,G ,H 的位置如图所示.(2)解:平面BEG ∥平面ACH .证明如下: 因为ABCD -EFGH 为正方体, 所以BC ∥FG ,BC =FG .又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH,与EG交于点O,连接BD.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG,同理DF⊥BG,又EG∩BG=G,所以DF⊥平面BEG.热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种考查形式:(1)根据条件作出判断,再进一步论证.(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.[典题2] [2017·山东济南调研]如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)在线段BC 1上是否存在点D ,使得AD ⊥A 1B ?若存在,试求出BDBC 1的值. (1)[证明] 在正方形AA 1C 1C 中,A 1A ⊥AC . 又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC ,AA 1⊂平面AA 1C 1C . ∴AA 1⊥平面ABC .(2)[解] 由(1)知,AA 1⊥AC ,AA 1⊥AB , 由题意知,在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,∴AB ⊥AC .∴以A 为坐标原点,建立如图所示空间直角坐标系A -xyz.A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),于是A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1), 平面B 1BC 1的法向量n 2=(x 2,y 2,z 2). ∴⎩⎪⎨⎪⎧A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=0,3y 1-4z 1=0,∴取向量n 1=(0,4,3).由⎩⎪⎨⎪⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0,∴取向量n 2=(3,4,0). ∴cos θ=n 1·n 2|n 1||n 2|=165×5=1625.由题图可判断二面角A 1-BC 1-B 1为锐角, 故二面角A 1-BC 1-B 1的余弦值为1625.(3)[解] 假设存在点D (x ,y ,z )是线段BC 1上一点,使AD ⊥A 1B ,且BD →=λBC 1→,∴(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ, ∴AD →=(4λ,3-3λ,4λ).又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0, 解得λ=925,∵925∈[0,1], ∴在线段BC 1上存在点D ,使得AD ⊥A 1B , 此时BD BC 1=925.1.对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.2.对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.热点三 空间向量在立体几何中的应用在高考中主要考查通过建立恰当的空间直角坐标系,利用空间向量的坐标运算证明空间中的线、面的平行与垂直关系,计算空间角(特别是二面角),常与空间几何体的结构特征,空间线、面位置关系的判定定理与性质定理等知识综合,以解答题形式出现,难度中等.常见的命题角度有:[考查角度一] 计算线线角、线面角[典题3] 如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.[解] 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)由题意知,AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量, AD →=(0,2,0).因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m|AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2), 设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0), 则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP→|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3], 则cos 2〈CQ →,DP →〉=2t25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.解决与线线角、线面角有关的问题,关键是利用垂直关系建立空间直角坐标系,运用向量的坐标运算求解.[考查角度二] 求二面角[典题4] [2016·浙江卷]如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求二面角B -AD -F 的平面角的余弦值.(1)[证明] 延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC ,且AC ⊥BC , 所以AC ⊥平面BCK ,因此BF ⊥AC . 又EF ∥BC ,BE =EF =FC =1,BC =2, 所以△BCK 为等边三角形,且F 为CK 的中点, 则BF ⊥CK ,又AC ∩CK =C , 所以BF ⊥平面ACFD .(2)[解] 解法一:过点F 作FQ ⊥AK 于Q ,连接BQ .因为BF ⊥平面ACK ,所以BF ⊥AK ,则AK ⊥平面BQF ,所以BQ ⊥AK . 所以∠BQF 是二面角B -AD -F 的平面角. 在Rt △ACK 中,AC =3,CK =2,得AK =13,FQ =31313. 在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34. 所以二面角B -AD -F 的平面角的余弦值为34.解法二:如图,延长AD ,BE ,CF相交于一点K ,则△BCK 为等边三角形.取BC 的中点O ,连接KO ,则KO ⊥BC ,又平面BCFE ⊥平面ABC ,所以KO ⊥平面ABC . 以点O 为原点,分别以射线OB ,OK 的方向为x 轴、z 轴的正方向,建立空间直角坐标系O -xyz .由题意,得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0) ,E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫-12,0,32. 因此,AC →=(0,3,0),AK →=(1,3,3), AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2).由⎩⎪⎨⎪⎧AC →·m =0,AK →·m =0,得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1);由⎩⎪⎨⎪⎧ AB →·n =0,AK →·n =0,得⎩⎨⎧ 2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是cos 〈m ,n 〉=m·n |m||n |=34. 所以二面角B -AD -F 的平面角的余弦值为34.1.用向量法解决立体几何问题,可使复杂问题简单化,使推理论证变为计算求解,降低思维难度,使立体几何问题“公式”化,训练的关键在于“归类、寻法”.2.求二面角的余弦值,转化为求两个半平面所在平面的法向量,通过两个平面的法向量的夹角求得二面角的大小,但要注意结合实际图形判断所求角的大小.。
2018版高中数学理一轮全程复习课件第七章 立体几何 7.

[知识重温] 一、必记 2●个知识点 1.空间向量及其有关概念 语言描述 共线向量(平 表示空间向量的有向线段所在的直线互相① __________ 行向量) 平行或重合 共面向量 平行于②同一平面 ________的向量 对空间任意两个向量 a,b(b≠0),a∥b⇔存在 λ 共线向量定理 a=λb ∈R,使③________ 若两个向量 a,b 不共线,则向量 p 与向量 a,b 共面向量定理 共面⇔存在唯一的有序实数对(x,y),使 p=④ x a+yb ________
[小题热身] 1.在下列命题中: ①若向量 a,b 共线,则向量 a,b 所在的直线平行; ②若向量 a,b 所在的直线为异面直线,则向量 a,b 一定不 共面; ③若三个向量 a,b,c 两两共面,则向量 a,b,c 共面; ④已知空间的三个向量 a,b,c,则对于空间的任意一个向 量 p 总存在实数 x,y,z 使得 p=xa+yb+zc. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3
二、必明 3●个易误点 1. 共线向量定理中 a∥b⇔存在 λ∈R, 使 a=λb 易忽视 b≠0. 2.共面向量定理中,注意有序实数对(x,y)是唯一存在的. 3.一个平面的法向量有无数个,但要注意它们是共线向量, 不要误为是共面向量.
2.数量积及坐标运算 (1)两个向量的数量积: (ⅰ)a· b=|a||b|cos〈a,b〉 ; (ⅱ)a⊥b=⑥________( a· b=0 a,b 为非零向量); (ⅲ)|a|2=a2,|a|= x2+y2+z2.
(2)向量的坐标运算: a=(a1,a2,a3),b=(b1,b2,b3) (a1+b1,a2+b2,a3+b3) 向量和 a+b=⑦________________________ 向量差 a-b=⑧________________________ (a1-b1,a2-b2,a3-b3) 数量积 a· b=⑨________________________ a1b1+a2b2+a3b3 a________0) 1=λb1,a2=λb2,a3=λb a1b1+a2b2+a3b3=0 垂直 a⊥b⇔⑪__________________ a1b1+a2b2+a3b3 夹角公式 cos〈a,b〉=⑫________________________ 2 2 2 2 2 a2 1+a2+a3 b1+b2+b3
2018届高考数学理科全国通用一轮总复习课件:第七章 立体几何 7.7.2 精品

【解析】以D为原点,DA,DC,DD1所在直线为坐标轴建 立空间直角坐标系,设AB=1, 则D(0,0,0),
N(0,1,
1 2
),M(0,
1 2
,
0),A1
1,
0,1,
所以DN
(0,1,
1 2
),MA1
(1,
1 2
,1),
所以DN
MA1
0 1 1(
1 ) 2
1 1 2
0,
所以 DN M所A1以,A1M与DN所成的角的大小是90°. 答案:90°
则 A(-1,0,2),B1 1,0,0,B(1,0,2),C1(0,3,0),
所以 AB1=(2,0,- 2),BC1=(-1, 3,- 2), 因为 AB1 BC1=(2,0,- 2) (-1, 3,- 2)=0, 所以 AB1 即BC异1,面直线AB1和BC1所成角为直角,则其 正弦值为1.
b.如图②③,n1,n2分别是二面角α-l-β的两个半平面 α,β的法向量,则二面角的大小θ满足cosθ=_c_o_s_<n__1,_n_2_> 或_-_c_o_s_<_n_1_,_n_2>_.
【特别提醒】 1.利用 | AB |2 =AB AB 可以求空间中有向线段的长度. 2.点面距离的求法
【变式训练】将正方形ABCD沿对角线AC折起,当以
A,B,C,D四点为顶点的三棱锥体积最大时,异面直线AD
与BC所成的角为 ( )
A.
B.
C.
D.
6
4
3
2
【解析】选C.不妨以△ABC为底面,则由题意当以 A,B,C,D为顶点的三棱锥体积最大,即点D到底面△ABC 的距离最大时,平面ADC⊥平面ABC,取AC的中点O,连接 BO,DO,则易知DO,BO,CO两两互相垂直,所以分别以 OD,OB,OC 所在直线为z,x,y轴建立空间直角坐标系,令 BO=DO=CO=1,则有O(0,0,0),A(0,-1,0),D(0,0,1),
2018版高中数学一轮全程复习(课件)第七章 立体几何 7.4

因为②_l_∥__α__, __l⊂___β___,α__∩__β_=__b_,
所以 l∥b
第九页,编辑于星期六:二十二点 二十三分。
2.平面与平面平行的判定定理和性质定理
文字语言图形语言源自符号语言因为③_a_∥__β__,
判 一个平面内的两条相交直线 定 与另一个平面平行,则这两 定 个平面平行(简记为“线面
第十页,编辑于星期六:二十二点 二十三分。
3.平行关系中的两个重要结论 (1)垂直于同一条直线的两个平面平行,即若 a⊥α,a⊥β, 则 α∥β. (2)平行于同一平面的两个平面平行,即若 α∥β,β∥γ,则 α ∥γ.
第十一页,编辑于星期六:二十二点 二十三分。
二、必明 3●个易误点 1.直线与平面平行的判定中易忽视“线在面内”这一关键 条件. 2.面面平行的判定中易忽视“面内两条相交线”这一条件. 3.如果一个平面内有无数条直线与另一个平面平行,易误 认为这两个平面平行,实质上也可以相交.
第十九页,编辑于星期六:二十二点 二十三分。
考向二 平面与平面平行的判定和性质
[互动讲练型] [例 2] 如图,四棱柱 ABCD-A1B1C1D1 的底面 ABCD 是正 方形,O 是底面中心,A1O⊥底面 ABCD,AB=AA1= 2.
(1)证明:平面 A1BD∥平面 CD1B1; (2)求三棱柱 ABD-A1B1D1 的体积.
第二十六页,编辑于星期六:二十二点 二十三 分。
考向三 平行关系的综合应用[互动讲练型] [例 3] 如图,ABCD 与 ADEF 为平行四边形,M,N,G 分 别是 AB,AD,EF 的中点.
(1)求证:BE∥平面 DMF; (2)求证:平面 BDE∥平面 MNG.
第二十七页,编辑于星期六:二十二点 二十三 分。
2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。
2018年人教版高三数学一轮复习课件--立体几何PPT课件

设矛盾.
[答案] D
解决此类题目要准确理解几何体的定义,把握几何体
的结构特征,并会通过反例对概念进行辨析.举反例时可
利用最熟悉的空间几何体如三棱柱、四棱柱、正方体、三 棱锥、三棱台等,也可利用它们的组合体去判断.
1.(2013· 天津质检)如果四棱锥的四条侧棱都相等,就称
它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命 题中,假命题是 A.等腰四棱锥的腰与底面所成的角都相等 B.等腰四棱锥的侧面与底面所成的二面角都相等或 ( )
目 录
立体几何
第一节 空间几何体的结构特征及三视图和直观图
第二节 空间几何体的表面积和体积
第三节 空间点、直线、平面间的位置关系 第四节 直线、平面平行的判定及性质 第五节 直线、平面垂直的判定与性质 第六节 空间向量及其运算和空间位置关系
第七节 空间向量与空间角
立体几何
[知识能否忆起] 一、多面体的结构特征 多面体 结构特征 有两个面 互相平行 ,其余各面都是四边形,并 棱柱 平行且相等 且每相邻两个面的交线都 ___________ 有一个面是 多边形 ,而其余各面都是有一个 公共 顶点 棱锥 ____ 的三角形 底面 截面 底面 棱锥被平行于 的平面所截, 和 棱台 之间的部分
标轴 平行于y轴的线段长度在直观图中
. 不变
变为原来的一半
五、三视图 几何体的三视图包括 正视图 、 侧视图 、俯视图 ,
分别是从几何体的 正前方 、正左方 、 正上方 观察几何
体画出的轮廓线.
[小题能否全取] 1.(教材习题改编)以下关于几何体的三视图的论述中,正
确的是
A.球的三视图总是三个全等的圆 B.正方体的三视图总是三个全等的正方形 C.水平放置的正四面体的三视图都是正三角形 D.水平放置的圆台的俯视图是一个圆
2018高考一轮复习高中数学立体几何知识点汇编

高中课程复习专题——数学立体几何一 空间几何体 ㈠ 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
㈡ 几种空间几何体的结构特征 1 棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类1.3 棱柱的性质⑴ 侧棱都相等,侧面是平行四边形;⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶ 过不相邻的两条侧棱的截面是平行四边形; ⑷ 直棱柱的侧棱长与高相等,侧面的对角面是矩形。
1.4 长方体的性质⑴ 长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12= AB 2+ AC 2+ AA 12⑵ 长方体的一条对角线AC 1与过定点A 的三条棱所成 的角分别是α、β、γ,那么:cos 2α + cos 2β + cos 2γ = 1 sin 2α + sin 2β + sin 2γ = 2⑶ 长方体的一条对角线AC 1与过定点A 的相邻三个面所组成的角分别为α、β、γ,则:cos 2α + cos 2β + cos 2γ = 2 sin 2α + sin 2β + sin 2γ = 11.5 棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。
图1-1 棱柱图1-2 长方体图1-1 棱柱1.6 棱柱的面积和体积公式S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 圆柱的结构特征2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。
江苏2018高三数学一轮复习 立体几何热点问题

高考导航立体几何是研究空间几何体的基础和必备内容,也是历年高考命题的热点.其中有两个考查热点:一是空间几何体的表面积、体积的求解,试题难度不大;二是空间平行与垂直关系的证明与探索性问题,难度中等.热点一求解空间几何体的表面积和体积空间几何体的表面积和体积多以常见几何体或与球的接、切组合体考查,主要考查空间想象能力、逻辑推理能力和计算能力.求解几何体的表面积时,要考虑全面;求解棱锥的体积时,等体积转化是常用的思想方法,转化原则是其高易求,底面放在已知几何体的某一面上.求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以便于求解.例1(1)(2017·盐城模拟)如图,正四棱锥P ABCD的底面一边AB长为2 3 cm,侧面积为8 3 cm2,则它的体积为________cm3.(2)(2017·苏、锡、常、镇四市调研)如图,正三棱柱ABCA1B1C1中,AB=4,AA1=6.若E,F分别是棱BB1,CC1上的点,则三棱锥AA1EF的体积是________.解析(1)设正四棱锥P ABCD的侧面上的斜高为h′,又底面一边AB长为2 3 cm,则侧面积为4×12×23h′=83(cm2),解得h′=2(cm),则它的高h=22-(3)2=1,体积为13×(23)2×1=4(cm 3). (2)由正三棱柱的底面边长为4得点F 到平面A 1AE 的距离(等于点C 到平面A 1ABB 1的距离)为32×4=23,则1A A E F V -三棱锥=1F A AE V -三棱锥=131S A AE ∆×23=13×12×6×4×23=8 3.答案 (1)4 (2)8 3探究提高 (1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.训练1 (1)(2017·扬州中学模拟)在正三棱锥P ABC 中,M ,N 分别是PB ,PC 的中点,若截面AMN ⊥平面PBC ,则此棱锥中侧面积与底面积的比为________.第(1)题图 第(2)题图 (2)如图,正方体ABCDA 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥ADED 1的体积为________.解析 (1)取BC 的中点D ,连接AD ,PD ,且PD 与MN 的交点为E .因为AM =AN ,E 为MN 的中点,所以AE ⊥MN ,又截面AMN ⊥平面PBC ,所以AE ⊥平面PBC ,则AE ⊥PD ,又E 点是PD 的中点,所以P A =AD .设正三棱锥P ABC 的底面边长为a ,则侧棱长为32a ,斜高为22a ,则此棱锥中侧面积与底面积的比为3×12a ×22a 34a2=61. (2)1A DED V -=1E ADD V -=13×1S ADD ∆×CD =13×12×1=16.答案 (1)6∶1 (2)16热点二 空间平行关系和垂直关系的证明(规范解答)直线与平面的位置关系是立体几何的核心内容,高考始终把直线与平面的平行、垂直关系作为考查的重点,以多面体为载体的线面位置关系的论证是历年必考内容,其中既有单独考查直线和平面的位置关系的试题,也有以简单几何体体积的计算为载体考查直线和平面的位置关系的试题.从内容上看,主要考查对定义、定理的理解及符号语言、图形语言、文字语言之间的相互转换;从能力上来看,主要考查考生的空间想象能力和逻辑思维能力.例2(满分12分)(2015·山东卷)如图,三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .满分解答 (1)证明 法一 连接DG ,CD ,设CD ∩GF =M ,连接MH……………………………………………………………………………………1分在三棱台DEF ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形.则M 为CD 的中点,……………………………………………………………3分 又H 为BC 的中点,所以HM ∥BD ,…………………………………………4分 又HM ⊂平面FGH ,BD ⊄平面FGH ,所以BD ∥平面FGH . …………………………………………………………6分法二在三棱台DEF ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.…………………………………………………………………3分在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.……………………………………………4分又GH∩HF=H,所以平面FGH∥平面ABED.……………………………5分因为BD⊂平面ABED,所以BD∥平面FGH.………………………………6分(2)证明连接HE,EG,因为G,H分别为AC,BC的中点,所以GH∥AB.………………………………………………………………7分由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE. ……………………9分又CF⊥BC,所以HE⊥BC. ………………………………………………10分又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH. ………………………………………………………11分又BC⊂平面BCD,所以平面BCD⊥平面EGH. …………………………12分❶(法一)作辅助线得1分,证明四边形DFCG为平行四边形得2分,再得到HM ∥BD得1分,最后根据线面平行的判定定理得结论得2分.❷(法二)证明四边形HBEF为平行四边形且BE∥HF得3分,再证明GH∥AB得1分,再推出平面FGH∥平面ABED得1分,最后得出BD∥平面FGH得1分.❸第(2)问中得到GF∥AB得1分,证明四边形EFCH是平行四边形且CH∥HE 得2分,再得到BC⊥HE得1分,再得到BC⊥平面EGH得1分,最后证得结论得1分.❹第(1)问法一中若漏写“HM⊂平面FGH”,“BD⊄平面FGH”各扣1分;在第(2)问最后漏写“BC⊂平面BCD”扣1分.证明线面平行问题(一)第一步:找(作)出所证线面平行中的平面内的一条直线.第二步:证明线线平行.第三步:根据线面平行的判定定理证明线面平行.第四步:反思回顾.检查关键点及答题规范.证明线面平行问题(二)第一步:在多面体中作出要证线面平行中的线所在的平面.第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行;第三步:证明所作平面与所证平面平行.第四步:转化为线面平行.第五步:反思回顾,检查答题规范.证明面面垂直问题第一步:根据已知条件确定一个平面内的一条直线垂直于另一个平面内的一条直线.第二步:结合已知条件证明确定的这条直线垂直于另一平面内的两条相交直线.第三步:得出确定的这条直线垂直于另一平面.第四步:转化为面面垂直.第五步:反思回顾,检查答题规范.训练2(2016·苏北四市调研)如图,在几何体ABCDEF中,ABCD是正方形,DE ⊥平面ABCD.(1)求证:AC⊥平面BDE;(2)若AF ∥DE ,DE =3AF ,点M 在线段BD 上,且BM =13BD ,求证:AM ∥平面BEF .证明 (1)因为DE ⊥平面ABCD ,AC ⊂平面ABCD ,所以DE ⊥AC ,因为ABCD 是正方形,所以AC ⊥BD ,又BD ∩DE =D ,从而AC ⊥平面BDE .(2)延长EF ,DA 交于点G ,连接GB ,因为AF ∥DE ,DE =3AF ,所以GA GD =AF DE =13,因为BM =13BD ,所以BM BD =13,所以BM BD =GA GD =13,所以AM ∥GB ,又AM ⊄平面BEF ,GB ⊂平面BEF ,所以AM ∥平面BEF .热点三 平面图形折叠成空间几何体将平面图形沿其中一条或几条线段折起,使其成为空间图形,把这类问题称为平面图形的翻折问题.平面图形经过翻折成为空间图形后,原有的性质有的发生了变化,有的没有发生变化,弄清它们是解决问题的关键.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.解决这类问题就是要据此研究翻折以后的空间图形中的线面关系和几何量的度量值,这是化解翻折问题难点的主要方法.例3(2016·全国Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD ,故AC ∥EF ,由此得EF ⊥HD ,故EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4,所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面BHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′ABCFE 的体积V =13×694×22=2322.探究提高 (1)①利用AC 与EF 平行,转化为证明EF 与HD ′垂直;②求五棱锥的体积需先求棱锥的高及底面的面积,结合图形特征可以发现OD ′是棱锥的高,而底面的面积可以利用菱形ABCD 与△DEF 面积的差求解,这样就将问题转化为证明OD ′与底面垂直以及求△DEF 的面积问题了.(2)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.训练3(2017·徐州、连云港调研)如图1所示,在Rt△ABC中,∠C=90°,D,E 分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2所示.(1)求证:A1F⊥BE;(2)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.(1)证明由已知,得AC⊥BC,且DE∥BC.所以DE⊥AC,则DE⊥DC,DE⊥DA1,又因为DC∩DA1=D,所以DE⊥平面A1DC.由于A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.(2)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图所示,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(1)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP,又DE∩DP=D,所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.热点四线、面位置关系中的开放存在性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,一般有三种类型:(1)条件追溯型.(2)存在探索型.(3)方法类比探索型.例4(2017·郑州质检)如图所示,在四棱锥P ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)在线段CD上是否存在一点G,使得平面EFG⊥平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.(1)证明如图所示,连接AC,在四棱锥P ABCD中,底面ABCD是边长为a的正方形,且点F为对角线BD的中点.所以对角线AC经过点F,又在△P AC中,点E为PC的中点,所以EF为△P AC的中位线,所以EF∥P A,又P A⊂平面P AD,EF⊄平面P AD,所以EF∥平面P AD.(2)解存在满足要求的点G.在线段CD上存在一点G为CD的中点,使得平面EFG⊥平面PDC,因为底面ABCD是边长为a的正方形,所以CD⊥AD.又侧面P AD⊥底面ABCD,CD⊂平面ABCD,侧面P AD∩平面ABCD=AD,所以CD⊥平面P AD.又EF∥平面P AD,所以CD⊥EF.取CD中点G,连接FG、EG.因为F为BD中点,所以FG∥AD.又CD⊥AD,所以FG⊥CD,又FG∩EF=F,所以CD⊥平面EFG,又CD⊂平面PDC,所以平面EFG⊥平面PDC.探究提高(1)在立体几何的平行关系问题中,“中点”是经常使用的一个特殊点,通过找“中点”,连“中点”,即可出现平行线,而线线平行是平行关系的根本.(2)第(2)问是探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论.训练4(2017·南京师大附中检测)如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面P AC,则侧棱SC上是否存在一点E,使得BE∥平面P AC?若存在,求SE∶EC;若不存在,试说明理由.(1)证明连接BD,设AC交BD于点O,连接SO,由题意得四棱锥SABCD是正四棱锥,所以SO⊥AC,在正方形ABCD中,AC⊥BD,又SO∩BD=O,所以AC⊥平面SBD,因为SD⊂平面SBD,所以AC⊥SD.(2)解在棱SC上存在一点E,使得BE∥平面P AC. 连接OP.设正方形ABCD的边长为a,则SC=SD=2a.由SD⊥平面P AC得SD⊥PC,易求得PD=2a 4.故可在SP上取一点N,使得PN=PD.过点N作PC的平行线与SC交于点E,连接BE,BN,在△BDN中,易得BN∥PO,又因为NE∥PC,NE⊂平面BNE,BN⊂平面BNE,BN∩NE=N,PO⊂平面P AC,PC⊂平面P AC,PO∩PC=P,所以平面BEN∥平面P AC,所以BE∥平面P AC.因为SN∶NP=2∶1,所以SE∶EC=2∶1.(建议用时:70分钟)一、填空题1.(2017·南通、扬州、泰州三市调研)已知正三棱柱的各条棱长均为a,圆柱的底面直径和高均为b.若它们的体积相等,则a3∶b3的值为________.解析由题意可得34a3=14πb3,则a3b3=3π3.答案3π32.(2017·苏北四市调研)已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥DABC 的体积为________. 解析 在平面DAC 上过点D 作DE ⊥AC 于点E ,因为平面DAC ⊥平面BAC ,由面面垂直的性质定理可得DE ⊥平面BAC .又DE =125,所以三棱锥DABC 的体积为13×12×4×3×125=245. 答案 245 二、解答题3.(2017·盐城中学模拟)如图,在三棱锥P ABC 中,平面P AB ⊥平面ABC ,P A ⊥PB ,M ,N 分别为AB ,P A 的中点.(1)求证:PB ∥平面MNC ;(2)若AC =BC ,求证:P A ⊥平面MNC .证明 (1)因为M ,N 分别为AB ,P A 的中点,所以MN ∥PB , 又因为MN ⊂平面MNC ,PB ⊄平面MNC ,所以PB ∥平面MNC . (2)因为P A ⊥PB .MN ∥PB ,所以P A ⊥MN . 因为AC =BC ,AM =BM ,所以CM ⊥AB . 因为平面P AB ⊥平面ABC ,CM ⊂平面ABC ,平面P AB ∩平面ABC =AB . 所以CM ⊥平面P AB .因为P A ⊂平面P AB ,所以CM ⊥P A . 又MN ∩CM =M ,所以P A ⊥平面MNC .4.(2017·南京模拟)如图,在直三棱柱ABCA 1B 1C 1中,点D 为棱BC 上一点. (1)若AB =AC ,D 为棱BC 的中点,求证:平面ADC 1⊥平面BCC 1B 1;(2)若A1B∥平面ADC1,求BDDC的值.(1)证明因为AB=AC,点D为BC的中点,所以AD⊥BC.因为ABCA1B1C1是直三棱柱,所以BB1⊥平面ABC.因为AD⊂平面ABC,所以BB1⊥AD.因为BC∩BB1=B,BC⊂平面BCC1B1,BB1⊂平面BCC1B1,所以AD⊥平面BCC1B1.因为AD⊂平面ADC1,所以平面ADC1⊥平面BCC1B1.(2)连接A1C,交AC1于点O,连接OD,所以点O为A1C的中点.因为A1B∥平面ADC1,A1B⊂平面A1BC,平面ADC1∩平面A1BC=OD,所以A1B∥OD.因为点O为A1C的中点,所以点D为BC的中点.所以BDDC=1.5.(2017·苏、锡、常、镇、宿迁五市调研)如图,已知直三棱柱ABCA1B1C1的侧面ACC1A1是正方形,点O是侧面ACC1A1的中心,∠ACB=π2,点M是棱BC的中点.(1)求证:OM∥平面ABB1A1;(2)求证:平面ABC1⊥平面A1BC.证明(1)在△A1BC中,因为点O是A1C的中点,点M是BC的中点,所以OM ∥A1B.又OM⊄平面ABB1A1,A1B⊂平面ABB1A1,所以OM∥平面ABB1A1.(2)因为ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC,所以CC1⊥BC.又∠ACB=π2,即BC⊥AC,且CC1,AC⊂平面ACC1A1,CC1∩AC=C,所以BC⊥平面ACC1A1.又AC1⊂平面ACC1A1,所以BC⊥AC1.又在正方形ACC1A1中,A1C⊥AC1,且BC,A1C⊂平面A1BC,BC∩A1C=C,所以AC1⊥平面A1BC.又AC1⊂平面ABC1,所以平面ABC1⊥平面A1BC.6.(2017·南京师大附中模拟)如图1,在等腰梯形PDCB中,已知PB∥DC,PB =3,DC=1,PD=2,DA⊥PB,垂足为点A.将△P AD沿AD折起,使平面P AD ⊥平面ABCD,如图2所示.(1)证明:平面P AD⊥平面PCD;(2)在图2中,已知点M是棱PB的中点,求三棱锥DACM的体积.证明(1)在等腰梯形PDCB中,PB∥CD,DA⊥PB,所以CD⊥DA.因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD.P A⊂平面P AD,P A⊥DA,所以P A⊥平面ABCD.因为CD⊂平面ABCD,所以P A⊥CD,因为AD∩AP=A,AD,AP⊂平面P AD,所以CD⊥平面P AD.又因为CD⊂平面PCD,所以平面P AD⊥平面PCD.(2)在图2中,过点M作MN∥P A交AB于点N,因为M是棱PB的中点,所以MN=12P A.由(1)知P A⊥平面ABCD,从而易证得MN⊥平面ABCD.在图1中,过点C作CE⊥PB,垂足为点E,因为四边形PDCB是等腰梯形,PB=3,DC=1,DA⊥PB,所以P A=AE=EB=1.又因为PD=BC=2,所以DA=1.从而V三棱锥DACM =V三棱锥MACD=13MN×S△ACD=13×12×12=112.7.(2017·石家庄质检)如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点,现在沿AE将三角形ADE向上折起,在折起的图形中解答下列问题:(1)在线段AB上是否存在一点K,使BC∥平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE⊥平面ABCE,求证:平面BDE⊥平面ADE.(1)解如图,线段AB上存在一点K,且当AK=14AB时,BC∥平面DFK.证明如下:设H为AB的中点,连接EH,则BC∥EH,∵AK=14AB,F为AE的中点,∴KF∥EH,∴KF∥BC,∵KF⊂平面DFK,BC⊄平面DFK,∴BC∥平面DFK.(2)证明∵在折起前的图形中E为CD的中点,AB=2,BC=1,∴在折起后的图形中,AE=BE=2,从而AE2+BE2=4=AB2,∴AE⊥BE.∵平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE,BE⊂平面ABCE,∴BE⊥平面ADE,∵BE⊂平面BDE,∴平面BDE⊥平面ADE.8.(2016·全国Ⅰ卷)如图,已知正三棱锥P ABC的侧面是直角三角形,P A=6,顶点P在平面ABC内的正投影为点D,D在平面P AB内的正投影为点E,连接PE 并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面P AC内的正投影F(说明作法及理由),并求四面体PDEF的体积.(1)证明因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面P AB内的正投影为E,所以AB⊥DE.又因为PD∩DE=D,所以AB⊥平面PED,又PG⊂平面PED,故AB⊥PG.又由已知可得,P A=PB,所以G是AB的中点.(2)解在平面P AB内,过点E作PB的平行线交P A于点F,F即为E在平面P AC 内的正投影.理由如下:由已知可得PB⊥P A,PB⊥PC,又EF∥PB,所以EF⊥P A,EF⊥PC.又P A∩PC=P,因此EF⊥平面P AC,即点F为E在平面P AC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=23CG.由题设可得PC⊥平面P AB,DE⊥平面P AB,所以DE∥PC,因此PE=23PG,DE=13PC.由已知,正三棱锥的侧面是直角三角形且P A=6,可得DE=2,PE=2 2. 在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=13×12×2×2×2=43.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017高考一轮复习立体几何一一.选择题(共24小题)1.(2014•郴州三模)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()A.B. C. D.2.(2014秋•城区校级期末)如图所示,用过A1、B、C1和C1、B、D的两个截面截去正方体ABCD﹣A1B1C1D1的两个角后得到一个新的几何体,则该几何体的正视图为()A.B.C.D.3.(2012•武汉模拟)如图是一正方体被过棱的中点M、N,顶点A和N、顶点D、C1的两上截面截去两个角后所得的几何体,则该几何体的正视图为()A.B.C.D.4.(2013•鹰潭校级模拟)已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.1 C.D.5.(2012•陕西)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.6.(2015•铜川模拟)已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A.1 B.2 C.3 D.47.(2015秋•哈尔滨校级月考)某几何体的一条棱长为3,在该几何体的正视图中,这条棱的投影长为2的线段,在该几何体的侧视图和俯视图中,这条棱长的投影长分别是a和b 的线段,则a+b的最大值为()A.2 B.2C.4 D.28.(2015•北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.29.已知某个几何体的三视图如图所示.根据图中标出的尺寸(单位:cm).可得这个几何体的体积是cm3.()A.B.C.D.410.(2013秋•秦安县期末)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的表面积与球O的表面积的比值为()A.B.C.D.11.(2014•唐山一模)正三棱锥的高和底面边长都等于6,则其外接球的表面积为()A.8πB.16πC.32πD.64π12.(2016•北海一模)已知四棱锥P﹣ABCD的顶点都在球O上,底面ABCD是矩形,平面PAD⊥平面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为()A.B.C.32πD.64π13.(2015•沈阳校级模拟)若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为()A.πB.2πC.3πD.4π14.正四面体的内切球与外接球的半径的比等于()A.1:3 B.1:2 C.2:3 D.3:515.(2014•道里区校级三模)已知一个正四面体的俯视图如图所示,其中四边形ABCD是边长为3的正方形,则该正四面体的内切球的表面积为()A.6πB.54πC.12πD.48π16.(2014•大庆二模)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.B. C. D.17.(2015•新课标II)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144π D.256π18.(2015秋•晋中期末)表面积为40π的球面上有四点S、A、B、C且△SAB是等边三角形,球心O到平面SAB的距离为,若平面SAB⊥平面ABC,则三棱锥S﹣ABC体积的最大值为()A.2 B.C.6D.19.(2015•新课标II)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.20.(2015秋•淮南期末)如图所示,ABCD﹣A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,OA1不共面C.A,M,C,O不共面D.B,B1,O,M共面21.(2015•衡阳县校级模拟)如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行22.(2015秋•眉山期末)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()A.B.C.D.23.(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交24.(2016•延庆县一模)已知两条直线a,b和平面α,若a⊥b,b⊄α,则“a⊥α”是“b∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件二.填空题(共6小题)25.(2014•长春一模)已知三棱柱ABC﹣A1B1C1底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球表面积为12π,则该三棱柱的体积为.26.(2013•长春一模)若一个正四面体的表面积为S1,其内切球的表面积为S2,则=.27.(2016•石嘴山校级二模)在三棱锥P﹣ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2,PA⊥平面ABC,若三棱锥P﹣ABC的外接球的表面积为8π,则该三棱锥的体积为.28.(2015•南昌一模)已知直三棱柱ABC﹣A1B1C1中,∠BAC=90°,侧面BCC1B1的面积为2,则直三棱柱ABC﹣A1B1C1外接球表面积的最小值为.29.(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.30.(2016春•厦门校级期中)a,b,c是空间中互不重合的三条直线,下面给出五个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线;上述命题中正确的是(只填序号).2017高考一轮复习立体几何一参考答案与试题解析一.选择题(共24小题)1.(2014•郴州三模)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()A.B. C. D.【分析】根据题意几何体是球缺,利用球的视图是圆,看不到的线要画虚线,可得答案.【解答】解:用一个平行于水平面的平面去截球,截得的几何体是球缺,根据俯视图的定义,几何体的俯视图是两个同心圆,且内圆是截面的射影,∴内圆应是虚线,故选:B.【点评】本题考查了几何体的三视图,要注意,看不到的线要画虚线2.(2014秋•城区校级期末)如图所示,用过A1、B、C1和C1、B、D的两个截面截去正方体ABCD﹣A1B1C1D1的两个角后得到一个新的几何体,则该几何体的正视图为()A.B.C.D.【分析】直接利用三视图的定义,正视图是光线从几何体的前面向后面正投影得到的投影图,据此可以判断出其正视图.【解答】解:由正视图的定义可知:点A、A1、C1在后面的投影点分别是点D、D1、C1,线段A1B在后面的投影面上的投影是以D1为端点且与线段A1B平行且相等的线段,即可得正视图.故选:A.【点评】从正视图的定义可以判断出题中的正视图,同时要注意能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.3.(2012•武汉模拟)如图是一正方体被过棱的中点M、N,顶点A和N、顶点D、C1的两上截面截去两个角后所得的几何体,则该几何体的正视图为()A.B.C.D.【分析】通过三视图的画法,几何体的主视图的轮廓是一个正方形,在作三视图时,能看见的线作成实线,被遮住的线作成虚线,由此规则判断各个选项即可.【解答】解:对于选项A,几何体的主视图的轮廓是一个正方形,故A不正确;对于B,正视图是正方形符合题意,线段AM的影子是一个实线段,相对面上的线段DC1的投影是正方形的对角线,由于从正面看不到,故应作成虚线,故选项B正确.对于C,正视图是正方形,符合题意,有两条实线存在于正面不符合实物图的结构,故不正确;对于D,正视图是正方形符合题意,其中的两条实绩符合斜视图的特征,故D不正确.故选B.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.高考常考题型.4.(2013•鹰潭校级模拟)已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.1 C.D.【分析】由三棱锥的主视图与俯视图知三棱锥的底面与其中一个侧面都是直角三角形,画出其直观图,可得侧视图为直角三角形,且直角边长分别为1,.代入公式计算.【解答】解:由三棱锥的主视图与俯视图知三棱锥的底面与其中一个侧面都是直角三角形,其直观图如图:SB=,SO=1,BC=1,∴CM=,几何体的侧视图为直角三角形,且直角边长分别为1,.∴侧视图的面积S=.故选C.【点评】本题考查了由主视图与俯视图求侧视图的面积,解题的关键是判断主视图与俯视图的数据所对应的几何量,画出其直观图.5.(2012•陕西)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【分析】直接利用三视图的画法,画出几何体的左视图即可.【解答】解:由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,AD1在右侧的射影是正方形的对角线,B1C在右侧的射影也是对角线是虚线.如图B.故选B.【点评】本题考查几何体的三视图的画法,考查作图能力.6.(2015•铜川模拟)已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A.1 B.2 C.3 D.4【分析】由题意可知,几何体为三棱锥,将其放置在长方体模型中即可得出正确答案.【解答】解:由题意可知,几何体是三棱锥,其放置在长方体中形状如图所示(图中红色部分),利用长方体模型可知,此三棱锥的四个面中,全部是直角三角形.故选:D.【点评】本题考查学生的空间想象能力,由三视图还原实物图,是基础题.7.(2015秋•哈尔滨校级月考)某几何体的一条棱长为3,在该几何体的正视图中,这条棱的投影长为2的线段,在该几何体的侧视图和俯视图中,这条棱长的投影长分别是a和b的线段,则a+b的最大值为()A.2 B.2C.4 D.2【分析】由棱和它在三视图中的投影扩展为长方体,三视图中的三个投影,是三个面对角线,设出三度,利用勾股定理,基本不等式求出最大值.【解答】解:将已知中的棱和它在三视图中的投影扩展为长方体,三视图中的三个投影,是三个面对角线,则设长方体的三度:x、y、z,所以x2+y2+z2=9,x2+y2=a2,y2+z2=b2,x2+z2=4可得a2+b2=14∵(a+b)2≤2(a2+b2)a+b≤2,∴a+b的最大值为2,故选:B.【点评】本题考查三视图,几何体的结构特征,考查空间想象能力,基本不等式的应用,是中档题.8.(2015•北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.2【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD=,PD==.PC==该几何体最长棱的棱长为:故选:C.【点评】本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键9.已知某个几何体的三视图如图所示.根据图中标出的尺寸(单位:cm).可得这个几何体的体积是cm3.()A.B.C.D.4【分析】由三视图知几何体是一个三棱锥,三棱锥的底面是一个底边是2,高是2的三角形,三棱锥的高是2,根据三棱锥的体积公式得到结果.【解答】解:原几何体为底面是高为2,底边长是2的三角形的三棱锥,该三棱锥的高是2,所以体积是=.故选:A.【点评】本题考查由三视图还原几何体并且看出几何体各个部分的长度,本题解题的关键是要求体积需要求出几何体的底面面积和高.本题是一个基础题.10.(2013秋•秦安县期末)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的表面积与球O的表面积的比值为()A.B.C.D.【分析】设出球的半径,求出圆锥的底面半径然后求出球的面积以及圆锥的全面积,即可求出结果.【解答】解:如图,设球半径为R,则锥的底面半径r=R,锥的高h=R.∴S锥=S底面积+S侧=πr2+πRr=π(R)2+×R•Rπ=R2S球=4πR2.S锥:S球==,故选:D.【点评】本题考查球的内接体,圆锥的表面积以及球的面积的求法,考查计算能力.11.(2014•唐山一模)正三棱锥的高和底面边长都等于6,则其外接球的表面积为()A.8πB.16πC.32πD.64π【分析】由题意推出球心O到四个顶点的距离相等,利用直角三角形BOE,求出球的半径,即可求出外接球的表面积.【解答】解:如图,球心O到四个顶点的距离相等,∵正三棱锥A﹣BCD中,底面边长为6,∴BE=2,在直角三角形BOE中,BO=R,EO=6﹣R,BE=2,由BO2=BE2+EO2,得R=4∴外接球的半径为4,表面积为:64π故选:D.【点评】本题是基础题,考查空间想象能力,计算能力;利用直角三角形BOE是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.12.(2016•北海一模)已知四棱锥P﹣ABCD的顶点都在球O上,底面ABCD是矩形,平面PAD⊥平面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为()A.B.C.32πD.64π【分析】求出△PAD所在圆的半径,利用勾股定理求出球O的半径R,即可求出球O的表面积.【解答】解:令△PAD所在圆的圆心为O1,△PAD为正三角形,AD=2,则圆O1的半径r=,因为平面PAD⊥底面ABCD,AB=4,所以OO1=AB=2,所以球O的半径R==,所以球O的表面积=4πR2=.故选:B.【点评】本题考查球O的表面积,考查学生的计算能力,比较基础.13.(2015•沈阳校级模拟)若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为()A.πB.2πC.3πD.4π【分析】过圆锥的旋转轴作轴截面,得△ABC及其内切圆⊙O1和外切圆⊙O2,且两圆同圆心,即△ABC的内心与外心重合,易得△ABC为正三角形,由题意⊙O1的半径为r=1,进而求出圆锥的底面半径和高,代入圆锥体积公式,可得答案.【解答】解:过圆锥的旋转轴作轴截面,得△ABC及其内切圆⊙O1和外切圆⊙O2,且两圆同圆心,即△ABC的内心与外心重合,易得△ABC为正三角形,由题意⊙O1的半径为r=1,∴△ABC的边长为2,∴圆锥的底面半径为,高为3,∴V=.故选:C.【点评】本题考查的知识点是旋转体,圆锥的体积,其中根据已知分析出圆锥的底面半径和高,是解答的关键.14.正四面体的内切球与外接球的半径的比等于()A.1:3 B.1:2 C.2:3 D.3:5【分析】画出图形,确定两个球的关系,通过正四面体的体积,求出两个球的半径的比值即可.【解答】解:设正四面体为PABC,两球球心重合,设为O.设PO的延长线与底面ABC的交点为D,则PD为正四面体PABC的高,PD⊥底面ABC,且PO=R,OD=r,OD=正四面体PABC内切球的高.设正四面体PABC底面面积为S.将球心O与四面体的4个顶点PABC全部连接,可以得到4个全等的正三棱锥,球心为顶点,以正四面体面为底面.每个正三棱锥体积V1=•S•r 而正四面体PABC体积V2=•S•(R+r)根据前面的分析,4•V1=V2,所以,4••S•r=•S•(R+r),所以,R=3r故选:A.【点评】本题是中档题,考查正四面体的内切球与外接球的关系,找出两个球的球心重合,半径的关系是解题的关键,考查空间想象能力,计算能力.15.(2014•道里区校级三模)已知一个正四面体的俯视图如图所示,其中四边形ABCD是边长为3的正方形,则该正四面体的内切球的表面积为()A.6πB.54πC.12πD.48π【分析】由正四面体的俯视图是边长为2的正方形,所以此四面体一定可以放在棱长为2的正方体中,求出正四面体的边长,可得正四面体的内切球的半径,即可求出正四面体的内切球的表面积.【解答】解:∵正四面体的俯视图是如图所示的边长为3正方形ABCD,∴此四面体一定可以放在正方体中,∴我们可以在正方体中寻找此四面体.如图所示,四面体ABCD满足题意,由题意可知,正方体的棱长为3,∴正四面体的边长为6,∴正四面体的高为2∴正四面体的内切球的半径为,∴正四面体的内切球的表面积为4πR2=6π故选:A.【点评】本题的考点是由三视图求几何体的表面积,需要由三视图判断空间几何体的结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的表面积公式分别求解,考查了空间想象能力.16.(2014•大庆二模)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.B. C. D.【分析】由已知中几何体的三视图中,正视图是一个正三角形,侧视图和俯视图均为三角形,我们得出这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,得到球的半径,代入球的表面积公式,即可得到答案.【解答】解:由已知中知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体是有一个侧面PAC垂直于底面,高为,底面是一个等腰直角三角形的三棱锥,如图.则这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,这个几何体的外接球的半径R=PD=.则这个几何体的外接球的表面积为S=4πR2=4π×()2=故选:A.【点评】本题考查的知识点是由三视图求面积、体积,其中根据三视图判断出几何体的形状,分析出几何体的几何特征是解答本题的关键.17.(2015•新课标II)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144π D.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.18.(2015秋•晋中期末)表面积为40π的球面上有四点S、A、B、C且△SAB是等边三角形,球心O到平面SAB的距离为,若平面SAB⊥平面ABC,则三棱锥S﹣ABC体积的最大值为()A.2 B.C.6D.【分析】作出直观图,根据球和等边三角形的性质计算△SAB的面积和棱锥的最大高度,代入体积公式计算.【解答】解:过O作OF⊥平面SAB,则F为△SAB的中心,过F作FE⊥SA于E点,则E为SA中点,取AB中点D,连结SD,则∠ASD=30°,设球O半径为r,则4πr2=40π,解得r=.连结OS,则OS=r=,OF=,∴SF==2.∴DF=EF=,SE==.∴SA=2SE=2,S△SAB=SA2=6.过O作OM⊥平面ABC,则当C,M,D三点共线时,C到平面SAB的距离最大,即三棱锥S﹣ABC体积最大.连结OC,∵平面SAB⊥平面ABC,∴四边形OMDF是矩形,∴MD=OF=,OM=DF=.∴CM==2.∴CD=CM+DM=3.∴三棱锥S﹣ABC体积V=S△SAB•CD==6.故选C.【点评】本题考查了棱锥的体积计算,空间几何体的作图能力,准确画出直观图找到棱锥的最大高度是解题关键.19.(2015•新课标II)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.20.(2015秋•淮南期末)如图所示,ABCD﹣A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,OA1不共面C.A,M,C,O不共面D.B,B1,O,M共面【分析】本题利用直接法进行判断.先观察图形判断A,M,O三点共线,为了要证明A,M,O三点共线,先将M看成是在平面ACC1A1与平面AB1D1的交线上,利用同样的方法证明点O、A也是在平面ACC1A1与平面AB1D1的交线上,从而证明三点共线.【解答】解:连接A1C1,AC,则A1C1∥AC,∴A1、C1、C、A四点共面,∴A1C⊂平面ACC1A1,∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,∴A、M、O三点共线.故选:A.【点评】本题主要考查了平面的基本性质及推论、三点共线及空间想象能力,属于基础题.21.(2015•衡阳县校级模拟)如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行【分析】先利用三角形中位线定理证明MN∥BD,再利用线面垂直的判定定理定义证明MN 与CC1垂直,由异面直线所成的角的定义证明MN与AC垂直,故排除A、B、C选D 【解答】解:如图:连接C1D,BD,在三角形C1DB中,MN∥BD,故C正确;∵CC1⊥平面ABCD,∴CC1⊥BD,∴MN与CC1垂直,故A正确;∵AC⊥BD,MN∥BD,∴MN与AC垂直,B正确;∵A1B1与BD异面,MN∥BD,∴MN与A1B1不可能平行,D错误故选D【点评】本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键22.(2015秋•眉山期末)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()A.B.C.D.【分析】利用公理三及推论判断求解.【解答】解:在A图中:分别连接PS,QR,则PS∥QR,∴P,S,R,Q共面.在B图中:过P,Q,R,S可作一正六边形,如图,故P,Q,R,S四点共面.在C图中:分别连接PQ,RS,则PQ∥RS,∴P,Q,R,S共面.D图中:PS与RQ为异面直线,∴P,Q,R,S四点不共面.故选:D.【点评】本题考查四点不共面的图形的判断,是基础题,解题时要认真审题,注意平面性质及推论的合理运用.23.(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【分析】可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可退出和l1,l2异面矛盾,这样便说明D正确.【解答】解:A.l与l1,l2可以相交,如图:∴该选项错误;B.l可以和l1,l2中的一个平行,如上图,∴该选项错误;C.l可以和l1,l2都相交,如下图:,∴该选项错误;D.“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确.故选D.【点评】考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确.24.(2016•延庆县一模)已知两条直线a,b和平面α,若a⊥b,b⊄α,则“a⊥α”是“b∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【分析】分别判断出充分性和不必要性即可.【解答】解:若a⊥b,b⊄α,a⊥α,则b∥α,是充分条件,若a⊥b,b⊄α,b∥α,推不出a⊥α,不是必要条件,则“a⊥α”是“b∥α”的充分不必要条件,故选:A.【点评】本题考查了充分必要条件,考查线面、线线的位置关系,是一道基础题.二.填空题(共6小题)25.(2014•长春一模)已知三棱柱ABC﹣A1B1C1底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球表面积为12π,则该三棱柱的体积为3.【分析】求出底面中心到底面三角形顶点的距离,求出外接球的半径,然后求出棱柱的高,即可求出所求体积.【解答】解:设球半径R,上下底面中心设为M,N,由题意,外接球心为MN的中点,设为O,则OA=R,由4πR2=12π,得R=OA=,又AM=,由勾股定理可知,OM=1,所以MN=2,即棱柱的高h=2,所以该三棱柱的体积为××2=3.故答案为:3.【点评】本题是基础题,考查几何体的外接球的表面积的应用,三棱柱体积的求法,考查计算能力.26.(2013•长春一模)若一个正四面体的表面积为S1,其内切球的表面积为S2,则=.【分析】设正四面体ABCD的棱长为a,利用体积分割法计算出内切球半径r=a,从而得到S2关于a的式子.利用正三角形面积公式,算出正四面体的表面积S1关于a的式子,由此不难得出S1与S2的比值.【解答】解:设正四面体ABCD的棱长为a,可得∵等边三角形ABC的高等于a,底面中心将高分为2:1的两段∴底面中心到顶点的距离为×a= a可得正四面体ABCD的高为h== a∴正四面体ABCD的体积V=×S△ABC×a=a3,设正四面体ABCD的内切球半径为r,则4××S△ABC×r=a3,解得r= a∴内切球表面积S2=4πr2=∵正四面体ABCD的表面积为S1=4×S△ABC=a2,∴==故答案为:【点评】本题给出正四面体,求它的表面积与其内切球表面积的比值,着重考查了正四面体的性质、球的表面积公式和多面体的外接、内切球算法等知识,属于中档题.27.(2016•石嘴山校级二模)在三棱锥P﹣ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2,PA⊥平面ABC,若三棱锥P﹣ABC的外接球的表面积为8π,则该三棱锥的体积为.【分析】作出草图,根据底面△ABC与截面圆的关系计算截面半径,根据球的面积计算球的半径,利用勾股定理计算球心到截面的距离,得出棱锥P﹣ABC的高.【解答】解:过A作平面ABC所在球截面的直径AD,连结BD,CD,∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=∠ADC=∠ADB=30°.∴∠BCD=∠CBD=∠BDC=60°.即△BCD是等边三角形.∵BC=2,∴AD==.过球心O作OM⊥平面ABC,则M为AD的中点,∴AM=.设外接球半径为r,则4πr2=8π,∴r=.即OA=.∴OM==.∵PA⊥平面ABC,∴PA=2OM=.∴V P﹣ABC===.故答案为.【点评】本题考查了棱锥与外接球的关系,棱锥的体积计算,属于中档题.28.(2015•南昌一模)已知直三棱柱ABC﹣A1B1C1中,∠BAC=90°,侧面BCC1B1的面积为2,则直三棱柱ABC﹣A1B1C1外接球表面积的最小值为4π.【分析】设BC=2x,BB1=2y,则4xy=2,利用直三棱柱ABC﹣A1B1C1中,∠BAC=90°,可得直三棱柱ABC﹣A1B1C1外接球的半径为≥=1,即可求出三棱柱ABC﹣A1B1C1外接球表面积的最小值.【解答】解:设BC=2x,BB1=2y,则4xy=2,∵直三棱柱ABC﹣A1B1C1中,∠BAC=90°,∴直三棱柱ABC﹣A1B1C1外接球的半径为≥=1,∴直三棱柱ABC﹣A1B1C1外接球表面积的最小值为4π×12=4π.故答案为:4π.【点评】本题考查三棱柱ABC﹣A1B确定1C1外接球表面积的最小值,考查基本不等式的运用,确定直三棱柱ABC﹣A1B1C1外接球的半径的最小值是关键.29.(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.【分析】判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣AMN的体积即可.。