人教版八年级数学上册期末试卷2
人教版八年级上册数学期末复习试题2(有答案)

2020-2021学年人教新版八年级上册数学期末复习试卷2 一.填空题(共10小题,满分30分,每小题3分)1.如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=2,△ABC的面积是.2.分式与通分后的结果是.3.已知a、b、c是三角形的三边,化简|a﹣b﹣c|+|b+c﹣a|﹣|c﹣a﹣b|=.4.如图所示,D、E是边AC的三等分点,图中有个三角形,BD是中边上的中线,BE是中边上的中线.5.如图,已知∠ACB=∠DBC,要用“SAS”判断△ABC≌△DCB,需添加的一个条件:.6.正十边形的外角和为.7.等腰三角形的一个外角是110°,则它的顶角的度数是.8.若a,b,c为三角形的三边长,且a,b满足+(b﹣7)2=0,那么c的取值范围是.9.因式分解:x2﹣x﹣6=.10.若式子+(x﹣4)0有意义,则实数x的取值范围是.二.选择题(共6小题,满分18分,每小题3分)11.在平面直角坐标系中,点P(0,1)关于直线x=﹣1的对称点坐标是()A.(﹣2,1)B.(2,1)C.(0,﹣1)D.(0,1)12.使分式在实数范围内有意义,则实数m的取值范围是()A.m≠1B.m≠3C.m≠3且m≠1D.m=113.下列等式从左到右的变形属于因式分解的是()A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣aC.6x2y3=2x2•3y3D.x2+1=x(x+)14.如图,已知平行四边形OABC的顶点O(0,0),B(2,2),C(1.6,0.8).若将平行四边形先沿着y轴进行第一次轴对称变换,所得图形再沿着x轴进行第二次轴对称变换,轴对称变换的对称轴遵循y轴、x轴、y轴、x轴…的规律进行,则经过第2018次变换后,平行四边形顶点A的坐标为()A.(﹣0.4,1.2)B.(﹣0.4,﹣1.2)C.(1.2,﹣0.4)D.(﹣1.2,﹣0.4)15.若a=3﹣,则代数式a2﹣6a﹣2的值是()A.0B.1C.﹣1D.16.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰△ACD,过点D 作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()A.15B.17C.18D.20三.解答题(共3小题,满分18分,每小题6分)17.(a﹣4)(a+4)﹣2(a﹣1)(2a+2).18.(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=219.因式分解(1)x2﹣9;(2)(x2+4)2﹣16x2.四.解答题(共2小题,满分16分,每小题8分)20.计算:.21.在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)作出△ABC关于y轴对称的△A1B1C1,其中点A,B,C分别和点A1,B1,C1对应;(2)平移△ABC,使得点A在x轴上,点B在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中点A,B,C分别和点A2,B2,C2对应;(3)直接写出△ABC的面积.五.解答题(共2小题,满分18分,每小题9分)22.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.甲、乙两个公司为某国际半程马拉松比赛各制作6400个相同的纪念品.已知甲公司的人数比乙公司人数少20%,乙公司比甲公司人均少做20个,甲、乙两公司各有多少人?六.解答题(共2小题,满分20分,每小题10分)24.如图1我们称之为“8字形”,请直接写出∠A,∠B,∠C,∠D之间的数量关系:;(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7=度(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠B,∠P,∠D之间的数量关系,并证明.25.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.参考答案与试题解析一.填空题(共10小题,满分30分,每小题3分)1.解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=2,∵△ABC的周长是20,OD⊥BC于D,且OD=2,∴S=×AB×OE+×BC×OD+×AC×OF△ABC=×(AB+BC+AC)×2=×20×2=20,故答案为:20.2.解:∵x2﹣3x=x(x﹣3),x2﹣9=(x﹣3)(x+3),∴分式==,分式==.故答案为,.3.解:根据三角形的三边关系,两边之和大于第三边,得a﹣b﹣c<0,b+c﹣a>0,c﹣a﹣b<0.则|a﹣b﹣c|+|b+c﹣a|﹣|c﹣a﹣b|=b+c﹣a+b+c﹣a+c﹣a﹣b,=3c+b﹣3a.故答案为:3c+b﹣3a.4.解:图中有△ABD,△BDE,△BEC,△ABE,△DBC,△ABC共6个三角形,BD是△ABE中AE边上的中线,BE是△DBC中CD边上的中线,故答案为:6;△ABE;AE;△DBC;CD.5.解:添加的条件是:AC=BD,理由是:∵在△ABC和△DCB中,∴△ABC≌△DCB(SAS),故答案为:AC=BD.6.解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°.故答案为:360°7.解:∵一个外角是110°,∴与这个外角相邻的内角是180°﹣110°=70°,①当70°角是顶角时,它的顶角度数是70°,②当70°角是底角时,它的顶角度数是180°﹣70°×2=40°,综上所述,它的顶角度数是70°或40°.故答案为:70°或40°.8.解:∵+(b﹣7)2=0,∴a﹣3=0,b﹣7=0,解得:a=3,b=7,∵a,b,c为三角形的三边,∴4<c<10.故答案为:4<c<10.9.解:原式=(x+2)(x﹣3),故答案为:(x+2)(x﹣3).10.解:由题意得,x﹣3≠0,x﹣4≠0,解得,x≠3且x≠4,故答案为:x≠3且x≠4.二.选择题(共6小题,满分18分,每小题3分)11.解:∵点P(0,1),∴点P到直线x=﹣1的距离为1,∴点P关于直线x=﹣1的对称点P′到直线x=﹣1的距离为1,∴点P′的横坐标为﹣2,∴对称点P′的坐标为(﹣2,1).故选:A.12.解:由题意得:m﹣3≠0,解得:m≠3,故选:B.13.解:A、是因式分解,故本选项符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:A.14.解:∵平行四边形OABC的顶点O(0,0),B(2,2),C(1.6,0.8).∴A(0.4,1.2),将平行四边形先沿着y轴进行第一次轴对称变换,A(﹣0.4,1.2),所得图形再沿着x轴进行第二次轴对称变换,A(﹣0.4,﹣1.2),第三次轴对称变换,A(0.4,﹣1.2),第四次轴对称变换,A(0.4,1.2),即A点回到原处,即每4次轴对称变换重复一轮,∵2018÷4=504…2,∴经过第2018次变换后,平行四边形顶点A的坐标为(﹣0.4,﹣1.2).故选:B.15.解:a2﹣6a﹣2,=a2﹣6a+9﹣9﹣2,=(a﹣3)2﹣11,当a=3﹣时,原式=(3﹣﹣3)2﹣11,=10﹣11,=﹣1.故选:C.16.解:∵△ACD是以AC为底边的等腰三角形,DE平分∠ADC,∴ED垂直平分AC,∴点A与点C关于DE对称,∴PC=PA,如图所示,当点P与点E重合时,PC+PB=PA+PB=AB,此时△PBC的周长最小,∵AC=12,BC=5,△ABC的周长为30,∴AB=13,∴△PBC周长的最小值为AB+BC=13+5=18,故选:C.三.解答题(共3小题,满分18分,每小题6分)17.解:(a﹣4)(a+4)﹣2(a﹣1)(2a+2)=a2﹣42﹣4(a﹣1)(a+1)=a2﹣16﹣4(a2﹣1)=a2﹣16﹣4a2+4=﹣3a2﹣12.18.解:(1)原式=•=•=m+1;(2)原式=•=,由|x|=2,得到x=2或﹣2(舍去),当x=2时,原式=19.19.解:(1)原式=(x+3)(x﹣3);(2)原式=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.四.解答题(共2小题,满分16分,每小题8分)20.解:原式=﹣1+1﹣9=﹣9.21.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)△ABC的面积为3×3﹣×1×3﹣×1×2﹣×2×3=.五.解答题(共2小题,满分18分,每小题9分)22.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE 和△CBD 中,,∴△ABE ≌△CBD ,∴AE =CD .(2)∵△ABE ≌△CBD ,∴∠BAE =∠BCD ,∵∠NMC =180°﹣∠BCD ﹣∠CNM ,∠ABC =180°﹣∠BAE ﹣∠ANB ,又∠CNM =∠ANB ,∵∠ABC =90°,∴∠NMC =90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB , ∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△CBM ≌△EBM ,则AB =BD ,显然不可能,故①错误.故答案为②.23.解:设乙公司有x人,则甲公司有(1﹣20%)x人,根据题意得:﹣=20,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴(1﹣20%)x=64.答:甲公司有64人,乙公司有80人.六.解答题(共2小题,满分20分,每小题10分)24.解:(1)如图1,∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠B=∠C+∠D;故答案为:∠A+∠B=∠C+∠D;(2)∵∠6,∠7的和与∠8,∠9的和相等,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8+∠9=540°.(3)∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②如图3,∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B.25.解:(1)如图(1),连接AD并延长至点F,,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C.(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°.②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE=(∠ADB+∠AEB)+∠DAE=45°+40°=85°.③∠BG1C=(∠ABD+∠ACD)+∠A,∵∠BG1C=70°,∴设∠A为x°,∵∠ABD+∠ACD=133°﹣x°∴(133﹣x)+x=70,∴13.3﹣x+x=70,解得x=63即∠A的度数为63°.故答案为:50.。
人教版八年级上册数学期末试卷附答案

人教版八年级上册数学期末试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.下列运算正确的是()A .235325x x x +=B .0( 3.14)0π-=C .α8÷α4=α2D .()236x x =3.若分式23x x +有意义,则x 的取值范围是()A .x≠3B .x≠-3C .x >3D .x >-34.下列图形中有稳定性的是()A .正方形B .长方形C .直角三角形D .平行四边形5.下列长度的三条线段,能组成三角形的是()A .3,4,8B .5,6,11C .12,5,6D .3,4,56.如图,在△ABC 中,∠A=50°,∠ABC=70°,BD 平分∠ABC ,则∠BDC 的度数是()A .85°B .80°C .75°D .70°7.如图,AB=AD ,要说明△ABC ≌△ADE ,需添加的条件不能是()A .∠E=∠CB .AC=AEC .∠ADE=∠ABCD .DE=BC 8.如果229xkxy y -+是一个完全平方式,那么k 的值是()A .3B .±6C .6D .±39.等腰三角形一腰上的高与另一腰的夹角是60°,则顶角的度数是()A .30°B .30°或150°C .60°或150°D .60°或120°10.已知1112a b -=,则ab b a -的值是()A .12B .12-C .2D .-211.若分式方程233x m x x +=++无解,则m 的值为()A .﹣1B .0C .1D .312.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接,BF CE .下列说法:①CE BF =;②ABD △和ACD 面积相等;③//BF CE ;④BDF CDE ≌.其中正确的有()A .1个B .2个C .3个D .4个二、填空题13()052019π--+-=__________14.如果分式242x x -+的值为零,那么则x 的值是______.15.已知23x =,则32x +的值为_______.16.将数据0.00000000034用科学记数法表示为_____________.17.若一个多边形内角和等于1260°,则该多边形边数是______.18.因式分解:32288x x x -+=___________.19.如图,在Rt △ABC 中,∠C=90°,∠BAC=60°,∠BAC 的平分线AD 长为8cm ,则BC=__________20.如图,△ABC 中,AB=AC=13cm ,AB 的垂直平分线交AB 于D,交AC 于E,若△EBC 的周长为21cm,则BC=_______cm .三、解答题21.计算(1)222233(2)64ab c a b a b -⋅-÷(2)24(1)(25)(25)x x x +--+22.(1)先化简,再求值:21(1)121a a a a -÷+++,其中21a =;(2)解分式方程:23193x x x +=--.23.△ABC 在平面直角坐标系中的位置如图所示.A (2,3),B (3,1),C (﹣2,﹣2)三点在格点上.(1)作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)直接写出△ABC 关于x 轴对称的△A 2B 2C 2的各点坐标;(3)求出△ABC 的面积.24.如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC25.如图,△ABC为等边三角形,AE=CD,AD与BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:BE=AD;(2)求∠BPD的度数;(3)求AD的长.26.王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?27.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.参考答案1.B【分析】根据轴对称图形的定义进行判断即可.【详解】解:根据轴对称图形的定义:轴对称图形沿一条直线对折两边能够完全重合可知,选项A 、C 、D 中的图形都是轴对称图形,只有选项B 中的图形不是轴对称图形,符合题意.故选:B .【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的定义是解题的关键.2.D【分析】结合同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的概念和运算法则进行求解即可.【详解】解:A .2332x x +两项不是同类项,不能合并,错误;B .0( 3.14)1π-=,错误;C .844÷a a a =,错误;D .()623x x =,正确【点睛】本题考查了同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.3.B【分析】直接利用分式有意义的条件分析得出答案.【详解】 分式23xx+有意义,∴x的取值范围为:3x≠-.故选B.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.C【分析】根据稳定性是三角形的特性解答.【详解】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.【点睛】此题考查三角形的稳定性,记住稳定性是三角形的特性是解题的关键.5.D【分析】根据三角形的三边关系进行分析判断,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A选项中,因为3+4<8,所以A中的三条线段不能组成三角形;B选项中,因为5+6=11,所以B中的三条线段不能组成三角形;C选项中,因为5+6<12,所以C中的三条线段不能组成三角形;D选项中,因为3+4>5,所以D中的三条线段能组成三角形.故选:D.【点睛】判断三条线段能否组成三角形,根据“三角形三边间的关系”,只需看较短两条线段的和是否大于最长线段即可,“是”即可组成三角形,“否”就不能组成三角形.6.A【分析】利用角平分线的性质可得∠ABD=12∠ABC=12×70°=35°,再根据三角形外角的性质可得∠BDC=∠A+∠ABD=50°+35°=85°.【详解】解:∵BD平分∠ABC,∠ABC=70°,∴∠ABD=12∠ABC=12×70°=35°,∵∠A=50°,∴∠BDC=∠A+∠ABD=50°+35°=85°,故选:A.【点睛】此题主要考查了角平分线的定义和三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.7.D【详解】∵AB=AD,且∠A=∠A,∴当∠E=∠C时,满足AAS,可证明△ABC≌△ADE,当AC=AE时,满足SAS,可证明△ABC≌△ADE,当∠ADE=∠ABC时,满足ASA,可证明△ABC≌△ADE,当DE=BC时,满足SSA,不能证明△ABC≌△ADE,故选:D.8.B【分析】根据完全平方式得出k=±2×1×3,求出即可.【详解】∵x2−kxy+9y2是一个完全平方式,∴x2−kxy+9y2=x2±2•x•3y+(3y)2,即k=±6,故选:B.【点睛】本题考查了对完全平方式的应用,注意:完全平方式有两个:a2+2ab+b2和a2−2ab +b2.9.B【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当为锐角三角形时,如图1,∵∠ABD=60°,BD⊥AC,∴∠A=90°-60°=30°,∴三角形的顶角为30°;②当为钝角三角形时,如图2,∵∠ABD=60°,BD ⊥AC ,∴∠BAD=90°-60°=30°,∵∠BAD+∠BAC=180°,∴∠BAC=150°∴三角形的顶角为150°,故选:B .【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键.10.C 【分析】将条件变形为12b a ab -=,再代入求值即可得解.【详解】解:∵1112a b -=,∴12b a ab -=∴=212ab ab b a ab =-故选:C 【点睛】本题主要考查了分式的化简,将条件变形为12b a ab -=是解答本题的关键.11.A【详解】解:两边同乘以(x+3)得:x+2=m ,x=m-2,∵方程无解∴x+3=0,即m-2+3=0,∴1m =-,故选:A.12.D【分析】根据三角形中线的定义可得BD CD =,然后利用“边角边”证明B D F ∆和CDE ∆全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠=∠,再根据内错角相等,两直线平行可得//BF CE ,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:AD 是ABC ∆的中线,BD CD ∴=,在B D F ∆和CDE ∆中,BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,()BDF CDE SAS ∴∆≅∆,故④正确CE BF ∴=,F CED ∠=∠,故①正确,//BF CE ∴,故③正确,BD CD = ,点A 到BD 、CD 的距离相等,ABD ∴∆和ACD ∆面积相等,故②正确,综上所述,正确的有4个,故选:D .【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,解题的关键是熟练掌握三角形全等的判定方法并准确识图.13.-2【分析】直接利用算术平方根的意义、绝对值和零指数幂的性质分别化简得出答案.【详解】原式=2−5+1=−3+1=−2.故答案为:-2【点睛】点评:此题主要考查了实数运算,正确化简各数是解题关键.14.2【分析】根据分式的值为零的条件:分子为零,分母不为零,由此问题可求解.【详解】解:由分式242x x -+的值为零,可得:240x -=且20x +≠,解得:2x =,故答案为2.【点睛】本题主要考查分式的值为零,熟练掌握分式的值为零的条件是解题的关键.15.24【分析】根据同底数幂乘法逆用法则计算即可得出答案.【详解】解:23x = 332223824x x +∴=⋅=⨯=故答案为24.【点睛】本题考查了同底数幂乘法的逆用,熟练掌握运算法则是解题的关键.16.3.4×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000034=3.4×10-10.故答案为:3.4×10-10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.9【分析】这个多边形的内角和是1260°.n 边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据题意,得(n-2)•180=1260,解得:n=9.故答案为:9.【点睛】此题考查了多边形内角和以及多边形内角和外角的关系,解题的关键是熟练掌握多边形内角和以及多边形内角和外角的关系.18.2x (x ﹣2)2【分析】先提取公因式,然后利用完全平方公式因式分解即可.【详解】解:()223288244-+=-+=x x x x x x 2x (x ﹣2)2故答案为:2x (x ﹣2)2.【点睛】此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.19.12cm【分析】因为AD 是∠BAC 的平分线,∠BAC =60°,在Rt △ACD 中,可利用勾股定理求得DC ,进一步求得AC ;求得∠ABC =30°,在Rt △ABC 中,可求得AB ,最后利用勾股定理求出BC .【详解】∵AD 是∠BAC 的平分线,∠BAC =60°,∴∠DAC =30°,∴DC =12AD =4cm ,∴AC∵在△ABC 中,∠C =90°,∠BAC =60°,∴∠ABC =30°,∴AB =2AC =∴BC =12cm .故答案为:12cm .【点睛】本题考查了角平分线的定义,含30°直角三角形的性质,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.20.8【详解】解:∵AB 的垂直平分线交AB 于D ,∴AE=BE又△EBC 的周长为21cm ,即BE+CE+BC=21∴AE+CE+BC=21又AE+CE=AC=13cm所以BC=21-13=8cm .故答案为:8.【点睛】考点:线段垂直平分线的性质.21.(1)312a bc -;(2)8x 29+【分析】(1)根据单项式的乘法法则进行计算即可;(2)根据完全平方公式、平方差公式进行计算即可.【详解】(1)原式=242233464ab c a b a b -⋅÷=542336a b c a b -÷=312a bc -(2)解:原式=24(1)(25)(25)x x x +--+=224x 8x 44x 25++-+=8x 29+【点睛】本题考查了整式的混合运算,掌握单项式的乘法法则和完全平方公式、平方差公式是解题的关键.22.(1)1a +;(2)4x =-【分析】(1)先进行化简,然后将a 的值代入求解;(2)根据分式方程的解法求解.【详解】(1)原式=211()1121a a a a a a +-÷++++=2121a a a a a ÷+++=2211a a a a a++⋅+=2(1)1a a a a+⋅+=1a +当1a =时,原式=11+=(2)原方程可化为:31(3)(3)3x x x x +=+--方程两边乘()(33)x x +-得:3(3)(3)(3)x x x x ++=+-22339x x x ++=-22393x x x +-=--312x =-4x =-检验:当4x =-时,(3)(3)0x x +-≠所以原方程的解是4x =-【点睛】本题考查了分式的化简求值、解分式方程等运算,掌握运算法则是解答本题的关键.23.(1)作图见解析;(2)A 2(2,﹣3),B 2(3,﹣1),C 2(﹣2,2);(3)6.5【分析】(1)先得到△ABC 关于y 轴对称的对应点,再顺次连接即可;(2)先得到△ABC 关于x 轴对称的对应点,再顺次连接,并且写出△ABC 关于x 轴对称的△A 2B 2C 2的各点坐标即可;(3)利用矩形的面积减去三个顶点上三角形的面积即可.【详解】解:(1)如图所示:(2)如图所示:A 2(2,﹣3),B 2(3,﹣1),C 2(﹣2,2).(3)11155351254257.5110 6.5222ABC S =⨯-⨯⨯⨯⨯⨯⨯== -----.24.(1)见解析;(2)见解析【分析】(1)首先根据角平分线的性质得出OB OE =,然后通过线段中点和等量代换得出OD OE =,最后根据角平分线的性质定理的逆定理得出结论即可;(2)首先根据HL 证明Rt BEP Rt PFQ △≌△,得出AB AE =,同理可得CD CE =,最后通过等量代换即可得出结论.【详解】(1)如图,过点O 作OE AC ⊥于点E ,OA 平分∠BAC ,∠ABD=90°,OE AC ⊥,OB OE ∴=.∵点O 为BD 的中点,OB OD ∴=,OD OE ∴=.∵∠ABD=90°,OE AC ⊥,∴OC 平分∠ACD ;(2)在Rt ABO 和Rt AEO 中,OB OE AO AO=⎧⎨=⎩()Rt BEP Rt PFQ HL ∴△≌△,AB AE =∴,同理可得,CD CE =.AC AE CE =+ ,AC AB CD ∴=+.【点睛】本题主要考查角平分线的性质定理及逆定理,直角三角形的判定及性质,掌握这些性质及判定是解题的关键.25.(1)详见解析;(2)60°;(3)7.【分析】(1)根据SAS 证明△ABE 与△CAD 全等即可;(2)根据全等三角形的性质得出∠ABE =∠CAD ,进而解答即可;(3)根据含30°的直角三角形的性质解答即可.【详解】(1)证明:∵△ABC 为等边三角形,∴AB =AC ,∠BAC =∠C =60°,又∵AE =CD ,在△ABE 与△CAD 中,AB AC =⎧⎪⎨⎪⎩∠BAC=∠C AE=CD ,∴△ABE ≌△CAD (SAS ),∴BE =AD ;(2)解:由(1)得∠ABE =∠CAD AD =BE ,∴∠BPQ =∠BAD+∠ABE=∠BAD+∠CAD=60°;(3)解:∵BQ ⊥AD ,∠BPQ =60°,∴∠PBQ=30°,∴BP=2PQ=6,又∵AD=BE,∴AD=BE=BP+PE=6+1=7.【点睛】本题考查全等三角形的性质及含30度角的直角三角形,解题突破口是根据全等三角形的性质得出∠ABE=∠CAD.26.50【分析】设原计划每小时检修管道为xm,故实际施工每天铺设管道为1.2xm.等量关系为:原计划完成的天数﹣实际完成的天数=2,根据这个关系列出方程求解即可.【详解】解:设原计划每小时检修管道x米.由题意,得60060021.2x x-=.解得x=50.经检验,x=50是原方程的解.且符合题意.答:原计划每小时检修管道50米.27.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF为等腰三角形.。
人教版八年级上学期期末考试数学试卷及答案(共5套)

人教版八年级上学期期末考试数学试卷(一)(满分:150分;考试时间:120分钟)★ 友情提示:① 所有答案都必须填在答题卡相应位置上,答在本试卷上一律无效. ② 试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.下列以长城为背景的标志设计中,不是轴对称图形的是2.下列各式计算正确的是A. B . C .623a a a =⋅ D . 3.在平面直角坐标系xOy 中,点M (1,2)关于轴对称点的坐标为 A .(1,-2)B. (-1,2)C. (-1,-2)D. (2,-1)4.在△ABC 中,作BC 边上的高,以下作图正确的是A .B .C .D .5.已知一个三角形两边的长分别为3和7,那么第三边的边长可能是下列各数中的A .10B .7C .4D .36.在ABC ∆、DEF ∆中,已知AB =DE ,BC =EF ,那么添加下列条件后,仍然无法判定ABC ∆≌DEF ∆的是A .AC =DFB .∠B =∠EC .∠C =∠FD .∠A =∠D =90o326(3)9x x -=222()a b a b -=-224x x x +=x E CBAE CB AD .C .A .B .E CBAECBA7.如果一个多边形的内角和是外角和的2倍,则这个多边形的边数是 A .4 B .5C .6D .78.若23y x =,则的值为A . 53B .52 C .35D .239.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长 为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =2,AB =6,则△ABD 的面积是 A .4 B .6 C .8D .1210.如图,在格的正方形网格中,与△ABC 有一条公共边且全等(不与△ABC 重合)的格点三角形(顶点在格点上的三角形)共有 A .5个 B .6 个 C .7个 D .8 个二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置)11. = .12.用科学记数法表示0.002 18= . 13.要使分式有意义,则x 的取值范围是 . 14.已知等腰三角形的底角为70°,则它的顶角为 °. 15.已知,,若,则= . 16.如图,△ABC 中,∠BAC =75°,BC =7,△ABC 的面积为14,D 为 BC 边上一动点(不与B ,C 重合),将△ABD 和△ACD 分别沿直线AB ,AC 翻折得到△ABE 与△ACF ,那么△AEF 的面积最小值x y x +55⨯()02-22xx -122+=n m 142+=m n 2m n ≠n m 2+(第16题图)DFECBA(第9题图)NBC为 .三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答) 17.(每小题4分,共8分)分解因式:(1)3x x -; (2).18.(每小题4分,共8分)计算:(1)2(4)a a a +-(+2); (2)532a b aa b a b----.19.(8分)先化简,再求值:,其中x =13.20.(8分)如图,点B ,F ,C ,E 在一条直线上,BF =CE , AB ∥DE ,∠A =∠D .求证:AC =DF .21.(8分)如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,E 是AC 边上的一点,且∠CBE =∠CAD .求证:BE ⊥AC .22.(10分)某商场家电专柜购进一批甲,乙两种电器,甲种电器共用了10 350元,乙种电器共用了9 600元,甲种电器的件数是乙种电器的1.5倍,甲种电器每件的进价比乙种电器每件的进价少90元. (1)甲、乙两种电器各购进多少件?(2)商场购进两种电器后,按进价提高40%后标价销售,很快全部售完,求售完这批电器商场共获利多少元?221218ax ax a -+x x x x x 22)242(2+÷-+-FEDCBA(第20题图) BDCE A(第21题图)23.(10分)如图,在Rt △ABC 中,∠BAC=90°,∠C=30°.(1)请在图中用尺规作图的方法作出AC 的垂直平分线交BC 于点D ,并标出D 点 (不写作法,保留作图痕迹) .(2)在(1)的条件下,连接AD ,求证:△ABD 是等边三角形.24.(12分)阅读材料:数学课上,吴老师在求代数式245x x -+的最小值时,利用公式2222()a ab b a b ±+=±,对式子作如下变形:22245441(2)1x x x x x -+=-++=-+, 因为≥0, 所以≥1, 当2=x 时,22)1x -+(=1, 因此22)1x -+(有最小值1,即245x x -+的最小值为1. 通过阅读,解下列问题:(1)代数式的最小值为 ; (2)求代数式229x x -++的最大或最小值;(3)试比较代数式2232237x x x x -+-与的大小,并说明理由.25.(14分)如图,在平面直角坐标系中,点 A ,B 的坐标分别为(0,3),(1,0),△ABC 是等腰直角三角形,∠ABC =90°. (1)图1中,点C 的坐标为 ;(2)如图2,点D 的坐标为(0,1),点E 在射线CD 上,过点B 作BF ⊥BE 交y 轴于点F .2(2)0x -≥2(2)11x -+≥2612x x ++BCA(第23题图)① 当点E 为线段CD 的中点时,求点F 的坐标;② 当点E 在第二象限时,请直接写出F 点纵坐标y 的取值范围.参考答案及评分说明 说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分. (2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分。
人教版八年级上册数学期末考试试卷及答案(2)

人教版八年级上册数学期末考试试题一、单选题1.下面四个图形分别是绿色食品、低碳、节能和节水标志,是轴对称图形的是()A .B .C .D .2.下列各组数中,不能构成三角形三条边长的是()A .5,9,11B .3,6,8C .3,5,8D .2,11,103.下列分式中,无论x 取何值,分式总有意义的是()A .212x B .2x x+C .311+x D .211x +4.下列式子计算错误的是()A .()532a a =B .222()ab a b =C .01a a a-÷=D .235a a a ⋅=5.如图,12,AC AD ∠=∠=,要使ABC AED ≌△△,还需添加一个条件,那么在以下条件中不能选择的是()A .AB AE =B .BC ED =C .C D∠=∠D .B E∠=∠6.下列选项中的尺规作图,能推出PA=PC 的是()A .B .C .D .7.计算2x x 2x 2---的结果是()A .0B .1C .-1D .x8.小明是一位密码编译爱好者,在他的密码手册中有这样一条信息:21,,2,1,,1a x y a x a --++分别对应下列六个字:西,爱,我,数,学,定.现将()()222121x a y a ---因式分解,结果呈现的密码信息可能是()A .我爱定西B .爱定西C .我爱学D .定西数学9.如果23m m +=,那么代数式2(2)(2)m m m -++的值为()A .14B .10C .7D .610.如图所示,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:①∠PBC =15°,②AD ∥BC ,③PC ⊥AB ,④四边形ABCD 是轴对称图形,其中正确的个数为()A .1个B .2个C .3个D .4个二、填空题11.若分式15x -有意义,则实数x 的取值范围是_______.12.用科学记数法表示数0.000065为______________.13.分解因式4x 2﹣4x+1=_____.14.在()中填上适当的项:a b c d a -+-=-(_____).15.若三角形三个内角度数的比为2:3:4,则此三角形是______三角形(填锐角、直角或钝角).16.通过学习我们已经知道三角形的三条内角平分线相交于一点.如图,P 是△ABC 的内角平分线的交点,已知点P 到边的AB 距离为2,△ABC 的周长为15,则△ABC 的面积为______.17.已知关于x 的分式方程3111m x x+=--的解是非负数,则m 的取值范围是__________.18.如图,已知:30MON ∠=︒,点1A 、2A 、3A 、…在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、334A B A △…均为等边三角形,若11OA =,则1n n n A B A +△的边长为__________.19.如图,已知△ABC ≌△DCB ,∠BDC=35°,∠DBC=50°,则∠ABD=________.三、解答题20.计算:4(3)2(62)xy y y xy ⋅-++.21.计算:2(2)()()2x y x y x y y ⎡⎤---+÷⎣⎦.22.解方程:13322x x x-=---.23.如图,已知点B 、F 、C 、E 在一条直线上,BF =CE ,AC =DF ,且AC ∥DF .求证:∠B =∠E.24.先化简,再求值:21111a a a a -⎛⎫-÷⎪++⎝⎭,最后选择一个你喜欢的数作为a 的值代入求值.25.如图,在ABC 中,AB AC =,30∠=︒C ,AB AD ⊥,3DC =,求BD 的长.26.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,求购进的第一批医用口罩有多少包?27.我们在课堂上学习了运用提取公因式法、公式法等分解因式的方法,但单一运用这些方法分解某些多项式的因式时往往无法分解.例如22691a ab b ++-,通过观察可知,多项式的前三项符合完全平方公式,通过变形后可以与第四项结合再运用平方差公式分解因式,解题过程如下:222691(3)1(31)(31)a ab b a b a b a b ++-=+-=+++-,我们把这种分解因式的方法叫做分组分解法.利用这种分解因式的方法解答下列各题:(1)分解因式:2221--+xy x .(2)若ABC 三边,,a b c 满足2220a bc ac ab -+-=,试判断ABC 的形状,并说明理由.28.问题发现:(1)如图1,在ABC 中,,,AC BC D E =分别在,AC BC 上,若CD CE =,则CDE 和CAB △是顶角相等的等腰三角形,连接,AE BD ,则,,AEB C CAE ∠∠∠的数量关系是_______,,AD BE 的数量关系是________.拓展探究:(2)如图2,ACB △和DCE 均为等边三角形,点,,A D E 在同一直线上,连接BE .试求AEB ∠的度数及线段,AD BE 之间的数量关系.解决问题:(3)如图3,ACB △和DCE 均为等腰直角三角形,90ACB DCE ∠=∠=︒,点,,A D E 在同一直线上,CM 为DCE 中DE 边上的高,连接BE .试求AEB ∠的度数及线段,,CM AE BE 之间的数量关系.参考答案1.A 2.C 3.D4.A 5.B 6.D 7.C 8.A 9.B 10.D 11.5x ≠12.56.510-⨯13.(2x ﹣1)214.b c d -+15.锐角【详解】设三个内角分别为:2x ,3x ,4x ,则2x+3x+4x=180°,故x=20°,则4x=80°,∴此三角形为锐角三角形.故答案为锐角.16.15【分析】连接PA 、PB 、PC ,过点P 作PD ⊥AB 于D ,PE ⊥BC 于E ,PF ⊥AC 于F ,根据角平分线的性质得到PE=PF=PD=2,根据三角形的面积公式计算,得到答案.【详解】解:连接PA 、PB 、PC ,过点P 作PD ⊥AB 于D ,PE ⊥BC 于E ,PF ⊥AC 于F ,∵点P 是△ABC 的内角平分线的交点,PD ⊥AB ,PE ⊥BC ,PF ⊥AC ,∴PE=PF=PD=2,∴S △ABC=12AB•PD+12BC•PE+12AC•PF=12×2×15=15,故答案为:15.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.2m ≥且3m ≠【分析】解出分式方程,根据解是非负数求出m 的取值范围,再根据x =1是分式方程的增根,求出此时m 的值,得到答案.【详解】去分母得,m−3=x−1,解得x =m−2,由题意得,m−2≥0,解得,m≥2,x =1是分式方程的增根,所有当x =1时,方程无解,即m≠3,所以m 的取值范围是m≥2且m≠3.故答案为:m≥2且m≠3.【点睛】本题考查的是分式方程的解法和一元一次不等式的解法,理解分式方程的增根的判断方法是解题的关键.18.12.n -【分析】由等边三角形的性质得出11260∠=︒B A A ,证明1130∠=︒OB A ,1290OB A ∠=︒,则1112212MON OB A B A OA ∠=∠=,,推出111OA A B =,112OA A A =,同理,23322312B A OA OA A A ==,,…,记各等边三角形的边长依次为:123,,,n a a a a 则111,a OA ==221221,a OA OA ===⨯22331221,a OA OA ===⨯33441221,a OA OA ===⨯…,从而可得出结果.【详解】解:∵112A B A △是等边三角形,∴11260∠=︒B A A ,∵∠MON=30°,∴1130∠=︒OB A ,1290OB A ∠=︒,∴1112212MON OB A B A OA ∠=∠=,,∴111OA A B =,∴112OA A A =,同理,23322312B A OA OA A A ==,,…,记各等边三角形的边长依次为:123,,,n a a a a ∴111,a OA ==221221,a OA OA ===⨯22331221,a OA OA ===⨯33441221,a OA OA ===⨯…,11112212,n n n n n a OA OA ---∴===⨯=∴1n n n A B A +△的边长为12.n -故答案为:12.n -19.45°.【详解】解:∵∠BDC=35°,∠DBC=50°,∴∠BCD=180°﹣∠BDC ﹣∠DBC=180°﹣35°﹣50°=95°,∵△ABC ≌△DCB ,∴∠ABC=∠BCD=95°,∴∠ABD=∠ABC ﹣∠DBC=95°﹣50°=45°.故答案为45°.20.4y【分析】根据单项式乘单项式和单项式乘多项式的法则展开,合并同类项即可.【详解】解:4(3)2(62)xy y y xy ⋅-++2212124xy xy y=-++4y =.【点睛】本题考查了单项式乘单项式和单项式乘多项式的法则,掌握单项式与多项式相乘,根据乘法分配律,用单项式去乘多项式的每一项,再把所得的积相加是解题的关键.21.522x y -+【分析】根据完全平方公式、平方差公式及整式的各运算法则进行计算即可.【详解】解:原式()22222455442222xy y x xy y x y y x y y -+=-+-+÷==-+.【点睛】本题考查了整式的混合运算,熟练掌握各运算法则及公式是解题的关键.22.1x =【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘(2x -),得133(2)x x -=---.解这个整式方程,得1x =.经检验,1x =是原分式方程的解所以原分式方程的解的为1x =.23.见解析【分析】先证出BC=EF ,∠ACB=∠DFE ,再证明△ACB ≌△DFE ,得出对应角相等即可.【详解】证明:∵BF=CE ,∴BC=EF ,∵AC ∥DF ,∴∠ACB=∠DFE ,在△ACB 和△DFE 中,BC EFACB DFE AC DF =⎧⎪∠=∠⎨⎪=⎩,∴△ACB ≌△DFE (SAS ),∴∠B=∠E .24.11a -,1【分析】根据分式的运算法则化简,再根据分式有意义的条件选择合适的值代入即可.【详解】解:原式(1)11a a a a a -=÷++=a a 1a 1a(a 1)+⋅+-=11a -,由分式有意义的条件即可知:2a =,原式=1.25.BD 的长是6.【分析】先由题意算出∠BAC=120°,从而算出∠DAC=30°,即可利用DC=3,算出BD 的长.【详解】证明:∵AB AC =,30∠=︒C ,∴30B C ∠=∠=︒(等边对等角),∴120BAC ∠=︒(三角形的内角和是180︒),∵AB AD ⊥,∴90BAD ∠=︒(垂直定义),∴1209030DAC BAC BAD ∠=∠-∠=︒-︒=︒,∴30DAC C ∠=∠=︒,∴3AD DC ==(等角对等边),在Rt △ABD 中,30B ∠=︒,∴26BD AD ==(在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边是斜边的一半),答:BD 的长是6.26.2000包【分析】设购进的第一批医用口罩有x 包,根据“每包口罩的进价比第一批每包口罩的进价多0.5元”列出方程并解答.【详解】解:设购进的第一批医用口罩有x 包,则400075000.5(150%)x x=-+,解得:2000x =,经检验2000x =是原方程的根.答:购进的第一批医用口罩有2000包.27.(1)(1)(1)x y x y +---(2)等腰三角形,见解析【分析】(1)先分组,再利用完全平方公式和平方差公式继续分解即可;(2)先把所给等式左边利用分组分解法得到()(2)0a b a c -+=,由于20a c +≠,则0a b -=,即a b =,然后根据等腰三角形的判定方法进行解题.(1)解:原式()222221(1)(1)(1)x x y x y x y x y =-+-=--=+---;(2)ABC 的为等腰三角形.理由:22220,220a bc ac ab a ab ac bc -+-=∴-+-= ,()2()0,()(2)0a a b c a b a b a c ∴-+-=∴-+=,20,0,a c a b a b +>∴-=∴=Q ABC ∴ 是等腰三角形.28.(1),AEB C CAE AD BE ∠=∠+∠=;(2)60︒,AD BE =;(3)90︒,2AE CM BE =+.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得AEB C CAE ∠=∠+∠,由AC BC =,CD CE =容易得AD BE =;(2)由等边三角形的性质先找ACD BCE ∠=∠,然后证明≌ACD BCE V V ,从而可以得出答案;(3)由ACB △和DCE 均为等腰直角三角形可得ACD BCE ∠=∠,进而得到(SAS)ACD BCE ≌,从而即可得出答案.【详解】解:(1),AEB C CAE AD BE ∠=∠+∠=,理由如下:AEB ∠是ACE △的一个外角,∴AEB C CAE ∠=∠+∠,AC BC =,CD CE =,∴AD BE =,故答案是:,AEB C CAE AD BE ∠=∠+∠=;(2)60AEB ∠=︒,AD BE =,理由如下:ACB 和DCE 均为等边三角形,,,60CA CB CD CE ACB DCE ∴==∠=∠=︒,ACB DCB DCE DCB ∴∠-∠=∠-∠,即ACD BCE ∠=∠.11 在ACD 和BCE 中,,,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ACD BCE ∴ ≌,,ADC BEC AD BE ∴∠=∠=.DCE 为等边三角形,60CDE CED ∴∠=∠=︒.点,,A D E 在同一直线上,120ADC ∴∠=︒,120BEC ∴∠=︒,60AEB BEC CED ∴∠=∠-∠=︒.(3)90AEB ∠=︒,2AE CM BE =+,理由如下:ACB 和DCE 均为等腰直角三角形,90ACB DCE ∠=∠=︒,,,AC BC CD CE ACB DCB DCE DCB ∴==∠-∠=∠-∠,即ACD BCE ∠=∠.在ACD 和BCE 中,,,,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE ∴ ≌,,18045135AD BE BEC ADC ∴=∠=∠=︒-︒=︒,1354590AEB BEC CED ∴∠=∠-∠=︒-︒=︒.DCE 是等腰直角三角形,CM 为斜边DE 上的高,CM DM ME ∴==,2DE CM ∴=,2AE DE AD CM BE ∴=+=+.。
新人教版八年级(上)期末数学检测卷2——数学人教版8年级册期中期末试卷及答案(73份)

20××-20××学年新人教版八年级(上)期末数学检测卷2一、选择题(每小题3分,共24分)1.(3分)下列图案中不是轴对称图形的是()A.B.C.D.2.(3分)下列运算结果正确的是()A.a3•a4=a12B.(a2)3=a6C.(3a)3=3a3D.a(a+1)=a2+13.(3分)下列说法中:①三条线段组成的图形叫做三角形;②三角形的角平分线是射线;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部;④三角形的三条中线相交于一点,且这点一定在三角形的内部.其中正确的有()A.4个B.3个C.2个D.1个4.(3分)下列说法不正确的是()A.在锐角三角形中,最大的锐角x的取值范围是60°≤x<90°B.在△ABC中,锐角的个数最多C.在△ABC中三个内角α:β:γ=1:3:5,这个三角形是直角三角形D.一个三角形中至多有一个角是锐角5.(3分)下列条件中,能判定△ABC≌△DEF的是()A.A B=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE6.(3分)下列分解因式正确的是()A.m3﹣m=m(m﹣1)(m+1)B.x2﹣x﹣6=x(x﹣1)﹣6 C.2a2+ab+a=a(2a+b)D.x2﹣y2=(x﹣y)2 7.(3分)对于分式,当x=﹣时,下列说法中:①分式值一定为0;②分式一定有意义;③当a=﹣时,分式无意义.其中正确的个数有()A.3个B.2个C.1个D.0个8.(3分)(20×ו齐齐哈尔)如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B 与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)9.(3分)(20×ו鞍山一模)已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为_________.10.(3分)化简:(a2b)﹣2(a﹣1b﹣2)﹣3=_________.11.(3分)(20×ו青羊区一模)如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为_________.12.(3分)如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为_________.13.(3分)如果(a+b)2=19,a2+b2=14,则(a﹣b)2=_________.14.(3分)如图,在△ABC中,AB=a,AC=b,∠BAC=150°,则S△ABC=_________.15.(3分)(20×ו海门市二模)如图,在△ABC中,AD为BC边上的中线.已知AC=5,AD=4,则AB的取值范围是_________.16.(3分)(20×ו襄阳)关于x的分式方程的解为正数,则m的取值范围是_________.三、解答题(其中17,18题各9分,19,21,22,24,26题各10分,20题12分,23题8分,25题14分,共102分)17.(9分)已知2x+y=4,求代数式[(x+y)2﹣(x﹣y)2﹣2y(x﹣y)]÷4y的值.18.(9分)(1)计算:÷(a﹣).(2)解方程:+=.19.(10分)(20×ו德州)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)20.(12分)如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BD=CE,∠DEF=∠B.图中是否存在和△BDE全等的三角形?说明理由.21.(10分)(20×ו河北)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?22.(10分)(20×ו日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.23.(8分)某种产品的原料降价,因而厂家决定对产品进行降价.现有两种方案:方案1:第一次降价p%,第二次降价q%.方案2:第一、二次降价均为%.其中p,q是不相等且使此情境有意义的正数,两种方案哪种降价最多?24.(10分)一块原边长分别为a,b(a>1,b>1)的长方形,一边增加1,另一边减少1.(1)当a=b时,变化后的面积是增加还是减少?(2)当a>b时,有两种方案,第一种方案如图1,第二种方案如图2.请你比较这两种方案,确定哪一种方案变化后的面积比较大.25.(14分)(20×ו黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN (1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.26.(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为点E,DE与AB相交于点F.当AB=AC时(如图所示).(1)∠EBF=_________.(2)探究线段BE与FD的数量关系,并加以证明.20××-20××学年新人教版八年级(上)期末数学检测卷2参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列图案中不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)下列运算结果正确的是()A.a3•a4=a12B.(a2)3=a6C.(3a)3=3a3D.a(a+1)=a2+1考点:单项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方.分析:同底数幂的乘法、幂的乘方、积的乘方,单项式乘多项式的法则分别进行计算即可.解答:解:A、a3•a4=a7,故本选项错误;B、(a2)3=a6,故本选项正确;C、(3a)3=27a3,故本选项错误;D、a(a+1)=a2+a,故本选项错误;故选B.点评:此题考查了同底数幂的乘法、幂的乘方、积的乘方,单项式乘多项式,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.3.(3分)下列说法中:①三条线段组成的图形叫做三角形;②三角形的角平分线是射线;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部;④三角形的三条中线相交于一点,且这点一定在三角形的内部.其中正确的有()A.4个B.3个C.2个D.1个考点:三角形的角平分线、中线和高.分析:根据三角形的定义,三角形的角平分线、高线、中线对各选项分析判断后利用排除法求解.解答:解:①应为三条线段首尾顺次相接组成的图形叫做三角形,故本小题错误;②三角形的角平分线是线段,故本小题错误;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部,也有可能是直角三角形的直角顶点,故本小题错误;④三角形的三条中线相交于一点,且这点一定在三角形的内部正确,综上所述,正确的有④共1个.故选D.点评:本题考查了三角形的定义,以及三角形的角平分线、高线、中线,是基础题,需熟记.4.(3分)下列说法不正确的是()A.在锐角三角形中,最大的锐角x的取值范围是60°≤x<90°B.在△ABC中,锐角的个数最多C.在△ABC中三个内角α:β:γ=1:3:5,这个三角形是直角三角形D.一个三角形中至多有一个角是锐角考点:三角形内角和定理.分析:根据三角形内角和定理可以进行判断.解答:解:A、正确;B、在△ABC中,至少有2个锐角,故正确;C、在△ABC中三个内角α:β:γ=1:3:5,则α+β<γ,γ是钝角,因而是钝角三角形.故错误;D、一个三角形中至多有两个角是锐角,故错误.故选C.点评:本题考查了三角形内角和定理,一个三角形中至多有两个角是锐角,最多有一个直角或一个钝角.5.(3分)下列条件中,能判定△ABC≌△DEF的是()A.A B=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE考点:全等三角形的判定.分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,看看已知是否符合条件,即可得出答案.解答:解:A、根据AB=DE,BC=EF和∠A=∠D不能判定两三角形全等,故本选项错误;B、根据∠A=∠D,∠C=∠F,AC=DF才能得出两三角形全等,故本选项错误;C、根据∠B=∠E,∠A=∠D,AC=DF才能得出两三角形全等,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF(ASA),故本选项正确;故选D.点评:本题考查了全等三角形的判定定理,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②应对应相等,符合条件才能得出两三角形全等.6.(3分)下列分解因式正确的是()A.m3﹣m=m(m﹣1)(m+1)B.x2﹣x﹣6=x(x﹣1)﹣6 C.2a2+ab+a=a(2a+b)D.x2﹣y2=(x﹣y)2考点:提公因式法与公式法的综合运用.分析:根据提公因式法和公式法分别分解因式,从而可判断求解.解答:解:A、m3﹣m=m(m2﹣1)=m(m﹣1)(m+1),故此选项正确;B、x2﹣x﹣6=(x﹣3)(x+2),故此选项错误;C、2a2+ab+a=a(2a+b+1),故此选项错误;D、x2﹣y2=(x﹣y)(x+y),故此选项错误;故选:A.点评:本题主要考查提公因式法与公式法分解因式综合运用,能熟练地运用提公因式法分解因式是解此题的关键.7.(3分)对于分式,当x=﹣时,下列说法中:①分式值一定为0;②分式一定有意义;③当a=﹣时,分式无意义.其中正确的个数有()A.3个B.2个C.1个D.0个考点:分式的值为零的条件;分式有意义的条件.分析:分式有意义:分母不等于零;分式无意义:分式等于零;分式的值等于零:分子等于零,且分母不等于零.解答:解:当x=﹣时,分子2x+a=0,当x=时,分母3x﹣1=0,当﹣=,即a=﹣时,分母3x﹣1=0.综上所述,正确的说法是③.故选C.点评:本题考查了分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.(3分)(20×ו齐齐哈尔)如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B 与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A.1个B.2个C.3个D.4个考点:翻折变换(折叠问题);全等三角形的判定与性质;锐角三角函数的定义.专题:几何综合题;压轴题.分析:根据折叠的知识,锐角正切值的定义,全等三角形的判定,面积的计算判断所给选项是否正确即可.解答:解:①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知)∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,,∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°﹣45°﹣67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;正确的有3个,故选C.点评:综合考查了有折叠得到的相关问题;注意由对称也可得到一对三角形全等;用到的知识点为:三角形的中线把三角形分成面积相等的2部分;两条平行线间的距离相等.二、填空题(每小题3分,共24分)9.(3分)(20×ו鞍山一模)已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为40°或100°.考点:等腰三角形的性质;三角形内角和定理.专题:计算题;分类讨论.分析:首先知有两种情况(顶角是40°和底角是40°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.解答:解:△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.点评:本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论.10.(3分)化简:(a2b)﹣2(a﹣1b﹣2)﹣3=.考点:负整数指数幂.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式=•a3b6=.故答案为:.点评:本题考查的是负整数指数幂,熟知负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.11.(3分)(20×ו青羊区一模)如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.考点:线段垂直平分线的性质.专题:计算题.分析:首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.解答:解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.点评:本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.12.(3分)如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为12.考点:线段垂直平分线的性质;等腰三角形的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,根据等腰三角形性质求出∠C=∠B=30°,根据线段垂直平分线求出AF=BF=2EF=4,求出CF=2AF=8,即可求出答案.解答:解:连接AF,∵AC=AB,∴∠C=∠B=30°,∵EF是AB的垂直平分线,∴AF=BF,∴∠B=∠FAB=30°,∴∠CFA=30°+30°=60°,∴∠CAF=180°﹣∠C﹣∠CFA=90°,∵EF⊥AB,EF=2,∴AF=BF=2EF=4,∵∠C=30°,∠CAF=90°,∴CF=2AF=8,∴BC=CF+BF=8+4=12,故答案为:12.点评:本题考查了等腰三角形性质,线段垂直平分线性质,含30度角的直角三角形性质等知识点的应用,关键是求出CF和BF的长,题目比较典型,难度不大13.(3分)如果(a+b)2=19,a2+b2=14,则(a﹣b)2=9.考点:完全平方公式.专题:计算题.分析:先根据完全平方公式得到a2+2ab+b2=19,则2ab=5,再根据完全平方公式得(a﹣b)2=a2﹣2ab+b2,把a2+b2=14,2ab=5代入计算即可.解答:解:∵(a+b)2=19,即a2+2ab+b2=19,而a2+b2=14,∴14+2ab=19,∴2ab=5,∴(a﹣b)2=a2﹣2ab+b2=14﹣5=9.故答案为9.点评:本题考查了完全平方公式:a2±2ab+b2=(a±b)2,也考查了代数式的变形能力以及整体思想的运用.14.(3分)如图,在△ABC中,AB=a,AC=b,∠BAC=150°,则S△ABC=ab.考点:含30度角的直角三角形.分析:作CD⊥AB于点D,在直角三角形ACD中利用直角三角形的性质定理求得CD的长,然后根据三角形的面积公式即可求解.解答:解:作CD⊥AB于点D.∵在直角三角形ACD中,∠CAD=180°﹣∠BAC=30°,∴CD=AC=b,则S△ABC=AB•CD=a•b=ab.故答案是:ab.点评:本题考查了直角三角形的性质:30度的锐角所对的直角边等于斜边的一半,正确作出辅助线是关键.15.(3分)(20×ו海门市二模)如图,在△ABC中,AD为BC边上的中线.已知AC=5,AD=4,则AB的取值范围是3<AB<13.考点:三角形三边关系;全等三角形的判定与性质.分析:延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得CE=AB,然后根据三角形的任意两边之和大于第三边,两边之差小于第三边解答.解答:解:延长AD到E,使DE=AD,连接CE,则AE=2AD=2×4=8,∵AD是BC边上的中线,∴BD=CD,∵在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB,又∵AC=5,∴5+8=13,8﹣5=3,∴3<CE<13,即AB的取值范围是:3<AB<13.故答案为:3<AB<13.点评:本题考查了全等三角形的判定与性质,“遇中线加倍延”作辅助线构造出全等三角形是解题的关键.16.(3分)(20×ו襄阳)关于x的分式方程的解为正数,则m的取值范围是m>2且m≠3.考点:分式方程的解.专题:计算题;压轴题.分析:方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.解答:解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.点评:本题考查了分式方程的解,要注意分式的分母不为0的条件,此题是一道易错题,有点难度.三、解答题(其中17,18题各9分,19,21,22,24,26题各10分,20题12分,23题8分,25题14分,共102分)17.(9分)已知2x+y=4,求代数式[(x+y)2﹣(x﹣y)2﹣2y(x﹣y)]÷4y的值.考点:整式的混合运算—化简求值.分析:先根据整式混合运算的法则把原式进行化简,再把2x+y=4代入进行计算即可.解答:解:原式=[x2+y2+2xy﹣x2﹣y2+2xy﹣2xy+y2]÷4y=(2xy+y2)÷4y=(2x+y)=×4=1.点评:本题考查的是整式的混合运算,熟知整式混合运算的法则是解答此题的关键.18.(9分)(1)计算:÷(a﹣).(2)解方程:+=.考点:解分式方程;分式的混合运算.专题:计算题.分析:(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果;(2)方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=•=;(2)去分母得:2(3x﹣1)+3x=1,去括号得:6x﹣2+3x=1,解得:x=,经检验x=是增根,原分式方程无解.点评:此题考查了解分式方程,以及分式的混合运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(10分)(20×ו德州)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)考点:作图—应用与设计作图.分析:根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.(1)作两条公路夹角的平分线OD或OE;(2)作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.解答:解:作图如下:C1,C2就是所求的位置.注:本题学生能正确得出一个点的位置得(6分),得出两个点的位置得(8分).点评:此题考查了作图﹣应用与设计作图,本题的关键是:①对角平分线、线段垂直平分线作法的运用,②对题意的正确理解.20.(12分)如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BD=CE,∠DEF=∠B.图中是否存在和△BDE全等的三角形?说明理由.考点:全等三角形的判定;等腰三角形的性质.分析:根据已知得出∠BDE=∠CEF,再得出∠B=∠C,利用角边角得出三角形全等.解答:解:△CEF≌△BDE.(1分)理由如下:∵∠DEF=∠B,∠DEC=∠B+∠BDE=∠DEF+∠CEF,(已知)(三角形外角的性质)(等量代换),∴∠BDE=∠CEF.(等式的性质)(3分),在△ABC中,∵AB=AC,(已知),∴∠B=∠C.(等边对等角)(4分)在△CEF和△BDE中,,(5分)∴△CEF≌△BDE.(角边角)(6分)点评:此题主要考查了三角形的全等判定,根据题意得出∠BDE=∠CEF是解决问题的关键.21.(10分)(20×ו河北)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?考点:分式方程的应用;一元一次不等式的应用.专题:应用题.分析:(1)将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可;(2)设甲整理y分钟完工,根据整理时间不超过30分钟,列出一次不等式解之即可.解答:解:(1)设乙单独整理x分钟完工,根据题意得:,解得x=80,经检验x=80是原分式方程的解.答:乙单独整理80分钟完工.(2)设甲整理y分钟完工,根据题意,得,解得:y≥25,答:甲至少整理25分钟完工.点评:分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.22.(10分)(20×ו日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.考点:全等三角形的判定与性质;等边三角形的判定与性质;等腰直角三角形.专题:证明题;压轴题.分析:(1)根据等腰直角△ABC,求出CD是边AB的垂直平分线,求出CD平分∠ACB,根据三角形的外角性质求出∠BDE=∠CDE=60°即可.(2)连接MC,可得△MDC是等边三角形,可求证∠EMC=∠ADC.再证明△ADC≌△EMC即可.解答:证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=15°+45°=60°,∴∠BDE=∠DBA+∠BAD=60°;∴∠CDE=∠BDE,即DE平分∠BDC.(2)如图,连接MC.∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,即CM=CD.∠DMC=∠MDC=60°,∵∠ADC+∠MDC=180°,∠DMC+∠EMC=180°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM.在△ADC与△EMC中,,∴△ADC≌△EMC(AAS),∴ME=AD=BD.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等边三角形的判定与性质的等知识点,难易程度适中,是一道很典型的题目.23.(8分)某种产品的原料降价,因而厂家决定对产品进行降价.现有两种方案:方案1:第一次降价p%,第二次降价q%.方案2:第一、二次降价均为%.其中p,q是不相等且使此情境有意义的正数,两种方案哪种降价最多?考点:整式的混合运算.专题:应用题.分析:设该产品原价为a元,根据题意列出两种方案的价格,利用作差法比较大小即可.解答:解:设该产品的原价是a元,根据题意得:方案1的价格为:a(1﹣p%)(1﹣q%),方案2的价格为:a(1﹣%)2,则a(1﹣p%)(1﹣q%)﹣a(1﹣%)2=﹣(q%﹣p%)2,∵p≠q,∴﹣(q%﹣p%)2<0,则方案1降价多.点评:此题考查了整式的混合运算,弄清题意是解本题的关键.24.(10分)一块原边长分别为a,b(a>1,b>1)的长方形,一边增加1,另一边减少1.(1)当a=b时,变化后的面积是增加还是减少?(2)当a>b时,有两种方案,第一种方案如图1,第二种方案如图2.请你比较这两种方案,确定哪一种方案变化后的面积比较大.考点:整式的混合运算.分析:(1)根据题意得出算式,求出两式的差,再判断即可;(2)求出两种方案的算式,求出两式的差,再判断即可.解答:解:(1)设原来长方形的面积是S1,变化后的长方形的面积是S2,根据题意得:S=ab,S2=(a+1)(b﹣1)=ab+b﹣a﹣1,∴S2﹣S1=ab+b﹣a﹣1﹣ab=b﹣a﹣1,∵a=b,∴b﹣a﹣1=﹣1<0,∴S2<S1,∴变化后面积减小了.(2)方案1,S1=(a+1)(b﹣1)=ab﹣a+b﹣1,方案2,S2=(a﹣1)(b+1)=ab+a﹣b﹣1,∴S1﹣S2=﹣2a+2b=﹣2(a﹣b),∵a>b,∴S1﹣S2<0,∴方案2变化后面积大.点评:本题考查了整式的混合运算的应用,关键是能根据题意列出算式.25.(14分)(20×ו黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.考点:旋转的性质;全等三角形的判定与性质;正方形的性质;梯形.专题:几何综合题.分析:(1)先判定梯形ABCD是等腰梯形,根据等腰梯形的性质可得∠A+∠BCD=180°,再把△ABM绕点B顺时针旋转90°,点A与点C重合,点M到达点M′,根据旋转变换的性质,△ABM和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,根据全等三角形对应角相等可得∠A=∠BCM′,∠ABM=∠M′BC,然后证明M′、C、N三点共线,再利用“边角边”证明△BMN和△BM′N全等,然后根据全等三角形对应边相等即可得证;(2)在∠CBN内部作∠CBM′=∠ABM交CN于点M′,然后证明∠C=∠BAM,再利用“角边角”证明△ABM 和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,再证明∠MBN=∠M′BN,利用“边角边”证明△MBN和△M′BN全等,根据全等三角形对应边相等可得MN=M′N,从而得到MN=CN﹣AM.解答:解:(1)MN=AM+CN.理由如下:如图,∵BC∥AD,AB=BC=CD,∴梯形ABCD是等腰梯形,∴∠A+∠BCD=180°,把△ABM绕点B顺时针旋转90°到△CBM′,则△ABM≌△CBM′,∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,∴∠BCM′+∠BCD=180°,∴点M′、C、N三点共线,∵∠MBN=∠ABC,∴∠M′BN=∠M′BC+∠CBN=∠ABM+∠CBN=∠ABC﹣∠MBN=∠ABC,∴∠MBN=∠M′BN,在△BMN和△BM′N中,∵,∴△BMN≌△BM′N(SAS),∴MN=M′N,又∵M′N=CM′+CN=AM+CN,∴MN=AM+CN;(2)MN=CN﹣AM.理由如下:如图,作∠CBM′=∠ABM交CN于点M′,∵∠ABC+∠ADC=180°,∴∠BAD+∠C=360°﹣180°=180°,又∵∠BAD+∠BAM=180°,∴∠C=∠BAM,在△ABM和△CBM′中,,∴△ABM≌△CBM′(ASA),∴AM=CM′,BM=BM′,∵∠MBN=∠ABC,∴∠M′BN=∠ABC﹣(∠ABN+∠CBM′)=∠ABC﹣(∠ABN+∠ABM)=∠ABC﹣∠MBN=∠ABC,∴∠MBN=∠M′BN,在△MBN和△M′BN中,∵,∴△MBN≌△M′BN(SAS),∴MN=M′N,∵M′N=CN﹣CM′=CN﹣AM,∴MN=CN﹣AM.点评:本题考查了旋转的性质,全等三角形的判定与性质,等腰梯形的两底角互补,利用旋转变换作辅助线,构造出全等三角形,把MN、AM、CN通过等量转化到两个全等三角形的对应边是解题的关键,本题灵活性较强,对同学们的能力要求较高.26.(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为点E,DE与AB相交于点F.当AB=AC时(如图所示).(1)∠EBF=22.5°.(2)探究线段BE与FD的数量关系,并加以证明.考点:全等三角形的判定与性质.专题:计算题.分析:(1)作DH⊥AB于H,根据等腰直角三角形的性质得∠ABC=∠C=45°,则∠EDB=∠C=22.5°,所以∠EBD=90°﹣22.5°=67.5°,然后根据∠EBF=∠EBD﹣∠ABC进行计算;(2)BE与DH的延长线交于G点,由DH∥AC得到∠BDH=45°,则△HBD为等腰直角三角形,于是HB=HD,由∠EBF=22.5°得到DE平分∠BDG,根据等腰三角形性质得BE=GE,即BE=BG,然后根据“AAS”证明△BGH≌△DFH,则BG=DF,所以BE=FD.解答:解:(1)作DH⊥AB于H,如图,∵∠A=90°,AB=AC,∴∠ABC=∠C=45°,∴∠EDB=∠C=22.5°,∵BE⊥DE,∴∠E=90°,∴∠EBD=90°﹣22.5°=67.5°,∴∠EBF=∠EBD﹣∠ABC=22.5°.(2)BE=FD.理由如下:BE与DH的延长线交于G点,如图,∵DH∥AC,∴∠BDH=∠C=45°,∴△HBD为等腰直角三角形∴HB=HD,而∠EBF=22.5°,∵∠EDB=∠C=22.5°,∴DE平分∠BDG,而DE⊥BG,∴BE=GE,即BE=BG,∵∠DFH+∠FDH=∠G+∠FDH=90°,∴∠DFH=∠G,∵∠GBH=90°﹣∠G,∠FDH=90°﹣∠G,∴∠GBH=∠FDH在△BGH和△DFH中,,∴△BGH≌△DFH(AAS),∴BG=DF,∴BE=FD.故答案为22.5°.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.第20页,共20页。
人教版八年级数学上册期末综合检测试卷带答案 (2)

人教版八年级数学上册期末综合检测试卷带答案一、选择题1.下列四个图形中,轴对称图形有( )个.A .1B .2C .3D .42.6月15日,莉莉在网络上查到了小区PM 2.5的平均浓度为0.000038克/立方米,0.000038用科学记数法表示为( ) A .43.810-⨯B .43.810⨯C .53.810-⨯D .53.810⨯3.已知4=m x ,6n x =,则2-m n x 的值为( ) A .10 B .83C .32D .234.若分式12x x +-有意义,则x 的取值范围是( ) A .x ≥2B .x ≠2且x ≠-1C .x ≠2D .x ≠-15.下列因式分解正确的是( ) A .22(1)2x x x x -+=-+ B .329(9)x x x x -=- C .22324(1)a a a -=-++D .2222(1)(1)-=+-x x x6.下列变形中,正确的是( ) A .1-=--a bb aB .0.330.5252a b a ba b a b++=--C .21111a a a -=-+ D .22b bc a ac= 7.如图,AC BC =,下列条件不能判定....△ACD 与△BCD 全等的是( )A .AD BD =B .ACD BCD ∠=∠C .ADC BDC ∠=∠D .点O 是AB 的中点8.若关于x 的方程4233x mx x--=--有增根,则m 的值为( ) A .3B .0C .1D .任意实数9.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是( )A .B .C .D .10.如图,在等边△ABC 中,AC =3,点O 在AC 上,且AO =1.点P 是AB 上一点(可移动),连接OP ,以线段OP 为一边作等边△OPD ,且O 、P 、D 三点依次呈逆时针方向,当点D 恰好落在边BC 上时,则AP 的长是( )A .1B .2C .3D .4二、填空题11.若242x x -+的值为零,则x 的值为______.12.点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称,则mn =______. 13.已知114ab-=,则aba b-的值是______. 14.已知3m a =,2n a =,则2m n a -的值为______.15.如图,在ABC ∆中,7AB cm =,5BC cm =,AC 的垂直平分线分别交AB ,AC 于点D ,E ,点F 是DE 上的任意一点,则BCF ∆周长的最小值是________cm .16.已知关于x 的二次三项式29x kx ++ 是完全平方式,则常数k 的值为_____. 17.若14x x+=,则221x x ⎛⎫+ ⎪⎝⎭的值是_________.18.如图,直线PQ 经过Rt △ABC 的直角顶点C ,△ABC 的边上有两个动点D 、E ,点D 以1cm /s 的速度从点A 出发,沿AC →CB 移动到点B ,点E 以3cm /s 的速度从点B 出发,沿BC →CA 移动到点A ,两动点中有一个点到达终点后另一个点继续移动到终点.过点D 、E 分别作DM ⊥PQ ,EN ⊥PQ ,垂足分别为点M 、N ,若AC =6cm ,BC =8cm ,设运动时间为t ,则当t =__________ s 时,以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.三、解答题19.分解因式 (1)224x y ;(2)a 2(x -y )+16(y -x ).20.先化简,再求值:2223111x x x x -⎛⎫-÷ ⎪--⎝⎭,其中x =2021. 21.如图,已知△ABC ≌△DEB ,点E 在AB 上,AC 与BD 交于点F ,AB =6,BC =3,∠C =55°,∠D =25°. (1)求AE 的长度; (2)求∠AED 的度数.22.如图,在ABC 中,C B ∠>∠,AD BC ⊥,AE 平分∠BAC .(1)计算:若30B ∠=︒,60C ∠=°,求∠DAE 的度数; (2)猜想:若50C B ∠-∠=︒,则DAE =∠______; (3)探究:请直接写出∠DAE ,∠C ,∠B 之间的数量关系.23.某服装店老板到厂家选购A 、B 两种品牌的夏季服装,每袋A 品牌服装进价比B 品牌服装每袋进价多25元,若用4000元购进A 种服装的数量是用1500元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别是多少元?(2)若A 品牌服装每套售价为150元,B 品牌服装每套售价为100元,服装店老板决定一次性购进两种服装共100套,两种服装全部售出后,要使总的获利不少于3500元,则最少购进A品牌服装多少套?24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释2()++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式a ab b a b分解.(1)图B可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片(如图C),试画出..一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2223++a ab b23a ab b++,并利用你所画的图形面积对22进行因式分解.25.如图①,在等边△ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O.(1)填空:∠BOC=度;(2)如图②,以CO为边作等边△OCF,AF与BO相等吗?并说明理由;(3)如图③,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由.26.如图1,在平面直角坐标系xOy中,直线AB与x轴交于点A、与y轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于y轴对称.(1)求△ABC的面积;(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;(3)如图3,点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.【参考答案】一、选择题 2.C 解析:C【分析】根据轴对称图形的定义,逐项判断即可求解. 【详解】解∶第一个图形不是轴对称图形, 第二个图形是轴对称图形, 第三个图形是轴对称图形, 第四个图形是轴对称图形, ∴轴对称图形有3个. 故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.3.C解析:C【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000038=53.810-⨯. 故选:C .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.B解析:B【分析】4=m x 根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:xm =4, 两边平方可得, x 2m =16,∴2-m n x =x 2m ÷xn =16÷683=,故选:B .【点睛】题考查了同底数幂的除法,先利用了幂的乘方得出要求的形式,再利用同底数幂的除法得出答案.5.C解析:C【分析】根据分式有意义的条件:分母不等于0即可得出答案. 【详解】解:∴20x -≠, ∴2x ≠. 故选:C .【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件:分母不等于0是解题的关键.6.D解析:D【分析】根据因式分解的概念以及方法逐项判断即可.【详解】A 、22(1)2x x x x -+-+=没有变为整式的积的形式,故A 选项错误; B 、32()()(9933)x x x x x x x -=-=+-,故B 选项错误;C 、()222413a a a -+=-+没有变为整式的积的形式,故C 选项错误; D 、22222(1)2(1)(1)x x x x -=-=+-,故D 选项正确, 故选:D .【点睛】本题考查了因式分解的概念,把一个多项式在实数范围内化为几个整式的积,这种式子变形叫做多项式的因式分解,掌握因式分解的概念是解答本题的关键.7.A0c 时,等号右边的式子没有意义,选项错误,不符合题意;A【点睛】此题考查了分式的性质,涉及了平方差公式,解题的关键是熟练掌握分式的有关性质.8.C解析:C【分析】根据全等三角形的判定定理,逐项判断即可求解. 【详解】解:∵AC BC =,CD =CD ,∴A 、可以利用边边边判定△ACD 与△BCD 全等,故本选项不符合题意;B、可以利用边角边判定△ACD与△BCD全等,故本选项不符合题意;C、不能判定△ACD与△BCD全等,故本选项符合题意;∠=∠,可以利用边角边判定△ACD与△BCD全D、因为点O是AB的中点,所以ACD BCD等,故本选项不符合题意;故选:C【点睛】本题主要考查了全等三角形的判定定理,等腰三角形的性质,熟练掌握全等三角形的判定定理,等腰三角形的性质是解题的关键.9.C解题的关键.10.D边正方形面积,∴4×12ab+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、∵四个小图形面积和=大正方形面积,∴ab+ b2+ a2+ ab=(a+b)2,∴a2+ 2ab +b2=(a+b)2,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D.【点睛】本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公式是解题关键.11.B解析:B【分析】如图,通过观察,寻找未知与已知之间的联系.AO=1,则OC=2.证明△AOP≌△COD求解即可.【详解】解:∵△ABC和△ODP都是等边三角形,∴∠C=∠A=∠DOP=60°,OD=OP,∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,∴∠CDO=∠AOP,∴△ODC≌△POA(AAS),∴AP=OC,∴AP=OC=AC﹣AO=2.故选:B.【点睛】此题考查了等边三角形的性质和全等三角形的性质与判定,解决本题的关键是利用全等把所求的线段转移到已知的线段上.二、填空题12.2【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.【详解】解:∵分式242xx-+的值为零,∴24x-=0且x+2≠0,即24x-=0且x≠-2,解得:x=2.故答案为:2.【点睛】本题主要考查了分式的值为零的条件,正确掌握相关定义是解题关键. 13.-2【分析】根据关于y 轴对称的点的特点解答即可.【详解】∵点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称, ∴n =-2,m -4=-3m 解得:n =-2,m =1 则mn =-2 故答案为:-2【点睛】此题主要考查了关于y 轴对称的点的特点;用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标不变. 14.14-##-0.25【点睛】本题主要考查了分式的加减法,解题的关键是通分,得出4ab=,是解题关键. 【详解】a 法法则是解题的关键.16.12【分析】当点于重合时,的周长最小,根据垂直平分线的性质,即可求出的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称, ∴当点于重合时,即A 、D 、B 三点在一条直线上时,BF+CF解析:12【分析】当F 点于D 重合时,BCF ∆的周长最小,根据垂直平分线的性质,即可求出BCF ∆的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称,∴当F 点于D 重合时,即A 、D 、B 三点在一条直线上时,BF +CF=AB 最小,(如图), ∴BCF ∆的周长为:BCF C BD CD BC ∆,∵DE 是垂直平分线, ∴AD CD =, 又∵7AB cm =,∴7cm BD AD BD CD , ∴7512cm BCFC ∆,故答案为:12.【点睛】本题考查最短路径问题以及线段垂直平分线的性质:垂直平分线上的点到线段两端的距离相等,熟练掌握最短路径的求解方法以及垂直平分线的性质是解题的关键.17.±6【分析】利用完全平方公式的结构特征判断即可. 【详解】解:∵关于x 的二次三项式是完全平方式, ∴;,则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握解析:±6【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵关于x 的二次三项式29x kx ++是完全平方式, ∴()22693x x x ++=+;()22693x x x -+=-, 则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18.14【分析】根据即可求得其值.【详解】解:,故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键. 解析:14 【分析】根据222211x x x x ⎛⎫=+- ⎪⎝⎫ ⎝⎭⎛+⎪⎭即可求得其值. 【详解】解:14x x+=, 221x x ⎛⎫∴+ ⎪⎝⎭ 212x x ⎛⎫=+- ⎪⎝⎭ 242=-=14 故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键.19.1或或12【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE=CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在解析:1或72或12 【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE =CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在AC 上,D 在AC 上时,或当E 到达A ,D 在BC 上时,分别讨论.【详解】解:当E 在BC 上,D 在AC 上,即0<t ≤83时,CE =(8-3t )cm ,CD =(6-t )cm ,∵以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.∴CD =CE ,∴8-3t =6-t ,∴t =1s ,当E 在AC 上,D 在AC 上,即83<t <143时,CE =(3t -8)cm ,CD =(6-t )cm ,∴3t -8=6-t ,∴t =72s , 当E 到达A ,D 在BC 上,即143≤t ≤14时,CE =6cm ,CD =(t -6)cm ,∴6=t -6,∴t =12s ,故答案为:1或72或12. 类,分别表示出每种情况下CD 和CE 的长.三、解答题20.(1)(2)(x ﹣y )(a+4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解: =;(2)a2(x ﹣y )+16(解析:(1)(2)(2)x y x y +-(2)(x ﹣y )(a +4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解:224x y =(2)(2)x y x y +-;(2)a 2(x ﹣y )+16(y ﹣x )=a 2(x ﹣y )-16(x ﹣y )=(x ﹣y )(a 2﹣16)=(x ﹣y )(a +4)(a ﹣4).【点睛】题目主要考查利用提公因式法及公式法分解因式,熟练掌握因式分解的方法是解题关键.21.,【分析】先把括号里的通分,再相减,把除法转化为乘法、分解因式,然后约分,最后把x 的值代入化简后的代数式计算即可.【详解】解:当x =2021时,原式.【点睛】本题主要考查了22.(1);(2).【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即可得; (2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.【详解】解:(1)∵,∴,∵,解析:(1)3AE =;(2)80AED ∠=︒.【分析】(1)先根据全等三角形的性质可得3BE BC ==,再根据线段的和差即可得; (2)先根据全等三角形的性质可得55DBE C ∠=∠=︒,再根据三角形的外角性质即可得.【详解】解:(1)∵,3ABC DEB BC ≅=,∴3BE BC ==,∵6AB =,∴633AE AB BE =-=-=;(2)∵ABC DEB ≅△△,∴55DBE C ∠=∠=︒,∵25D ∠=︒,∴552580AED DBE D ∠=∠+∠=︒+︒=︒.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.23.(1)(2)25°(3)【分析】(1)先根据三角形内角和定理可计算出∠BAC=180°-∠B-∠C=60°,再利用角平分线定义得∠CAE=∠BAC=30°,接着由AD ⊥BC 得∠ADC=9殊到一般,(3)中的结论为一般性结论. 24.(1)A 品牌服装每套进价是100元,B 品牌服装每套进价是75元(2)最少购进A 品牌服装40套【分析】(1)设A 品牌服装每套x 元,则B 品牌服装每袋进价为(x ﹣25)元,由题意:用4000元购进准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式. 25.(1);(2)【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式解析:(1)2222()a ab a a b +=+;(2)()()22232a ab b a b a b ++=++【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式分解.试题解析:(1)()2222a ab a a b +=+(2)①根据题意,可以画出相应的图形,如图所示②因式分解为:()()22232a ab b a b a b ++=++26.(1)120;(2)相等,理由见解析;(3)AO=2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF=BO ,证明△FCA ≌△OCB (SAS ),可得结 解析:(1)120;(2)相等,理由见解析;(3)AO =2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF =BO ,证明△FCA ≌△OCB (SAS ),可得结论.(3)证明△AFO ≌△OBR (SAS ),推出OA =OR ,可得结论.【详解】解:(1)如图①中,∵△ABC 是等边三角形,∴AB =BC ,∠A =∠CBD =60°,在△EAB 和△DBC 中,AE BD A CBD AB BC =⎧⎪∠=∠⎨⎪=⎩, ∴△EAB ≌△DBC (SAS ),∴∠ABE =∠BCD ,∴∠BOD =∠BCD +∠CBE =∠ABE +∠CBE =∠CBA =60°,∴∠BOC =180°-60°=120°.故答案为:120.(2)相等.理由:如图②中,∵△FCO ,△ACB 都是等边三角形,∴CF =CO ,CA =CB ,∠FCO =∠ACB =60°,∴∠FCA =∠OCB ,在△FCA 和△OCB 中,CF CO FCA OCB CA CB =⎧⎪∠=∠⎨⎪=⎩, ∴△FCA ≌△OCB (SAS ),∴AF =BO .(3)如图③中,结论:AO =2OG .理由:延长OG 到R ,使得GR =GO ,连接CR ,BR .在△CGO 和△BGR 中,GC GB CGO BGR GO GR =⎧⎪∠=∠⎨⎪=⎩, ∴△CGO ≌△BGR (SAS ),∴CO =BR =OF ,∠GCO =∠GBR ,AF =BO ,∴CO ∥BR ,∵△FCA ≌△OCB ,∴∠AFC =∠BOC =120°,∵∠CFO =∠COF =60°,∴∠AFO =∠COF =60°,∴AF ∥CO ,∴AF ∥BR ,∴∠AFO =∠RBO ,在△AFO 和△OBR 中,AF OB AFO RBO FO BR =⎧⎪∠=∠⎨⎪=⎩, ∴△AFO ≌△OBR (SAS ),∴OA =OR ,∵OR =2OG ,∴OA =2OG .【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27.(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点解析:(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H ,证△DEF ≌△BDO ,得出EF =OD =AF ,有EAF OAH OAB 45∠∠∠===︒,得出∠BAE =90°.(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离.再由OAE 30∠=︒,在直角三角形AO N '中,OM ON O N +='即可得解.【详解】解:(1)由已知条件得:AC=12,OB=6∴1126362ABC S =⨯⨯= (2)过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H,∵△BDE 是等腰直角三角形,∴DE=DB, ∠BDE=90°,∴EDF BDO 90∠∠+=︒∵BOD 90∠=︒∴BDO DBO 90∠∠+=︒∴EDF DBO ∠∠=∵EF x ⊥轴,∴DEF BDO ≅∴DF=BO=AO,EF=OD∴AF=EF∴EAF OAH OAB 45∠∠∠===︒∴∠BAE =90°(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离,即点O 到直线AE 的垂线段的长,∵OAE 30∠=︒,OA=6,∴OM+ON=3【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.。
人教版八年级上册数学期末试题及答案
人教版八年级上册数学期末试卷一、单选题1.下列四个图案中,不是轴对称图形的是()A .B .C .D .2.将0.00000095用科学记数法表示为()A .70.9510-⨯B .89.510-⨯C .79.510-⨯D .59510-⨯3.若分式方程233x m x x +=++无解,则m 的值为()A .﹣1B .0C .1D .34.下列运算正确的是()A .2a aa +=B .632a a a ÷=C .()0-31π=D .()21224a b a b --=5.下列等式从左到右的变形是因式分解的是()A .()2212x x x x --=--B .()()25623x x x x -+=--C .211x x x x ⎛⎫-=- ⎪⎝⎭D .()()2224x x x +-=-6.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是()A .5B .4C .7D .67.如图,在△ABC 中,AD 是∠BAC 的平分线,E 为AD 上一点,且EF ⊥BC 于点F .若∠C=35°,∠DEF=15°,则∠B 的度数为()A .65°B .70°C .75°D .85°8.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为()A .8815 2.5x x+=B .8184 2.5x x +=C .88152.5x x =+D .8812.54x x =+9.如图,在ABC 中,90,30A C PQ ∠=︒∠=︒,垂直平分BC ,与AC 交于点,P 下列结论正确的是()A .2PC PA <B .2PC PA >C .2AB PA <D .2AB PA>10.如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A .SASB .AASC .ASAD .SSS二、填空题11.使分式211x x -+的值为0,这时x=_____.12.计算:22222155ab b a b ab a b+⋅-=______________.13.已知点1(1,5)P a -和点2(2,1)P b -关于x 轴对称,则2016()b a +的值为_____________.14.若m+n=3,则2m 2+4mn+2n 2-6的值为________.15.已知6m x =,3n x =,则2m n x -的值为________.16.多项式x 2+2mx+64是完全平方式,则m =________.17.如图,已知∠AOB=60°,点P 在边OA 上,OP=24,点M ,N 在边OB 上,PM=PN ,若NM=6,则OM=______________.18.如图,等边ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取最小值时,ECF ∠的度数为___________度.19.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠=__________度.20.如图,BC=EC ,∠1=∠2,要使△ABC ≌△DEC ,则应添加的一个条件为_____________(答案不唯一,只需填一个)三、解答题21.解分式方程:(1)21322x x x-+=--(2)262393x x x x x -+=+--22.化简求值:(1)()()()322484a b a b ab a bab +-+-÷,其中21a b ==,(2)2234221121x x x x x x ++-÷---+(,其中x 取﹣1,1,﹣2,﹣3中你认为合理的数.23.在△ABC 中,AB=CB ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF .(1)求证:△ABE ≌△CBF ;(2)若∠CAE=30°,求∠ACF 度数.24.如图,在△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE=CF ,AD+EC=AB .(1)求证:△DEF 是等腰三角形;(2)当∠A=40°时,求∠DEF 的度数;(3)△DEF 可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A 为多少度时,∠EDF+∠EFD=120°,并请说明理由.25.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?26.已知如图,AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .求证:AD 垂直平分EF .27.已知:如图,已知△ABC(1)点A 关于x 轴对称的点A 1的坐标是,点A 关于y 轴对称的点A 2的坐标是;(2)画出与△ABC 关于x 轴对称的△A 1B 1C 1;(3)画出与△ABC 关于y 轴对称的△A 2B 2C 2.28.某农资公司购进甲、乙两种农药,乙种农药的单价是甲种农药单价的3倍,购买250元甲种农药的数量比购买300元乙种农药的数量多15,求两种农药单价各为多少元?参考答案1.C【分析】根据轴对称的概念对各选项分析判断即可求解.【详解】解:A 、是轴对称图形,故本选项不合题意;B 、是轴对称图形,故本选项不合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不合题意.故选:C .【点睛】本题主要考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000095=79.510-⨯故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.A【详解】解:两边同乘以(x+3)得:x+2=m ,x=m-2,∵方程无解∴x+3=0,即m-2+3=0,∴1m =-,故选:A.4.C【分析】根据合并同类项法则、幂运算法则进行计算判断.【详解】A 、2a a a +=,故原计算错误;B 、633a a a ÷=,故原计算错误;C 、()0-31π=,故正确;D 、()21224a b a b ---=,故原计算错误;故选:C .【点睛】本题考查整式的加减乘除运算,熟练掌握运算法则是关键.5.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、()()2221x x x x --=-+,没有把一个多项式转化为几个整式积的形式,故A 错误;B 、把一个多项式转化为几个整式积的形式,故B 正确;C 、()()21+11x x x -=-,故C 错误;D 、()()2224x x x +-=-,整式的乘法,故D 不是因式分解.故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.6.D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×2,解得n=6.故选:D .【点睛】本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.7.A【详解】解:∵EF ⊥BC ,∠DEF=15°,∴∠ADB=90°-15°=75°.∵∠C=35°,∴∠CAD=75°-35°=40°.∵AD 是∠BAC 的平分线,∴∠BAC=2∠CAD=80°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°.故选A .8.D【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【详解】解:设乘公交车平均每小时走x 千米,根据题意可列方程为:8812.54x x =+.故选D .【点睛】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.9.C【分析】由题意连接BP ,并根据垂直平分线的性质进行分析求解即可.【详解】解:连接BP则130C ∠∠︒==.230∴∠︒=2PC PB PA ∴==.AB PB <,2AB PA ∴<.故选:C.【点睛】本题考查垂直平分线相关,熟练掌握垂直平分线的性质是解题的关键.10.D【分析】根据作图过程可知:OC=OD ,PC=PD ,又OP=OP ,从而利用SSS 判断出△OCP ≌△ODP ,根据全等三角形的对应角相等得出∠COP=∠DOP ,即OP 平分∠AOB ,从而得出答案.【详解】解:由画法得OC=OD ,PC=PD ,而OP=OP ,所以△OCP ≌△ODP (SSS ),所以∠COP=∠DOP ,即OP 平分∠AOB.故答案为:D.【点睛】本题考查了用尺规作图作已知角平分线,三角形全等的判定,用尺规作图作已知角平分线,三角形全等的判定掌握是解题的关键.11.1【详解】由题意得211x x -+=0,所以x 2-1=0且x+1≠0,解之得x=1,故答案为:1.12.3aa b-【分析】先把分子、分母分别分解因式,再约分计算.【详解】原式=()()()22155b a b a b ab a b a b +⋅+-=3a a b-,故填:3a a b-.【点睛】本题考查分式的乘法运算法则,熟练掌握因式分解是关键.13.1【详解】解:∵点()11,5P a -和点()22,1Pb -关于x 轴对称,∴a-1=2,b-1=-5,∴a=3,b=-4,∴()2016a b +=(-1)2016=1,故答案为:1.14.12【详解】解:原式=2(m 2+2mn+n 2)-6=2(m+n )2-6=2×9-6=12故答案为:12.15.12【分析】逆运用同底数幂的乘法公式和幂的乘方公式对原式适当变形,再将值代入计算即可.【详解】解:2222()6312m n m n n m x x x xx -=÷=÷=÷=.故答案为:12.【点睛】本题考查幂的乘方公式的逆运用,同底数幂的乘法逆运用.熟练掌握相关公式是解题关键.16.±8【详解】根据完全平方式的特点,首平方,尾平方,中间是加减首尾积的2倍,因此可知2mx=2×(±8)x,所以m=±8.故答案为±8.【点睛】此题主要考查了完全平方式,解题时,要明确完全平方式的特点:首平方,尾平方,中间是加减首尾积的2倍,关键是确定两个数的平方.17.9【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD即可求出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,∵∠AOB=60°,∴∠OPD=30°,∴OD=12OP=12.∵PM=PN,PD⊥MN,∴MD=ND=12MN=3,∴OM=OD﹣MD=12﹣3=9.故答案为:9.【点睛】本题考查的是含30度直角三角形的性质,等腰三角形的性质等知识,根据题意添加适当辅助线是解本题的关键.18.30【分析】由等边三角形三线合一,可知:点B 和点C 关于AD 成轴对称,连接BE 交AD 于点F ,此时,EF CF +取得最小值,进而,求出ECF ∠的度数即可.【详解】∵ABC ∆是等边三角形,AD 是BC 边上的中线,∴AD ⊥BC ,AD 平分∠BAC ,∴点B 和点C 关于AD 所在直线成轴对称,连接BE 交AD 于点F ,则BF=CF ,∴EF CF +=EF+BF=BE ,即:此时,EF CF +取得最小值,∵等边ABC ∆的边长为4,2AE =,∴E 是AC 的中点,∴BE 平分∠ABC ,∵点F 是角平分线AD 与BE 的交点,∴CF 平分∠BCA ,即:∠FCA=12∠ACB=12×60°=30°,∴∠ECC=30°.故答案是:30.【点睛】本题主要考查等边三角形中,两线段和最小时,求角的度数,通过轴对称,把两线段和化为两点之间的一条线段的长,是解题的关键.19.80【分析】先根据折叠的性质可得AD DF =,根据等边对等角的性质可得B BFD ∠=∠,再根据三角形的内角和定理列式计算即可求解.【详解】解:DEF 是DEA △沿直线DE 翻折变换而来,AD DF ∴=,D 是AB 边的中点,AD BD ∴=,BD DF ∴=,B BFD ∴∠=∠,50B ∠=︒ ,180180505080BDF B BFD ∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:80.【点睛】本题考查的是折叠的性质,以及等边对等角、三角形内角和定理,熟知折叠的性质是解答此题的关键.20.AC=DC (答案不唯一)【详解】根据∠1=∠2可得∠BCA=∠ECD ,添加AC=DC 可以利用SAS 来进行判定;添加∠B=∠E 可以利用ASA 来进行判定;添加∠A=∠D 可以利用AAS 来进行判定.故答案为:AC=DC (答案不唯一)21.(1) 1.5x =;(2)无解【分析】(1)两边同乘2x -进行去分母,再求解整式方程,最后检验即可;(2)两边同乘()()33x x +-进行去分母,再求解整式方程,最后检验即可.【详解】(1)21322x x x-+=--解:两边同乘2x -得()2321x x +-=-解得 1.5x =检验:当 1.5x =时,20x -≠,∴ 1.5x =是原分式方程的解,(2)262393x x x x x -+=+--解:两边同乘()()33x x +-得()()()3623x x x x -+=-+解得3x =检验:当3x =时,()()330x x +-=,∴3x =不是原分式方程的解,∴原分式方程无解.【点睛】本题考查解分式方程,熟练掌握分式方程的求解过程并注意检验是解题关键.22.(1)22a ab -,0;(2)11x x -+,2【分析】(1)原式利用平方差公式,以及多项式除以单项式法则计算,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值;(2)首先把括号内的分式的分母分解因式,把除法转化为乘法,进行分式的加减,利用分配律计算,然后根据题意选择合理的数,代入即可.【详解】(1)原式2222a b b ab=-+-22a ab =-,当2a =,1b =时,原式22221=-⨯⨯0=;(2)原式()()()()()()22113411112x x x x x x x x ⎡⎤+-+=-⋅⎢⎥+-+-+⎣⎦()()()212112x x x x x -+=⋅+-+11x x -=+,由题意可知,1x ≠±且2x ≠-∴3x =-,当3x =-时,原式2=.【点睛】本题考查了整式和分式的混合运算,熟练掌握运算法则是解题的关键.23.(1)见解析(2)∠ACF=60°【分析】(1)根据HL 可证明Rt △ABE ≌Rt △CBF ;(2)由全等三角形的性质得出∠BCF =∠BAE =15°,则可得出答案.【详解】(1)证明:∵∠ABC =90°,∴∠CBF =∠ABE =90°,在Rt △ABE 和Rt △CBF 中,AE CFAB BC =⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF (HL );(2)解:∵AB =BC ,∠ABC =90°,∴∠CAB =∠ACB =45°,又∵∠BAE =∠CAB ﹣∠CAE =45°﹣30°=15°,由(1)知:Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =15°,∴∠ACF =∠BCF+∠ACB =15°+45°=60°.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握三角形全等的判定方法是解题的关键.24.(1)证明见解析;(2)∠DEF=70°;(3)△DEF 不可能是等腰直角三角形,理由见解析;(4)当∠A=60°时,∠EDF+∠EFD=120°,理由见解析.【分析】(1)首先根据条件证明△DBE ≌△ECF ,根据全等三角形的性质可得DE=FE ,进而可得到△DEF 是等腰三角形;(2)由(1)中的全等得出∠BDE=∠CEF ,再由角之间的转化,从而可求解∠DEF 的大小;(3)由于AB=AC ,可得∠B=∠C≠90°=∠DEF ,从而可确定其不可能是等腰直角三角形;(4)先猜想出∠A 的度数,则可得∠EDF+∠EFD=120°,根据前面的推导过程知∠EDF+∠EFD=120°时,∠DEF=60°,再由∠B=∠DEF 以及等腰三角形的性质继而推得猜想的正确性.【详解】(1)∵AB=AC ,∴∠B=∠C ,∵AD+EC=AB ,AB=AD+BD ,∴BD=CE ,在△BDE 和△CEF 中,BD CE B C BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CEF (SAS )∴DE=EF ,∴△DEF 是等腰三角形;(2)∵∠DEC=∠B+∠BDE ,即∠DEF+∠CEF=∠B+∠BDE ,由(1)知△BDE ≌△CEF ,则∠BDE=∠CEF ,∴∠DEF=∠B ,∵∠A=40°,∴∠B=∠C=()1180402⨯︒-︒=70°,∴∠DEF=70°;(3)△DEF 不可能是等腰直角三角形,∵AB=AC ,∴∠B=∠C≠90°,由(2)知∠DEF=∠B ,∴∠DEF=∠B≠90°,∴△DEF 不可能是等腰直角三角形;(4)当∠A=60°时,∠EDF+∠EFD=120°,理由是:当∠EDF+∠EFD=120°时,则∠DEF=180°-120°=60°,∴∠B=∠DEF=60°,∴∠A=180°-∠B-∠C=180°-60°-60°=60°,∴当∠A=60°时,∠EDF+∠EFD=120°.【点睛】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定和性质问题,能够熟练掌握和灵活运用相关质是解题的关键.25.(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.【分析】(1)设B 型机器人每小时搬运x 千克材料,则A 型机器人每小时搬运(x+30)千克材料,根据A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同建立方程求出其解即可得;(2)设购进A 型机器人a 台,根据每小时搬运材料不得少于2800kg 列出不等式进行求解即可得.【详解】(1)设B 型机器人每小时搬运x 千克材料,则A 型机器人每小时搬运(x+30)千克材料,根据题意,得100080030x x=+,解得:x=120,经检验,x=120是所列方程的解,当x=120时,x+30=150,答:A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)设购进A 型机器人a 台,则购进B 型机器人(20﹣a )台,根据题意,得150a+120(20﹣a )≥2800,解得a≥403,∵a 是整数,∴a≥14,答:至少购进A 型机器人14台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,读懂题意,找到关键描述语句,找准等量关系以及不等关系是解题的关键.26.见解析【分析】根据角平分线的性质可得DE DF =,易证AE AF =,即△AEF 为等腰三角形,根据三线合一可证结论.【详解】证明:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∴12∠=∠,∵90AED AFD ∠=∠=︒,∴3=4∠∠,∴AE AF =,∵AD 是等腰三角形AEF 的顶角平分线,∴AD 垂直平分EF (三线合一)【点睛】本题考查了角平分线的性质和等腰三角形的性质—“三线合一”的应用,熟练掌握性质是解题的关键.27.(1)(-4,-2),(4,2);(2)图形见解析(3)图形见解析【分析】(1)分别利用关于x 轴以及y 轴对称点的性质得出对应点坐标即可;(2)直接利用关于x轴对称点的性质得出对应点坐标即可;(3)直接利用关于y轴对称点的性质得出对应点坐标即可.【详解】解:(1)(-4,-2),(4,2);(2)如图所示:△A1B1C1,即为所求;(3)如图所示:△A2B2C2,即为所求.28.10元、30元.【分析】设甲农药的单价为x元,乙农药的单价为3x元,根据购买250元甲农药的数量比购买300元乙农药的数量多15件列出方程,求出方程的解即可得到结果;【详解】解:设甲农药的单价为x元,乙农药的单价为3x元,根据题意得,250360-=15x3x,解得x=10,经检验,x=10是所列方程的根,∴3x=3×10=30(元),答:甲、乙两种农药品的单价分别为10元、30元.【点睛】本题主要考查了分式方程的应用,掌握分式方程是解题的关键.。
人教版八年级上册数学期末试卷及答案
人教版八年级上册数学期末试题一、单选题1.下列图形中,是轴对称图形的是()A .B .C .D .2.以下列数值为长度的各组线段中,不能围成三角形的是()A .2,3,4B .3,5,6C .2,2,5D .4,4,63.下列计算正确的是()A .22a a a ⋅=B .330a a ÷=C .()3253ab a b =D .221a a -=4.下列分式是最简分式的()A .223ac a bB .23aba a -C .22ab a b ++D .222a aba b --5.若224x mx ++是完全平方式,则m 的值是()A .16±B .4±C .2±D .1±6.已知图中的两个三角形全等,则∠1的度数为()A .43B .55C .82D .677.等腰三角形的周长为10cm ,其中一边长为4cm ,则该等腰三角形的底边长为()A .5cmB .4cmC .3cm 或4cmD .2cm 或4cm 8.一个多边形的内角和比四边形内角和多360 ,则这个多边形是()A .五边形B .六边形C .七边形D .八边形9.若2x y +=,15xy =,则()()22x y --的值是()A .11B .14C .15D .1810.如图,已知△ABC 中,D 、E 分别为BC 、AC 上的点,且满足AB AD CD CE ===,若∠36BAD = ,则∠ADE 的度数为()A .36°B .35°C .26°D .72°二、填空题11.因式分解:224a b -=_____.12.点()2,3P -关于x 轴对称的点的坐标为_________.13.数据0.0000001米,用科学记数法表示为_______米.14.甲完成一项工作需t 小时,乙完成同样工作比甲少用1小时,设工作总量为1,则乙的工作效率为__________.15.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,AB=5,CD=2,则△ABD 的面积是________.16.如图,已知AD ∥BC ,∠BAD=90°,∠C=60°,CB=CD ,若AD=1,则BC=____.三、解答题17.计算:(1)()()3421x x +-(2)2(2)(2)()m n m n m n +---18.解分式方程:(1)15122x x x +=++(2)2351311x x x x +=---19.先化简,再求值:()22212•21121a a a a a a a -+-÷++--,其中12a =.20.如图,点A 、E 、B 、D 在同一直线上,AC 、DF 相交于点G ,FE AD ⊥,垂足为E ,CB AD ⊥垂足为B ,且FE CB =,AE BD =.求证:△ABC ≌△DEF .21.如图,在平面直角坐标系中,已知A (3,3),B (1,1),C (4,-1).(1)画出△ABC 关于y 轴的轴对称图形△A 1B 1C 1,并写出A 1、B 1、C 1坐标;(2)在(1)的条件下,连接AA 1、AB 1,直接写出△AA 1B 1的面积.22.如图,D 、E 分别是AB 、AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,求证:AC=AB .23.某学校为美化校园,安排甲、乙两工程队对面积为990m 2的区域进行绿化.已知甲队每天能完成的绿化面积是乙队每天能完成绿化面积的2倍,若先由乙队完成面积的13,再由甲、乙共同完成,时间共用11天.问甲、乙两工程队每天能完成绿化的面积分别是多少平方米?24.如图,正方形ABCD 的边长为4,动点P 从点A 开始沿A→D→C 的方向,以每秒2个单位的长度运动,动点Q 从点B 出发,沿B→C→D 以每秒1个单位的长度运动.当点P 到达C 点后,P 、Q 两点同时停止运动.设运动时间为t ,△BPQ 的面积为S .(1)填空:当动点P 到达D 点时,t=;(2)请用含t 的式子表示面积S .25.轴对称变换是几何证明中重要的图形变换之一,即寻找对称轴,将对称轴的一侧图形进行翻折,来构造满足条件的几何辅助线.例:在△ABC 中,过点A 作AD ⊥BC 于点D ,若AC+CD=BD ,则∠B 与∠C 满足什么关系?分析:将△ADC 沿直线AD 翻折,得到△ADE ,通过相关定理即可得到结论.(1)请猜想∠B 与∠C 的关系,并说明理由;(2)如图3,A 、D 为线段BC 同侧两点,∠BAC=∠BDC=60°,∠ACB+12∠ACD=90°,求证:AB=AC+CD .26.如图,在平面直角坐标系中,点(0)A m ,、点(,0)B n 分别在y 轴、x 轴的正半轴上,若m 、n 满足()()2240m n n -+-=.(1)填空:m =,n =;(2)如图,点P 是第一象限内一点,连接AP 、OP ,使∠APO=45°.过点B 作BC ⊥OP 于点D ,交y 轴于点C ,证明:DP=DB .(3)若在线段OA 上有一点M (0t ,),连接BM ,将BM 绕点B 逆时针旋转90°得到BN ,连接AN 交x 轴于点E ,请直接写出点E 的坐标(用含有t 的代数式表示).参考答案1.A2.C3.D4.C5.C6.C7.D8.B9.C10.A11.()()22a b a b +-【详解】解:原式=(a+2b)(a-2b).故答案为:(a+2b )(a-2b )12.()2,3--【详解】解:点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.13.7110-⨯【详解】解:70.0000001110-=⨯故答案为:7110-⨯14.1t-1【详解】解:∵乙的工作时间为(t-1),工作总量为1,∴乙的工作效率为11t -.故答案为:11t -.15.5【详解】解:如图,过D 作DE ⊥AB 于E ,△DAE 和△DAC 中,AD 平分∠BAC ,则∠DAE=∠DAC ,∠DEA=∠DCA=90°,DA=DA ,∴△DAE ≌△DAC (AAS ),∴DE=DC=2,∴△ABD 的面积=12×AB×DE=12×5×2=5,故答案为:5;16.2【分析】连接BD ,证明△BCD 是等边三角形,可得BD =BC ,∠DBC =60°,求出∠ABD =30°,然后根据含30°角的直角三角形的性质求出BD 即可.【详解】解:连接BD ,∵∠C=60°,CB=CD ,∴△BCD 是等边三角形,∴BD =BC ,∠DBC =60°,∵AD ∥BC ,∠BAD=90°,∴∠ABC =90°,∴∠ABD =30°,∵∠BAD=90°,AD=1,∴BD =2AD =2,∴BC =BD =2,故答案为:2.17.(1)2654x x +-(2)22322m mn n +-【分析】(1)根据多项式乘多项式进行计算即可;(2)运用平方差与完全平方公式进行计算即可.(1)解:()()3421x x +-=26834x x x +--=2654x x +-(2)2(2)(2)()m n m n m n +---=()222242m n m mn n ---+=222242m n m mn n --+-=22322m mn n +-18.(1)-3x =(2)12x =-【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(1)解:15122x x x +=++,方程两边同时乘以21x +()得:25x =+,解得-3x =,把-3x =代入2123140x +=-+=-≠()(),所以-3x =是原方程的解;(2)解:2351311x x x x +=---,方程两边同时乘以(1)(1)x x -+得:()()()3151311x x x x x -+=+-+-,化简得:84x -=,解得12x =-,把12x =-代入()()1131111224x x ⎛⎫⎛⎫-+=---+=- ⎪⎪⎝⎭⎝⎭≠0,所以原方程的解为12x =-.19.()211a a -+,23-【分析】根据分式的乘除法可以化简题目中的式子,再把a 值代入化简式子中求解即可.【详解】解:()22212•21121a a a a a a a -+-÷++--=()()222121••121a a a a a a --+--+=()211a a -+,把12a =代入原式得原式=121122133122⎛⎫⨯- ⎪-⎝⎭==-+.20.见解析【详解】证明:∵EF ⊥AD ,CB ⊥AD ,∴∠ABC=∠DEF=90°,又∵AE=BD ,∴AE+EB=BD+EB ,∴AB=DE ,在△ABC 与△DEF 中FE CB ABC DEF AB DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ).21.(1)图见解析,A 1(-3,3),B 1(-1,1),C 1(-4,-1)(2)△AA 1B 1的面积为6【分析】(1)直接利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)利用三角形面积公式进而得出答案.(1)解:如图所示:△A 1B 1C 1,即为所求;A 1(-3,3),B 1(-1,1),C 1(-4,-1);(2)解:△AA 1B 1的面积为:12×6×2=6.22.证明见解析【分析】连接BC ,由CD 垂直于AB ,且D 为AB 中点,即CD 所在直线为AB 的垂直平分线,根据线段垂直平分线上的点到线段两端点的距离相等,得到AC=BC ,又E 为AC 中点,且BE 垂直于AC ,即BE 所在的直线为AC 的垂直平分线,同理可得BC=AB ,等量代换即可得证.【详解】证明:如图,连接BC∵CD ⊥AB 于D ,D 是AB 的中点,即CD 垂直平分AB ,∴AC=BC (中垂线的性质),∵E 为AC 中点,BE ⊥AC ,∴BC=AB (中垂线的性质),∴AC=AB .23.甲工程队每天能完成绿化的面积为100平方米,乙工程队每天能完成绿化的面积为50平方米【分析】设乙工程队每天能完成绿化的面积为x 平方米,根据“由甲、乙共同完成,时间共用11天”列分式方程求解即可.【详解】解:设乙工程队每天能完成绿化的面积为x 平方米,则甲工程队每天能完成绿化的面积为2x 平方米,由题意得:1299099033112x x x⨯⨯+=+,整理得:33022011x x +=,即55011x =,方程两边同时乘以x ,得,11550x =,解得50x =,验根:当50x =时分母不为0,所以50x =是原方程的解,答:甲工程队每天能完成绿化的面积为100平方米,乙工程队每天能完成绿化的面积为50平方米.24.(1)2(2)22(02)4(24)t x S t t x <≤⎧=⎨-+<≤⎩【分析】(1)用AD 的长除以动点P 的速度可求出t ;(2)分0<t≤2时和2<t≤4时两种情况,分别利用三角形的面积公式列式计算即可.(1)解:∵正方形ABCD 的边长为4,动点P 的速度为每秒2个单位的长度,∴t =4÷2=2,故答案为:2;(2)当0<t≤2时,点P 在线段AD 上,如图:∵BQ =t ,∴114222S BQ CD t t =⋅=⨯=;当2<t≤4时,点P 在线段CD 上,如图:∵BQ =t ,CP =8-2t ,∴()21182422S BQ CP t t t t =⋅=⨯-=-+;综上所述:()()2202424t t S t t t ⎧<≤⎪=⎨-+<≤⎪⎩.25.(1)∠C=2∠B ,证明见解析(2)见解析【分析】(1)在DB 上截取一点E ,使DE=DC ,利用SAS 证明△ADE ≌△ADC ,推出AE=AC ,∠AED=∠C ,再证明BE=AE ,利用三角形的外角性质即可得到∠C=2∠B ;(2)延长AC 至E ,使AE=AB ,设∠ACD=2α,得到∠BCE=90°+α,∠BCD=90°-α+2α=90°+α,再推出△ABE 是等边三角形,利用AAS 证明△BCD ≌△BCE ,据此即可证明AB=AC+CD .(1)解:结论:∠C=2∠B ,证明:在DB 上截取一点E ,使DE=DC ,连接AE ,∵AD⊥BC,∴∠ADC=∠ADE=90°,在△ADE与△ADC中,AD AD ADE ADCDE DC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADC(SAS),∴AE=AC,∠AED=∠C,∴BD=BE+ED,又∵BD=AC+CD,∴AC=BE,∴BE=AE,∴∠B=∠BAE,∴∠AED=2∠B,∴∠C=2∠B;(2)证明:延长AC至E,使AE=AB,连接BE,设∠ACD=2α,∵∠ACB+12∠ACD=90°,则∠ACB=90°-α,∴∠BCE=90°+α,∴∠BCD=90°-α+2α=90°+α,∵∠BAC=60°,BA=BE ,∴△ABE 是等边三角形,∴∠E=60°,AB=AE ,在△BCD 与△BCE 中,D E BCD BCE BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△BCE(AAS),∴CD=CE ,∵AE=AC+CE=AC+CD ,∴AB=AC+CD .26.(1)4,4m n ==(2)见解析(3)E (2-12t ,0)【分析】(1)根据()()2240m n n -+-=得到040m n n -=⎧⎨-=⎩即可求解;(2)过点A 向OP 作垂线交于点E ,证明△AOE ≌△BOD ,进而可得到结论;(3)过点N 作NC ⊥x 轴交于点C ,可证△BOM ≌△BCN ,之后再证明△AOE ≌△ECN ,即可得到结论;(1)解:()()2240m n n -+-= ,040m n n -=⎧∴⎨-=⎩,4m n ∴==,故答案为:4,4m n ==;(2)证明:过点A 向OP 作垂线交于点E ,则∠AEP=90°,∵∠AOP+∠POB=90°,∠AOP+∠OAE=90°,∴∠POB=∠OAE ,又OA=OB ,∠AEO=∠BDO=90°,∴△AOE ≌△BOD ()AAS ,∴DB=OE ,AE=OD ,又∵∠APO=45°,∠AEP=90°,∴AE=EP,∴EP=OD ,∵OE=OD+DE ,DP=DE+EP ,∴OE=DP ,∴DP=DB ,(3)解:如图,过点N 作NC ⊥x 轴交于点C ,由题可知BM BN =,90MBN MOB ∠=∠=︒,90MBO OBN ∠+∠=︒ ,90OBN CNB ∠+∠=︒,MBO CNB ∴∠=∠,∴△BOM ≌△BCN ()AAS ,OM BC t ∴==,OB NC =,OA OB = ,OA NC ∴=,90AOC NCE ∠=∠=︒ ,OEA CEN ∠=∠,∴△AOE ≌△ECN ()AAS ,12OE EC OC ∴==,4OC OB CB t =-=- ,∴OC=4-t ,∴OE=12OC=2-12t ,∴E (2-12t ,0).。
人教版八年级数学上册期末素养综合测试(二)课件
∵∠CGE=∠ADE+∠BCF=94°,
∴∠GCD= 1 ∠CGE=47°.
2
16.(2022山东临沂期末)有两个正方形A、B,现将B放在A的 内部得图甲,将A、B并列放置后构造新的正方形得图乙.若 图甲和图乙中阴影部分的面积分别为1和10,则正方形A、B 的面积之和为 11 .
∴AB的长度可能是3.5.故选C.
7.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作 DE⊥BC于点E,且CE=1.5,则AB的长为 ( C )
A.3
B.4.5
C.6
D.7.5
解析 ∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC= AC,∵DE⊥BC,∴∠CDE=30°,∵CE=1.5,∴CD=2CE=3,∵BD 平分∠ABC,∴AD=CD=3,∴AB=AC=AD+CD=6.
解析 如图,在BC上取一点E',使得BE'=BE,连接FE',过点A作 AH⊥BC于H.
在Rt△ACH中,∵∠AHC=90°,∠C=30°,AC=24, ∴AH= 1 AC=12,
2
∵BD平分∠ABC,∴∠FBE=∠FBE',
∵BE=BE',BF=BF,∴△FBE≌△FBE'(SAS), ∴FE=FE',∴AF+FE=AF+FE', 根据垂线段最短可知,当A,F,E'三点共线,且与AH重合时,AF+ FE的值最小,最小值为12.
值:
x
1÷
1
1,其中x2xx=223x.1
1
解析 原式=1 ·x 1 2分(x 1)2
x 1 (x 1)(x 1)
人教版八年级上册数学期末考试试卷及答案
人教版八年级上册数学期末考试试题一、单选题1.当分式22x -有意义时,x 的取值范围是()A .2x >B .2x <C .2x ≠D .2x =2.在211133122x xy a x x y m π+++,,,,,中,分式的个数是()A .2B .3C .4D .53.下列图形中,不是..轴对称图形的是()A .B .C .D .4.已知三角形的三边长分别为2、x 、10,若x 为正整数,则这样的三角形个数为()A .1B .2C .3D .45.下列计算正确的是()A .2323a a a +=B .326a a a ⋅=C .()236a a =D .()2224a a -=-6.下列各式由左边到右边的变形中,是分解因式的为()A .()a x y ax ay+=+B .()24444x x x x -+=-+C .()2105521x x x x -=-D .()()2163443x x x x x -+=-++7.如果把分式xy x y +中的x 和y 都扩大2倍,则分式的值()A .扩大4倍B .扩大2倍C .不变D .缩小2倍8.若关于x 的方程2222x m x x ++=--有增根,则m 的取值是()A .0B .2C .-2D .19.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβ∠+∠的度数是A .180°B .220°C .240°D .260°10.张老师和李老师同时从学校出发,步行15千米去书店购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,根据题意,所列的方程是()A .1515112x x -=+B .1515112x x -=+C .1515112x x -=-D .1515112x x -=-二、填空题11.分解因式:x 2-9=______.12.将0.000000823用科学记数法表示为___________13.四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.14.比较大小:4442333315.如图,Rt △ABC 中,∠BCA=90°,∠A=30°,BC=2cm ,DE 是AC 边的垂直平分线,连接CD ,则△BCD 的周长是__________________.16.已知12a b =,则分式252a b a b+-的值为______.17.对于实数a ,b ,c ,d ,规定一种运算a b c d =ad-bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=_____.18.如图,在ABC 中,AB AC =,40A ∠=︒,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,则∠D 的度数为______.三、解答题19.计算:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭;(2)()()2323x y x y +--+.20.分解因式:(1)316m m -;(2)()228a b ab -+.21.解分式方程:(1)233x x =-;(2)28124x x x -=--.22.先化简,再求值:21211x x x x x x x --⎛⎫-÷ ⎪-+⎝⎭,其中3x =.23.如图:△ABC 和△ADE 是等边三角形,证明:BD=CE .24.在争创文明城市的活动中,某市一“少年突击队”决定清运一堆重达100吨的垃圾,开工后附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,“少年突击队”原计划每小时清运垃圾多少吨?25.已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE .求证:(1)△ABC ≌△DEF ;(2)GF =GC .26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.解答下面的问题:(1)猜想并写()11n n =+.(2)求111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯的值.(3)探究并解方程:()()()()()211133366918x x x x x x x ++=++++++.27.已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD .求证:BC=ED .28.如图,在ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,交AB 于点E ,连接EG 、EF .(1)求证:BG CF =.(2)请你判断:BE CF +与EF 的大小关系,并加以证明.参考答案1.C2.B3.C4.C5.C6.C7.B8.A9.C10.B11.(x +3)(x -3)12.8.23×10-713.144°14.<15.6cm.16.417.2218.20°【分析】根据角平分线的性质得到1,122DBC ABC DCE ACE ∠=∠∠=∠,再利用三角形外角的性质计算.【详解】解:∵ABC ∠与ACE ∠的平分线相交于点D ,∴1,122DBC ABC DCE ACE ∠=∠∠=∠,∵∠ACE=∠A+∠ABC ,∠DCE=∠D+∠DBC ,∴∠D=∠DCE-∠DBC=11()2022ACE ABC A ∠-∠=∠=︒,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.19.(1)1;(2)224129x y y -+-【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭,=414+-,=1;(2)()()2323x y x y +--+,=()()2323x y x y +---⎡⎤⎡⎤⎣⎦⎣⎦,=()2223x y --,=()224129x y y --+,=224129x y y -+-.20.(1)()()44m m m +-;(2)()22a b +【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.【详解】解:(1)原式=()()()21644m m m m m -=+-;(2)原式=()22222448442a ab b ab a ab b a b -++=++=+.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.21.(1)9x =;(2)无解【分析】先将分式方程化为整式方程,解出整式方程,再将所求的解代入最简公分母中检验,即可求解.【详解】解:(1)233x x =-方程两边同时乘以()3x x -,得:()233x x =-,解得:9x =,检验:当9x =时,()()39930x x -=⨯-≠,所以原方程的解为9x =;(2)28124x x x -=--方程两边同时乘以()24x -,得:()()2248x x x +--=,解得:2x =,检验:当2x =时,224240x -=-=,所以2x =是增根,原方程无解.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的一般步骤,并记住要检验是解题的关键.22.11x x +-,2【分析】根据分式的运算法则进行化简,再代入求值即可.解:原式()()()()()()()2221121212121111111211x x x x x x x x x x x x x x x x x x x x x x x ⎡⎤-+----+=-÷=÷=⨯=⎢⎥--+-+---⎢⎥⎣⎦.当x=3时,原式1312131x x ++===--.【点睛】本题考查分式化简求值,熟练掌握该知识点是解题关键.23.见解析【分析】根据等边三角形的性质可得到两组边对应相等,一组角相等,从而利用SAS 判定两三角形全等,根据全等三角形的对应边相等即可得到BD=CE .【详解】证明:∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°.∴∠BAD=∠CAE .在△BAD 与△CAE 中,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE (SAS ).∴BD=CE【点睛】此题考查了等边三角形的性质及全等三角形的判定与性质;证明线段相等常常通过三角形全等进行解决,全等的证明是正确解答本题的关键.24.12.5吨【分析】设原计划每小时清运x 吨,根据“使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,”列出方程,即可求解.【详解】解:设原计划每小时清运x 吨,根据题意得:10010042x x-=,解得:12.5x=,经检验,12.5x=是原方程的解,且符合题意,答:“少年突击队”原计划每小时清运垃圾12.5吨.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.25.(1)证明见解析,(2)证明见解析.【分析】(1)先根据BF=CE证明BC=EF,然后利用“边角边”即可证明△ABC和△DEF 全等;(2)根据全等三角形对应角相等可得∠ACB=∠DFE,再根据等角对等边证明即可.【详解】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°,在△ABC和△DEF中,∵AB DEB E BC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF∴∠ACB=∠DFE∴GF=GC.【点睛】本题考查了全等三角形的判定与性质和等腰三角形的判定,比较简单,证明出BC =EF是解题的关键.26.(1)111n n⎛⎫-⎪+⎝⎭;(2)20202021;(3)2x=【分析】(1)根据材料可直接得出答案;(2)根据(1)的规律,将算式写出差的形式,计算即可;(3)先按照(1)的结论进行化简,再解分式方程,即可得到答案.【详解】解:(1)根据题意,可知:()111n n 1n n 1=-++;故答案为:111n n ⎛⎫- ⎪+⎝⎭;(2)由(1)可知,111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯=1111111(1()()(2233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=111111112233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=112021-=20202021;(3)由(1)可知,()()()()()211133366918x x x x x x x ++=++++++,∴211111113()33366918x x x x x x x -+-+-=++++++,∴21113()3918x x x -=++,∴2119918x x x -=++,∴299(9)18x x x =++,∴22918x x x +=+,∴2x =;经检验,2x =是原分式方程的解.∴2x =.【点睛】本题考查了解分式方程以及有理数的混合运算,掌握分式方程的解法是解题的关键.27.见解析【分析】首先由AB ∥CD ,根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED .【详解】证明:∵AB ∥CD ,∴∠BAC=∠ECD ,∵在△BAC 和△ECD 中,AB=EC ,∠BAC=∠ECD ,AC=CD ,∴△BAC ≌△ECD (SAS ).∴CB=ED .【点睛】本题考查了平行线的性质,全等三角形的判定和性质.28.(1)见解析;(2)BE CF EF +>,见解析【分析】(1)证BDG CDF ≌可得BG CF =;(2)根据全等得到DG DF =,再根据三角形三边关系即可得到结果.【详解】(1)∵BG ∥AC ,∴C GBD ∠=∠,∵D 是BC 的中点,∴BD=DC ,在△BDG 和△CDF 中,C GBDBD CD BDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴BDG CDF ≌,∴BG CF =;(2)BE CF EF +>,由BDG CDF ≌得DG DF =,∵ED GF ⊥,∴EG EF =,∵CF BG =,∴+>BG BE EG ,∴BE CF EF +>.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册期末试卷
注意事项:
1.本试卷共8页,三大题,满分120分。
请用钢笔或圆珠笔直接答在试卷上。
一、选择题(每小题3分,共18分)
下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号
字母填入题后括号内。
1. 的相反数是()
A.5B.5-C.5±D.25
2. Rt90
ABC C BAC
∠∠
在△中,=,的角平分线AD交BC于点D,2
C D=,则点D到AB的距离是()
A.1B.2 C.3
D.4
3. 下列运算正确的是(
)
A.222
()
a b a b
+=+B.325
a a a
=
C.632
a a a
÷=D.235
a b ab
+=
4. 到三角形三条边的距离都相等的点是这个三角形的()
A.三条中线的交点B.三条高的交点
C.三条边的垂直平分线的交点D.三条角平分线的交点
5. 一次函数21
y x
=
-的图象大致是(
)
6. 如图,已知A B C
△中,45
ABC
∠= ,4
A C=,H是
高A D和B E的交点,则线段BH的长度为(
)
A.B.4 C.D.5
D
C
B
A
E
H
二、填空题(每小题3分,共27分)
7. 计算:234
(2)
a a=
.
8. 如图,数轴上A B
,两点表示的数分别是1
A关于点B的对称点是点C,则点C所表示的数是.
9. 随着海拔高度的升高,空气中的含氧量3
(g/m)
y与大气压强(kPa)
x成正比例函数关系.当36(kPa)
x=时,3
108(g/m)
y=,请写出y与x的函数关系式.
10. 因式分解:2
242
x x
++=.
11. 如图,一次函数y ax b
=+的图象经过A、B两点,则关于x的不等式0
ax b
+<的解集是.
第11题图第13题图
12. 已知63
x y xy
+==-
,,则22
x y xy
+=______________.
13. 如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+2b)、宽为(a+b)的大长方形,则需要C类卡片张.
14. 直线y kx b
=+经过点(20)
A-,和y轴正半轴上的一点B,如果A B O
△(O为坐标原点)的面积为2,则b的值为.
15. 在平面直角坐标系xoy中,已知点(21)
P,,点(0)
T t,是x轴上的一个动点,当P T O
△是等腰三角形时,t值的个数是.
三、解答题(本大题8个小题,共75分)
16.(8
)0
3
(1)22
2
--⨯-.
1 2
a
b
b
b
a C
B
A
17. (8分) 如图,有两个74⨯的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线
段,同时..
满足以下要求: (1)线段的一个端点为梯形的顶点,另一个端点在梯形一边的格点上; (2)将梯形分成两个图形,其中一个是轴对称图形; (3)图1、图2中分成的轴对称图形不全等.
18. (9分)(1) 分解因式:32a ab -.
(2) 先化简,再求值:2
2
(3)(2)(2)2x x x x +++--,其中13
x =-.
l9.(9分) 把两个含有45°角的直角三角板如图放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .
求证:AF ⊥BE .
20.(9分) 在市区内,我市乘坐出租车的价格y (元)与路程x (km )的函数关系图象如图所示.
(1)请你根据图象写出两条信息;
(2)小明从学校出发乘坐出租车回家用了13元,求学校离小明家的路
程.
C
E
图1
图2
)
()y 元
21. (10分) 如图,在等边A B C △中,点D E ,分别在边B C A B ,上,且BD AE =,A D 与C E 交于点F .
(1)求证:A D C E =;
(2)求D F C ∠的度数.
22. (10分) 康乐公司在A B ,两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台,从A B ,两地运往甲、乙两地的费用如下表:
(1)如果从A 地运往甲地x 台,求完成以上调运所需总费用y (元)与x (台)之间的函数关系式;
(2)请你为康乐公司设计一种最佳调运方案,使总费用最少,并说明理由。
23.(12分)已知:点O 到A B C △的两边A B A C ,所在直线的距离相等,且O B O C =.
(1)如图1,若点O 在边B C 上,求证:A B A C =;
(2)如图
2,若点O 在A B C △的内部,求证:A B A C =;
(3)若点O 在A B C △的外部,A B A C =
成立吗?请画图表示.
图1
图2 A
A
B
C C E F O O
C。