河北省保定市小学奥数系列8-6-1构造与论证

合集下载

小学奥数 构造与论证 精选例题练习习题(含知识点拨)

小学奥数  构造与论证  精选例题练习习题(含知识点拨)

构造与论证教学目标1.掌握最佳安排和选择方案的组合问题.2.利用基本染色去解决相关图论问题.知识点拨知识点说明各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.知识点拨板块一、最佳安排和选择方案【例 1】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【考点】构造与论证【难度】2星【题型】解答【解析】因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.所以,共需调换4+3+2+1=10次.【答案】10次【例 2】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【考点】构造与论证【难度】3星【题型】解答【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【答案】偶数【例 3】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【考点】构造与论证【难度】3星【题型】填空【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【答案】黑子【例 4】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】构造与论证【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例 5】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【考点】构造与论证【难度】4星【题型】解答【解析】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.【答案】1997次【例 6】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考点】构造与论证【难度】4星【题型】解答【解析】(1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【答案】(1)可以(2)不能【例 7】在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【考点】构造与论证【难度】4星【题型】解答【解析】当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.【答案】胜3场【例 8】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n =4是否可能?(2)n =5是否可能?【考点】构造与论证 【难度】3星 【题型】解答【解析】 (1)我们知道4个队共进行了24C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为24C ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。

河北省衡水市数学小学奥数系列8-6-1构造与论证

河北省衡水市数学小学奥数系列8-6-1构造与论证

河北省衡水市数学小学奥数系列8-6-1构造与论证姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、最佳安排和选择方案 (共20题;共103分)1. (1分) (2019六上·南康期末) 六年级1、2、3、4四个班举行拔河比赛,甲、乙、丙三个同学猜测四个班比赛的前三名名次.甲说:1班第三,3班第一;乙说:3班第二,2班第三;丙说:4班第二,1班第一.比赛结果,三个人都猜对了一半.那么,1班第________名,4班第________名.2. (5分)木材加工厂堆放原木(堆放方式如下图所示),每上一层都比原来一层少4根。

已知最上层有4根,最下层有20根。

(1)这堆原木堆放了多少层?(2)一共有多少根原木?3. (5分)小明、小勇、小军三个小朋友,小明比小勇轻,小军是最轻的。

请写出他们的名字。

4. (5分)一个乡村小学,A、B、C三位老师共同承担全校语文、数学、品德、体育、音乐、美术六门课,每人教两门.根据下列条件判断他们分别教哪两门课.①A喜欢和体育老师、数学老师游泳.②B和音乐老师、语文老师都喜欢踢足球.③体育老师比语文老师年龄大.④B不是体育老师.⑤品德老师和数学老师喜欢下棋.(提示:是某个学科的老师就在下面用“√”表示,不是就用“×”表示,根据上面的条件,填写下表.)5. (10分)四对夫妇坐在一起闲谈.四个女人中,吃了个梨,吃了个,吃了个,吃了个;四个男人中,甲吃的梨和他妻子一样多,乙吃的是妻子的倍,丙吃的是妻子的倍,丁吃的是妻子的倍.四对夫妇共吃了个梨.问:丙的妻子是谁?6. (5分)任意13个人中,必然有2人是在同一个月出生的.为什么?7. (5分)三张分别写有2,1,6的卡片,能否排成一个可以被43除尽的整数?8. (10分)在世界杯小组赛上,每四个队进行单循环比赛,每场比赛胜队得分,负队得分,平局则两队各得分.小组赛结束后,总积分高的两队出线,进入下一轮比赛,如果总积分相同,还要按进一步的规则排序.那么一个队至少要积几分才能保证本队必然出线?若有一个队总积分是分,则这个队可能出线吗?9. (5分)有三个盒子,甲盒装了两个克的砝码,乙盒装了两个克的砝码,丙盒装了一个克、一个克的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的小明只从一个盒子里取出一个砝码,放到天平上称了一下,就把所有标签都改正过来了.你知道这是为什么吗?10. (2分) 20道复习题,小明在两周内做完,每天至少做一道题.证明:小明一定在连续的若干天内恰好做了7道题目.11. (5分)烟鬼甲每天抽50支烟,烟鬼乙每天抽10支烟。

六年级下册奥数讲义-奥数方法:构造法

六年级下册奥数讲义-奥数方法:构造法

在证明一些存在性问题时,我们可以考虑把满足题意要求的数学对象构造出来,问题也自然得到了证明。

这种方法就叫做构造法。

构造法是一种重要的数学方法,一些数论问题也可以通过构造出某些特殊结构、特殊性质的数的组合来解决,另在解决一些图形、逻辑推理方面的问题时,也可以通过构造出来某些我们熟悉的情境,然后进行解答就容易多了。

构造法解题的步骤一般为先观察问题的条件,对其进行分析和重组,或对问题进行特殊化考虑,找出构造的方案,然后进行检验,得出问题的解。

[例1] 如图1所示,在三角形ABC中,BD=2DC,AE=2ED,FC=7,那么AF=[例2】有人说:“任何七个连续的自然数中一定有质数”,请你举一个例子说明这句话是错的。

思路剖析本题实际上是要证明:七个连续的自然数有可能全部是合数,这就成了一个存在性的证明题,只要用构造的方法,构造一个例子,便可以说明。

解答取数a=2×3×4×5×6×7×8则a+2,a+3,a+4,a+5,a+6,a+7,a+8这七个数全部是合数,且为连续的自然数。

故“任何七个连续的自然数中一定有质数”这句话是错的。

[例3] 是否在平面上存在这样的40条直线,它们共有365个交点?思路剖析这是一个证明存在性的问题,我们可以用构造法为构造出符合要求的方案,先从一些特殊图形进行考虑。

解答先考虑一种特殊的图形:围棋盘。

它有38条直线、361个交点。

为构造出40条直线有365个交点的情形。

我们就从这种特殊的图形出发,进行局部的调整。

先加上2条对角线,这样就有40条直线了,但交点仍然是361个。

再将最右边的l条直线向右平移1段,正好增加了4个交点(见图3)。

于是,我们就得到了有365个交点的40条直线。

[例4】如图4所示,将图中的A、B、C、D、E五点染色,使相邻的(即有线段相连的)点有不同的颜色,至少需要几种颜色?思路剖析将A、B、C、D、E五点染色,只用一种颜色肯定是不够的,如果我们能构造出一种符合条件的染色方法,只需要2种颜色,也就找到了答案。

河北省保定市2023-2024学年八年级上学期期末数学试题

河北省保定市2023-2024学年八年级上学期期末数学试题

河北省保定市2023-2024学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________A.B.C.D.1二、填空题三、解答题20.老师在黑板上写了一道例题及部分解答过程,随后用手遮住了括号内的二项式,如下:n ()(2)(2)n n -+-()2284n n n =---=______.(1)被遮住的二项式为______.(2)将该例题的解答过程书写完整.21.如图,ABC V 的三个顶点坐标分别为()1,1A ,()3,5B ,()4,3C .④作射线ME .射线ME 即为AMB ∠的平分线.【任务】(1)由尺规作图可直接得到线段相等的有:MA MB =和_____.(2)由(1)中的条件,可证MAD MBC ≌△△,依据是______.(填判定方法)(3)如果把(2)中已得的MAD MBC ≌△△作为条件,求证:ED EC =.24.学校举行“二十大知识学习竞赛”活动,老师让嘉嘉和淇淇到超市购买笔记本和笔作为奖品.二人与老师的对话信息如下:嘉嘉说:每本笔记本比每支笔贵2元.淇淇说:用100元购买笔记本的数量与用80元购买笔的数量相同.(1)分别求笔记本和笔的单价.(2)本次活动需要两种奖品共20个,总费用不超过180元,问最多可购买笔记本多少本? 25.“数形结合”是一种非常重要的数学思想方法.比如:人教版八年级上册的数学教材在学习“完全平方公式”时,通过构造几何图形,用几何直观的方法解释了完全平方公式:()2222a b a ab b +=++(如图1).利用“数形结合”的思想方法,可以从代数角度解决图形问题,也可以用图形关系解决代数问题.(1)观察图2,请直接写出一个多项式进行因式分解的等式:______.(2)如图3,这是2002年北京世界数学家大会的会标,会标是用边长分别为a ,b ,c 的四个完全相同的直角三角形和一个小正方形拼成的大正方形,利用这一图形可以推导出一个关于a ,b ,c 的结论.请写出该结论,并写出推导过程.(3)有两个大小不同的正方形A 和B ,现将A ,B 并列放置后构造新的正方形得到图4,其阴影部分的面积为22;将B 放在A 的内部得到图5,其阴影部分(正方形)的面积为9.则正方形A ,B 的面积之和为______.26.【论证】(1)如图1,在Rt ABC △中,90BAC ∠=︒,且AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D ,E .求证:ABD CAE △△≌.【尝试】(2)如图2,在平面直角坐标系中,点()0,6A ,点()2,0B ,点C 在第二象限,90BAC ∠=︒,AB AC =.请直接写出点C 的坐标:______.【拓展】(3)在(2)的条件下,点M 在第一象限,且MAB △为等腰直角三角形.请直接写出所有满足条件的点M 的坐标.。

构造与论证(学生版)

 构造与论证(学生版)

学科培优数学“构造与论证”学生姓名授课日期教师姓名授课时长知识定位各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.【授课批注】论证:天下乌鸦都是黑的。

学生一定会说因为我看到的乌鸦都是黑的,所以天下乌鸦都是黑的!这样说明问题是不可以的。

但是,如果我能看到一只白乌鸦,从而可以说明天下乌鸦不全是黑的。

这种方法叫做举反例法,是很有说服力的一种方法!知识梳理【重点难点解析】1.如何分类讨论及讨论结果的全面性。

2.与抽屉原理、数论、估算相结合的综合题。

3.如何设计最佳方案和选择最佳方案。

【竞赛考点挖掘】1.迎春杯、华杯中经常出现。

2.与其他知识点相结合的综合性题目。

【授课批注】小升初的考试中不会涉及到,但在杯赛中经常出现,尤其是迎春杯,华杯!所以,考杯赛的学生应着重学习。

例题精讲【试题来源】【题目】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【试题来源】【题目】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【试题来源】【题目】甲、乙、丙三个班人数相同,在班级之间举行象棋比赛.各班同学都按l,2,3,4,…依次编号.当两个班比赛时,具有相同编号的同学在同一台对垒.在甲、乙两班比赛时,有15台是男、女生对垒;在乙、丙班比赛时,有9台是男、女生对垒.试说明在甲、丙班比赛时,男、女生对垒的台数不会超过24.并指出在什么情况下,正好是24 ?【题目】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光?(2)3堆中的所有石子都被取走?【试题来源】【题目】4个人聚会,每人各带2件礼品,分赠给其余3个人中的2人.试证明:至少有2对人,每对人是互赠过礼品的.【试题来源】【题目】证明:在6×6×6的正方体盒子中最多可放入52个1×l×4的小长方体,这里每个小长方体的面都要与盒子的侧面平行.【试题来源】【题目】如图35-1,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使任意连续相邻的5个圆圈内的各数之和均不大于某个整数M.求M的最小值并完成你的填图.习题演练【题目】在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【试题来源】【题目】某学校的学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书都至少被一个同学都读过.问:能否找到两个学生甲、乙和三本书4、B、C,使得甲读过A、B,没读过C,乙读过B、C,没读过A?说明判断过程.【试题来源】【题目】 n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n=4是否可能?(2)n=5是否可能?【试题来源】【题目】将5×9的长方形分成10个边长为整数的长方形.证明:无论怎样分法.分得的长方形中必有两个是完全相同的.【试题来源】【题目】将15×15的正方形方格表的每个格涂上红色、蓝色或绿色.证明:至少可以找到两行,这两行中某一种颜色的格数相同.【试题来源】【题目】有9位数学家,每人至多能讲3种语言,每3个人中至少有2个人有共通的语言.求证:在这些数学家中至少有3人能用同一种语言交谈。

四年级奥数之构造与论证之奇偶分析(上)

四年级奥数之构造与论证之奇偶分析(上)

2
【今日讲题】 例1,例2,例4,例5 构造与论证之奇偶分析(上) 1. 基本的奇偶性质 加减法:奇奇为偶 偶偶为偶 奇偶为奇。 加减法:奇奇为偶,偶偶为偶,奇偶为奇。 乘 法 :口诀:有偶为偶,无偶为奇。 连 加 :奇数个奇数的和是奇数, 偶数个奇数的和是偶数。 2.论证问题 总数的两种不同的计算方式 总数的两种不同的计算方式。一般是由偶数≠奇数 般是由偶数 奇数 ,推出矛盾。由矛盾说明假设不成立。 【讲题心得】
【例1】 (★★★)
任意取出10个连续自然数,它们的总和是奇数还 意 出 连续自 数 奇数 是偶数?
【例2】 (★★★)
有一本500页的书,从中任意撕下20张纸,这20张 纸上的所有页码之和能否是1999? 有 能
1
【例3】 (★★★)
【例4】 (★★★★)
桌子上有6只开口向上的杯子,每次同时翻动其 桌 有 杯 每 其 中的4只杯子,问能否经过若干次翻动,使得全 部杯子的开 全都向下? 部杯子的开口全都向下?
【课前小练习】(★★)
判断奇偶性。(填入奇数、偶数) (1) 78+52=_____; (2) 63-23=_____; 63 23 (3) 89+56=_____; (4) 1+2+3+4+5=_____; 1+2+3+4+5 (5) 6×5×4×9×5=_____; (6) 9×7×13×7×3=____. 9×7×13×7×3=
构造与论证之奇偶分析(上)
本讲主线 1.复习基本奇偶性质。 1 复习基本奇偶性质 奇 2. 和差奇偶性的应用。
奇偶数的运算规律: 1. 加减法 奇数+奇数=____ 奇数+奇数 奇数-奇数= 奇数 奇数 ____ 偶数+偶数=____ 偶数-偶数=____ 奇数+偶数=____ 奇数-偶数=____ 奇数个奇数相加得____ ,偶数个奇数相加得____ . 口诀:奇奇为偶,偶偶为偶,奇偶为奇。 2 乘法 2. 口诀:有偶为偶,无偶为奇。

小学奥数六年级上第24讲《构造论证》教学课件

小学奥数六年级上第24讲《构造论证》教学课件
1 2 3 4 5 6 7 8 9 10 11 12 13
答案:
巩固提升
mathematics
作业3:《三国英雄传》共有10篇故事,这些故事占的篇幅从2页到11页各不相同,如果从 书的第1页开始印第一个故事,每一个故事总是从新的一页开始印,那么故事从奇数页起头 的最多有多少篇,最少有多少篇? 答案:
巩固提升
mathematics
作业1:桌上放有5枚硬币,正面朝上,第一次翻动1枚,第二次翻动2枚,第三次翻动3枚, 第四次翻动4枚,第五次翻动5枚,能否恰当地选择每次翻动的硬币,使得最后桌上所有的 硬币都正面朝下? 答案:
巩固提升
mathematics
作业2:把1、2、3、…、13按合适的顺序填在图中第二行的空格中、使得每列两个数字之 和都是平方数.
例题讲解
mathematics
练习4:黑板上写着3个数9、18、27,老师请一些同学上黑板对这3个数进行操作,进行一 次操作是指:把3个数进行如下变化,一些数减1、其他数加2;或者都减1;或者都加2;请 问: (1)能否经过若干次操作后得到11、12、13? (2)能否经过若干次操作后得到8、8、8? 答案:
是奇数,那我们是不是能从奇偶性的分析入手呢?
答案:
例题讲解
mathematics
练习2:能否将1至41排成一行,使得任意相邻两数之和都为质数? 答案:
例题讲解
mathematics
例题3:有3堆石子,每次可以从这三堆中同时拿走相同数目的石子(每次这个数目可以改变), 也可以由一堆中取一半石子放入另外任一堆石子中,请问: (1)如果开始时,3堆石子的数目分别是34、55、82,按上述操作,能否把3堆石子都拿光? (2)如果开始时,3堆石子的数目分别是80、60、50,按上述操作,能否把3堆石子都拿光? 如果可以,请设计一种取石子的方案;如果不可以,请说明理由. 分析:每次从这三堆中同时拿走相同数目的石子意味着每次拿走的石子数是3的倍数,所

小学奥数 构造与论证 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  构造与论证 精选练习例题 含答案解析(附知识点拨及考点)

1. 掌握最佳安排和选择方案的组合问题.2. 利用基本染色去解决相关图论问题.知识点说明 各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.板块一、最佳安排和选择方案 【例 1】 5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【考点】构造与论证 【难度】2星 【题型】解答【解析】 因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.知识点拨知识点拨教学目标构造与论证所以,共需调换4+3+2+1=10次.【答案】10次【例2】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【考点】构造与论证【难度】3星【题型】解答【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【答案】偶数【例3】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【考点】构造与论证【难度】3星【题型】填空【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【答案】黑子【例4】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】构造与论证【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例5】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【考点】构造与论证【难度】4星【题型】解答【解析】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.【答案】1997次【例6】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考点】构造与论证 【难度】4星 【题型】解答【解析】 (1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【答案】(1)可以 (2)不能【例 7】 在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【考点】构造与论证 【难度】4星 【题型】解答【解析】 当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.【答案】胜3场【例 8】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n =4是否可能?(2)n =5是否可能?【考点】构造与论证 【难度】3星 【题型】解答【解析】 (1)我们知道4个队共进行了24C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为24C ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省保定市小学奥数系列8-6-1构造与论证
姓名:________ 班级:________ 成绩:________
亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!
一、最佳安排和选择方案 (共20题;共103分)
1. (1分)甲、乙、丙、丁、戊五名同学参加推铅球比赛,通过抽签决定出赛顺序.在未公布顺序前每人都对出赛顺序进行了猜测.甲猜:乙第三,丙第五.乙猜:戊第四,丁第五.丙猜:甲第一,戊第四.丁猜:丙第一,乙第二.戊猜:甲第三,丁第四.老师说每人的出赛顺序都至少被一人所猜中,则出赛顺序中,第一是________;第三是________.
2. (5分)木材加工厂堆放原木(堆放方式如下图所示),每上一层都比原来一层少4根。

已知最上层有4根,最下层有20根。

(1)这堆原木堆放了多少层?
(2)一共有多少根原木?
3. (5分)一个数若去掉前面的第一个数字是11,去掉最后一个数字为50,原数是多少?
4. (5分)四个孩子
老孙和老陈两家都有两个年龄不到9岁的男孩,四个孩子的年龄各不相同.一位邻居这样介绍:
①小明比他哥哥小3岁.
②海涛的年龄最大.
③小峰的年龄恰好是老陈家其中一个孩子的年龄的一半.
④奇志比老孙家第二个孩子大5岁.
⑤他们两家五年前都只有一个孩子.
谁是哪一家的孩子?每个孩子的年龄各是多少?
5. (10分)三个孩子吃三个饼要用3分钟,九十个孩子九十个饼要用多少时间?
6. (5分)一个正方体有六个面,给每个面都涂上红色或白色,至少有三个面是同一颜色。

为什么?
7. (5分)将100颗绿豆和100颗黄豆混在一起又一分为二,需要几次才能使A堆中黄豆和B堆中的绿豆相等呢?
8. (10分)一次数学考试,共六道判断题.考生认为正确的就画“√”,认为错误的就画“ ”.记分的方法是:答对一题给2分;不答的给1分;答错的不给分.已知、、、、、、七人的答案及前六个人的得分记录在表中,请在表中填出的得分.并简单说明你的思路.
9. (5分)从A,B,C,D,E,F六种产品中挑选出部分产品去参加博览会。

根据挑选规则,参展产品满足下列要求:
(1)A,B两种产品中至少选一种;
(2)A,D两种产品不能同时入选;
(3)A,E,F三种产品中要选两种;
(4)B,C两种产品都入选或都不能入选;
(5)C,D两种产品中选一种;
(6)若D种产品不入选,则E种也不能入选。

问:哪几种产品被选中参展?
10. (2分)在米长的水泥阳台上放盆花,随便怎样摆放,请你说明至少有两盆花它们之间的距离小于米.
11. (5分)班上四名同学进行跳棋比赛,每两名同学都要赛一局.每局胜者得分,平者各得分,负者得分.已知甲、乙、丙三名同学得分分别为分、分、分,且丙同学无平局,甲同学有胜局,乙同学有平局,那么丁同学得分是多少?
12. (5分)八一队、北京队、江苏队、山东队、广东队五队进行象棋友谊赛,每两个队都要赛一场,一个月过后,八一队赛了场,北京队赛了场,江苏队赛了场,山东队赛了场.那么广东队赛了几场?
13. (5分)有三个小朋友在猜拳,,一个出剪刀,一个出石头,一个出布,请问三个人共有几根指头?
14. (5分)甲、乙、丙三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴丙比大队长的成绩好.⑵甲和中队长的成绩不相同.⑶中队长比乙的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?
15. (5分)在路上,它翻了一个跟斗,接着又翻了一次(猜4字成语)?
16. (5分)小朋友,你知道谁跑得最快,谁跑得最慢吗?
17. (5分)东东、西西、北北三人进行乒乓球单循环赛,结果人获胜的场数各不相同.问第一名胜了几场?
18. (5分)(2013·广州) 有一家四口人要走过一座窄桥,窄桥一次最多只可允许两个人一起过桥,由于天色很暗,同时他们又只有一只手电筒,行人过桥时必须持有手电筒,以防止跌落水中,因此就得有人把手电筒带来带去,来回桥两端,四个人的步行速度各不相同,已知每人过桥所需要使用的时间分别为:哥哥——1分钟;
爸爸——2分钟;
妈妈——5分钟;
爷爷——10分钟。

若两人同行则以较慢者的速度为准,请问一家四口人全部过桥的总用时至少是几分钟?
请写出你设计的方案:
第一步,________与________过桥,________回来;
第二步,________与________过桥,________回来;
第三步,________与________过桥,共耗时________分钟。

19. (5分)排课程表。

周四上午笑笑所在班级的四节课有语文、数学、英语、体育,语文老师9:00要参加会议,数学老师第三节要听课,体育老师前三节没有课。

请排出周四上午笑笑所在班级的课程表。

(画“√”)
语文数学英语体育
8:10-8:50第一节
9:00-9:40第二节
10:00-10:40第三节
10:50-11:30第四节
20. (5分)有六个大小相同的彩球,三个红,三个白,分别放入三个罐子里,一个罐里放两红球,一个罐里放两白球,另一罐放一红一白.然后将写有“两红”、“两白”、“红白”的三个标签贴在三个罐子上,由于粗心,三个标签全贴错了.试问此时最少要从罐子中取出几个球,才能确定三个罐分别装的是什么彩球?
二、染色与赋值问题 (共14题;共75分)
21. (5分)王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?
22. (5分)三人打乒乓球,每场两人,输者退下换另一人,这样继续下去,在甲打了场,乙打了场时,
丙最多打几场?
23. (5分)三个小朋友去买文具,他们分别要买铅笔、转笔刀和尺子。

24. (5分)五号楼住着四个女孩和两个男孩,他们的年龄各不相同,最大的岁,最小的岁,最大的女孩比最小的男孩大岁,最大的男孩比最小的女孩也大岁,求最大的男孩的岁数.
25. (5分)有一个年轻人,他要过一条河去办事;但是,这条河没有船也没有桥。

于是他便在上午游泳过河,只一个小时的时间他便游到了对岸,当天下午,河水的宽度以及流速都没有变,更重要的是他的游泳速度也没有变,可是他竟用了两个半小时才游到河对岸.
26. (5分)李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:
⑴顾锋最年轻;
⑵李波喜欢与体育老师、数学老师交谈;
⑶体育老师和图画老师都比政治老师年龄大;
⑷顾锋、音乐老师、语文老师经常一起去游泳;
⑸刘英与语文老师是邻居.
问:各人分别教哪两门课程?
27. (5分)五封信,信封完全相同,里面分别夹着红、蓝、黄、白、紫五种颜色的卡片.现在把它们按顺序排成一行,让、、、、五人猜每只信封内所装卡片的颜色.
猜:第2封内是紫色,第3封是黄色;
猜:第2封内是蓝色,第4封是红色;
猜:第1封内是红色,第5封是白色;
猜:第3封内是蓝色,第4封是白色;
猜:第2封内是黄色,第5封是紫色.
然后,拆开信封一看,每人都猜对一种颜色,而且每封都有一人猜中.请你根据这些条件,再猜猜,每封信中夹什么颜色的卡片?
28. (5分)从一写到一万,你会用多少时间?
29. (5分)某地质学院的学生对一种矿石进行观察和鉴别。

甲判断:不是铁,也不是铜。

乙判断:不是铁,而是锡。

丙判断:不是锡,而是铁。

经化验证明:有一个人的判断完全正确,有一个人说对了一半,而另一个人完全说错了。

你知道三人中谁是对的,谁是错的,谁是只对一半的吗?
30. (10分) 3个骰子掷出的点数和中,哪个数最有可能?
31. (5分)甲说:“乙和丙都说谎。

”乙说:“甲和丙都说谎。

”丙说:“甲和乙都说谎。

”根据三人所说,你判断一下,下面的结论哪一个正确:(1)三人都说谎;(2)三人都不说谎;(3)三人中只有一人说谎;(4)三人中只有一人不说谎。

32. (5分)一把11厘米长的尺子,可否只刻3个整数刻度,即可用于量出1到11厘米之间的任何整数厘米长的物品长度?如果可以,问应刻哪几个刻度?
33. (5分)东东、西西、南南、北北四人进行乒乓球单循环赛,结果有三人获胜的场数相同.问另一个人胜了几场?
34. (5分)小明带100元去买一件75元的衬衫,但老板却只找了5块钱给他,为什么?
参考答案
一、最佳安排和选择方案 (共20题;共103分)
1-1、
2-1、
2-2、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
二、染色与赋值问题 (共14题;共75分)
21-1、
22-1、
23-1、
24-1、
26-1、
27-1、
28-1、
29-1、
30-1、
31-1、
33-1、
34-1、。

相关文档
最新文档