高一数学(人教A版)必修1课件:1-3-1-2 函数的最值
高中数学新课标人教A版必修1教学课件:1.3.1.2 第2课时 函数的最大值、最小值

必修1 第一章 集合与函数的概念
栏目导引
[题后感悟] 利用函数图象求最值是求函数最 值的常用方法.这种方法以函数最值的几何意 义为依据,对较为简单的且图象易作出的函数 求最值较常用.图象法求最值的一般步骤是:
必修1 第一章 集合与函数的概念
栏目导引
值.
1.试求函数 y=|x-2|+ x+12的最
必修1 第一章 集合与函数的概念
栏目导引
[解题过程] 任取 2≤x1<x2≤5,
则 f(x1)=x1x-1 1,f(x2)=x2x-2 1, f(x2)-f(x1)=x2x-2 1-x1x-1 1=x2-x11-xx12-1, ∵2≤x1<x2≤5, ∴x1-x2<0,x2-1>0,x1-1>0, ∴f(x2)-f(x1)<0.∴f(x2)<f(x1).
第2课时 函数的最大值、最小值
必修1 第一章 集合与函数的概念
栏目导引
1.理解函数的最大(小) 值及其几何意义. 2.会求一些简单函数的 最大值或最小值.
1.利用函数单调性求函 数最值.(重点) 2.体会数形结合思想的 运用.(难点)
必修1 第一章 集合与函数的概念
栏目导引
1.从函数f(x)=x2的图象上还可看出,当x=0 时,y=0是所有函数值中_最__小__值__.而对于f(x)
必修1 第一章 集合与函数的概念
栏目导引
所以,函数 y=x-2 1是区间[2,6]上的减函数.如 上图.
因此,函数 y=x-2 1在区间[2,6]的两个端点上分 别取得最大值与最小值,即在 x=2 时取得最大 值,最大值是 2,在 x=6 时取得最小值,最小 值是 0.4.
必修1 第一章 集合与函数的概念
解析: 原函数变为 y=|x-2|
高中数学必修一(人教A版) 1.3.2 函数的最值 课件

1.函数的最大值
一般地,设函数 y=f(x)的定义域为 I,如果存在实数 M 满
f(x)≤M ;②存在 x0 ∈I,使得 足:①对于任意的 x∈I,都有________
f(x0)=M .那么称 M 是函数 y=f(x)
x1 x2 则 f(x1)= ,f(x2)= , x1-1 x2-1 x1-x2 x2 x1 f(x2)-f(x1)= - = , x2-1 x1-1 x2-1x1-1
∵2≤x1<x2≤5, ∴x1-x2<0,x2-1>0,x1-1>0.
∴f(x2)-f(x1)<0,即 f(x2)<f(x1).
∴f(x1)-f(x2)>0.∴f(x)在[1,2]上是减函数.
4 当 2<x1<x2≤3 时,1-x x >0,∴f(x1)-f(x2)<0. 1 2 ∴f(x)在(2,3]上是增函数. 4 ∴f(x)的最小值为 f(2)=2+2=4. 4 13 又∵f(1)=5,f(3)=3+3= 3 <f(1), ∴f(x)的最大值为 5.
方法去绝对值,将函数化为分段函数.利用图象研究其单调性
及最值,关键要正确作出函数的图象.
【变式与拓展】
1.图 1-3-2为函数 y=f(x),x∈[-4,7]的图象,指出它的最 大值、最小值及单调区间.
图 1-3-2 解:当x=3 时,函数y=f(x)取最大值为3;当 x=-1.5 时, 函数 y=f(x)取最小值为-2. 函数的单调递增区间为[-1.5,3),[5,6); 单调递减区间为[-4,-1.5),[3,5),[6,7].
新教材人教版高中数学必修第一册 3-2-1-1 单调性与最大(小)值——函数的单调性 教学课件

2.单调性与单调区间 如果函数 y=f(x)在区间 D 上单调递增或单调递减,那么就说函数 y =f(x)在这一区间具有(严格的)单调性,区间 D 叫做 y=f(x)的_单__调__区__间__. [ 思考] 若函数 f(x)是其定义域上的增函数且 f(a)>f(b),则 a,b 满足什么关 系,如果函数 f(x)是减函数呢? 提示:若函数 f(x)是其定义域上的增函数,那么当 f(a)>f(b)时,a> b;若函数 f(x)是其定义域上的减函数,那么当 f(a)>f(b)时,a<b.
第二十八页,共四十一页。
(3)由题知--11<<12-a-a<1<1,1, 1-a>2a-1,
解得 0<a<23,即所求 a 的取值范围是
0,23.
[答案] (1)①(-∞,-4] ②-4
(2)(-4,-2) (3)0,23
第二十九页,共四十一页。
[方法技巧] (1)区间 D 是函数 f(x)的定义域的子集,x1,x2 是区间 D 中的任意两 个自变量,且 x1<x2, ①f(x)在区间 D 上单调递增,则 x1<x2⇔f(x1)<f(x2). ②f(x)在区间 D 上单调递减,则 x1<x2⇔f(x1)>f(x2).
第十八页,共四十一页。
题型二 求函数的单调区间 [学透用活]
(1)如果函数 f(x)在其定义域内的两个区间 A,B 上都是增(减)函数, 则两个区间用“,”或“和”连接,不能用“∪”连接.
(2)书写单调区间时,若函数在区间的端点处有定义,则写成闭区间、 开区间均可,但若函数在区间的端点处无定义,则必须写成开区间.
C.a+b>0
D.a>0,b>0
第三十二页,共四十一页。
高一数学(人教A版)必修1课件:1-1-2 集合间的基本关系

通过以上所学,完成下面练习. (1)写出 N,Z,Q,R 之间的包含关系,并用 Venn 图表 示.
[解析] N Z Q R,用 Venn 图表示如图所示.
(2)判断下列两个集合之间的关系: A={x|x 是 4 与 10 的公倍数,x∈N*}, B={x|x=20m,m∈N*}. [答案] A=B
(2)当B是A的子集即B⊆A或真子集B A时,要特别注意B =∅的情况,不要遗漏,否则会丢解.
②若B≠∅,则B={-4}或B={0},此时方程x2+2(a+ 1)x+a2-1=0有两个相等的实数根.
∴Δ=4(a+1)2-4(a2-1)=0,解得a=-1.经验证知B= {0}满足条件.
综上可知所求实数a的值为a=1或a≤-1.
判断下列各组中集合之间的关系: (1)A={x|x是12的约数},B={x|x是36的约数}; (2)A={x|x2-x=0},B={x∈R|x2+1=0}; (3)A={x|x是平行四边形},B={x|x是菱形},C={x|x是 四边形},D={x|x是正方形}; (4)M={x|x=n2,n∈Z},N={x|x=12+n,n∈Z}.
①a⊆M; ②M⊇{a}; ③{a}∈M; ④{∅}∈{a}; ⑤2a∉M; 其中正确的关系式共有( ) A.2个 B.3个 C.4个 D.5个
规律总结:当给定的问题涉及元素与集合、集合与集 合的关系时,要抓住基本概念去解题.此时要注意辨明集合 中元素的特征,对“包含”与“包含于”、“真包含”与 “真包含于”、“属于”与“不属于”等符号要进行仔细辨 认,以避免因疏忽而出错.
第一章 集合与函数概念
第一章
1.1 集 合
第一章
1.1.2 集合间的基本关系
课前自主预习
温故知新 1.用适当的符号(∈,∉)填空: (1)1 ∈ {x|x2-3x+2=0}; (2)0 ∈ N; (3)a ∈ {a,b,c,d}; (4)2 ∉ {x|x2-2=0}; (5) 3 ∉ {x|x≤ 2}; (6){1} ∈ {{1},2,3}.
3.2.1函数的单调性5—赋值法与配凑法课件-2024-2025学年高一上学期数学人教A版必修1

①解:令x=y=0,则f(0)f(0)=f(0) ∴f(0)[f(0)-1]=0 ∴f(0)=0或f(0)=1
∵f(x)是定义域在R恒不等于零的函数 ∴f(0)=1
例2:设f(x)是定义域在R恒不等于零的函数,且对
x,y∈R满足f(x)f(y)=f(x+y),且f(x)>0
①求f(o)的值,
②设当x<0时,都有f(x)>f(0),证明f(x)在R上是减函数
练1:已知f(x)对x,y∈R恒有f(x+y)=f(x)+f(y) 且x>0时,f(x)<0,证明f(x)在R上是减函数
解:设x1,x2∈R,且x1<x2 ∴x2-x1>0
∵x>0时,f(x)<0
凑已知
∴f(x2-x1)<0
∵f(x1)-f(x2)=f(x1)-f[(x2-x1)+x1)]
=f(x1)-f(x2-x1)+f(x1)
f
(x2 )
f (x1)
f (x1 •
x2 ) x1
f (x1)
f
( x2 ) x1
f (x1)
f (x1)
f ( x2 ) x1
∵0
x1
x2 ,
x2 x1
1
f
(x2 )
f
( x1 )
0
高中数学 1.3.1函数的最大值、最小值课件 新人教版必修1

ppt精选
1
1.通过函数图象了解函数最大值、最小值在图象上的特 征。 2.会用函数的解析式和数学语言刻画函数最大值和最小 值的概念。 3.了解函数最值在实际中的应用,会求简单的函数的最 值。
ppt精选
2
观察下列函数的图象,如找何出使函用数函图数象的上解的析最式高和点数或学者语言 刻画函数图象的最低点和最高点?
8
探究点3 例题解析
例3.“菊花”烟花是最壮观的烟花之一。制地面的高度h m与时 间t s之间的关系为 h(t)4.9t214.7t18,那么烟花 冲出后什么时刻爆裂是最佳时刻?这时离地面的高度是多 少(精确到1 m)?
分析:烟花的高度是时间的二次函 数,根据题意就是求出这个二次函 数在什么时刻达到最大值,以及这 个最大值是多少。
值。
【提示】当k=0时,函数是常数函数;当k≠0时函数是一 次函数,再根据k>0,k<0时函数的单调性进行解答。 【答案】k=0时,函数的最大值和最小值都是2; k>0时,函数的最小值是2,最大值是2k+2; k<0时,函数的最小值是2k+2,最大值是2.
ppt精选
15
4.求函数 f(x)x2 2ax在区间[0,4]上的最小值。
ppt精选
9
解:画出这个函数 h(t)4.9t214.7t18
显然,函数图象的顶点就是烟花上升的最高点, 顶点的横坐标就是烟花爆裂的最佳时刻,顶点 的纵坐标就是距地面的高度。
根据二次函数的知识,对于函数
h(t)4.9t21 我4们.7t有 :18
当t 14.7 1.5时,函数有最大值 2(4.9)
2[(x2 1)(x1 1)] 2(x2 x1) .
人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课教学课件复习(函数的单调性)
函数,则实数 a 的取值范围是________.
(2)已知函数 y=f(x)是(-∞,+∞)上的增函数,且 f(2x-3)>f(5x-6), 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件
课件 课件
课件 课件
课件
课件
课件
课件
则实数 x 的取值范围为________.
D.y=1-x
栏目导航
3.函数 f(x)=x2-2x+3 的单调
(-∞,1] [因为 f(x)=x2-2x+3
减区间是________.
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
是图象开口向上的二次函数,其对称 轴为 x=1,所以函数 f(x)的单调减区
所以 a 的取值范围为(-∞,-3]∪[-2,+∞).
栏目导航
2.(变条件)若本例(2)的函数 f(x)是定义在(0,+∞)上的减函数,求 x
的范围.
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
[解] 由题意可知,
2x-3>0,
5x-6>0, 2x-3<5x-6,
若函数 f(x)是其定义域上的减函数,那么当 f(a)>f(b)时,a<b.
2.决定二次函数 f(x)=ax2+bx+c 单调性的因素有哪些? 提示:开口方向和对称轴的位置,即字母 a 的符号及-2ba的大小.
人教A版高中数学必修第一册第3章3-1-2第2课时分段函数课件
月份
1
2
3
合计
计费金额/元 114 75
45.6
234.6
问:小赵家第一季度共用电多少?
[解] (1)当0≤x≤100时,月电费=月用电量×标准电价,可得y= 0.57x; 当x>100时,月电费=100 kW·h的电费+超过100 kW·h部分的电费, 可得y=0.57×100+1.5×(x-100)=1.5x-93.
×
(2)分段函数有多个定义域. ( )
×
(3)分段函数的图象一定是其定义域上的一条连续不断的曲线 .
()
×
(4)函数f (x)=|x|可以用分段函数表示.( )
√
02
关键能力·合作探究释疑难
类型1 分段函数的求值问题 类型2 分段函数的图象及应用 类型3 分段函数的实际应用
◆ 类型1 分段函数的求值问题
√ √
BD [由题意知函数f (x)的定义域为(-∞,2),故A错误;当x≤-1
时,f (x)的取值范围是(-∞,1],当-1<x<2时,f (x)的取值范围是
[0,4),因此f (x)的值域为(-∞,4),故B正确;当x=1时,f (1)=
12=1,故C错误;当x≤-1时,f (x)=x+2=1⇒x=-1,当-1<x<2
发现规律 分段函数的建模 (1) 当 目 标 在 不 同 区 间 有 不 同 的 计 算 表 达 方 式 时 , 往 往 需 要 用 _分__段__函__数__模型来表示两变量间的对应关系,而分段函数图象也需 要分__段__画__. (2)分段函数模型应用的关键是确定分段的_各__分__界__点_,即明确自变量 的取值区间,对每一个区间进行分类讨论,从而写出相应的函数解 析式.
3.1.1 函数的概念(解析版)高一数学同步讲义(新教材人教A版必修第一册)
10 / 103.1.1 函数的概念一、知识点归纳知识点1. 函数的有关概念 (1)函数的概念(2)同一个函数:如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数.(3)函数的三要素:定义域、对应关系、值域是函数的三要素,缺一不可. 知识点2.知识点二 区间及相关概念 (1)区间的概念及记法设a ,b 是两个实数,而且a <b ,我们规定:(2)无穷大实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.(3)特殊区间的表示二、题型分析题型一函数的定义【例1】根据函数的定义判断下列对应关系是否为从集合A到集合B的函数:(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;(2)A={1,2,3},B={4,5,6},对应关系如图所示;(3)A=R,B={y|y>0},f:x→y=|x|;10 / 10(4)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1.【答案】见解析【解析】对于集合A中的任意一个值,在集合B中都有唯一的值与之对应,因此(1)(4)中对应关系f是从集合A到集合B的一个函数.(2)集合A中的元素3在集合B中没有对应元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应关系不是集合A到集合B的函数.(3)A中的元素0在B中没有对应元素,故所给对应关系不是集合A到集合B的函数.【规律方法总结】(1)判断一个集合A到集合B的对应关系是不是函数关系的方法:∈A,B必须都是非空数集;∈A中任意一个数在B中必须有并且是唯一的实数和它对应.【注意】A中元素无剩余,B中元素允许有剩余.(2)函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.【变式1】. 下列对应或关系式中是A到B的函数的是()A.A=R,B=R,x2+y2=1 B.A={1,2,3,4},B={0,1},对应关系如图:C.A=R,B=R,f:x→y=1 x-2D.A=Z,B=Z,f:x→y=2x-1【答案】B【解析】:A错误,x2+y2=1可化为y=±1-x2,显然对任意x∈A,y值不唯一.B正确,符合函数的定义.C错误,2∈A,在B中找不到与之相对应的数.D错误,-1∈A,在B中找不到与之相对应的数.10 / 1010 / 10题型二 求函数的定义域【例2】求下列函数的定义域.(1)y =3-12x ;(2)y =(x +1)0x +2;(3)y =5-x |x |-3;(4)f (x )=x +1-x 2-3x +4. 【答案】见解析【解析】(1)函数y =3-12x 的定义域为R.(2)由于0的零次幂无意义,故x +1≠0,即x ≠-1. 又x +2>0,即x >-2,所以x >-2且x ≠-1. 所以函数y =(x +1)0x +2的定义域为{x |x >-2且x ≠-1}.(3)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,所以函数y =5-x|x |-3的定义域为{x |x ≤5且x ≠±3}. (4)要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +1≥0,-x 2-3x +4>0,即⎩⎪⎨⎪⎧x ≥-1,(x +4)(x -1)<0,解不等式组得-1≤x <1. 因此函数f (x )的定义域为{x |-1≤x <1}.10 / 10【规律方法总结】求函数定义域的常用方法 (1)若f (x )是分式,则应考虑使分母不为零; (2)若f (x )是偶次根式,则被开方数大于或等于零;(3)若f (x )是指数幂,则函数的定义域是使指数幂运算有意义的实数集合; (4)若f (x )是由几个式子构成的,则函数的定义域要使各个式子都有意义; (5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义. 【变式2】.设全集为R ,函数f (x )=2-x 的定义域为M ,则∈R M 为( ) A .(2,+∞) B .(-∞,2) C .(-∞,2] D .[2,+∞)【答案】A【解析】: 由2-x ≥0解得x ≤2,所以M =(-∞,2],所以∈R M =(2,+∞). 【变式3】.函数f (x )=x x -1的定义域为________.【答案】:{x |x ≥0且x ≠1}【解析】:要使x x -1有意义,需满足⎩⎪⎨⎪⎧x ≥0,x -1≠0,解得x ≥0且x ≠1,故函数f (x )的定义域为{x |x ≥0且x ≠1}.题型三 同一函数(2)两个注意点:10 / 10题型四 求函数的值、值域问题【例4】(1)f (x )=2x 2+2,g (x )=1x +2,则f (2)=________;g (f (2))=________;g (a )+g (0)(a ≠-2)=________. (2)求下列函数的值域: ∈y =x +1,x ∈{1,2,3,4,5}; ∈y =x 2-2x +3,x ∈[0,3); ∈y =2x +1x -3;∈y =2x -x -1.【答案】:10112 1a +2+12【解析】(1)因为f (x )=2x 2+2, 所以f (2)=2×22+2=10, 又因为g (x )=1x +2,10 / 10所以g (f (2))=g (10)=110+2=112,g (a )+g (0)=1a +2+12(a ≠2).(2)∈观察法:因为x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.∈配方法:y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6). ∈分离常数法:y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x -3≠0,所以y ≠2.故函数的值域为(-∞,2)∈(2,+∞).∈换元法:设t =x -1,则t ≥0且x =t 2+1,所以y =2(t 2+1)-t =2⎝⎛⎭⎫t -142+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为⎣⎡⎭⎫158,+∞. 【规律方法总结】1.函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则. 2.求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;10 / 10(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 【变式5】求下列函数的值域: (1)y =2x +1+1;(2)y =1-x 21+x 2.【解析】:(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x 2,又函数的定义域为R ,所以x 2+1≥1, 所以0<21+x 2≤2,则y ∈(-1,1].所以所求函数的值域为(-1,1].三、课堂达标检测1.下列各个图形中,不可能是函数y =f (x )的图象的是( )【答案】:A【解析】:对于1个x 有无数个y 与其对应,故不是y 的函数. 2.已知函数f (x )=-1,则f (2)的值为( ) A .-2 B .-1 C .0 D .不确定 【答案】:B【解析】:因为函数f (x )=-1,4.函数y=1+2-x的定义域为()A.[1,+∞)B.(-∞,1]C.[2,+∞)D.(-∞,2]【答案】D【解析】:要使函数式有意义,需2-x≥0,解得x≤2.5.用区间表示下列数集:(1){x|x≥1}=________;(2){x|2<x≤4}=________;(3){x|x>-1,且x≠2}=________.【答案】:(1)[1,+∞)(2)(2,4](3)(-1,2)∈(2,+∞)6.已知函数f(x)=2x-3,x∈{x∈N|1≤x≤5},则函数f(x)的值域为________.【答案】:{-1,1,3,5,7}【解析】:定义域为{1,2,3,4,5},逐一代入求值可得值域为{-1,1,3,5,7}.10 / 1010 / 107.下列各组函数是同一个函数的是________.(填序号) ∈f (x )=-2x 3与g (x )=x -2x ; ∈f (x )=x 0与g (x )=1x0;∈f (x )=x 2-2x -1与g (t )=t 2-2t -1. 【答案】∈∈【解析】∈f (x )=-x -2x ,g (x )=x -2x ,对应关系不同,故f (x )与g (x )不是同一个函数; ∈f (x )=x 0=1(x ≠0),g (x )=1x 0=1(x ≠0),对应关系与定义域均相同,故是同一个函数;∈f (x )=x 2-2x -1与g (t )=t 2-2t -1,对应关系和定义域均相同,故是同一个函数. 8.若f (x )=1-x1+x (x ≠-1),求f (0),f (1),f (1-a )(a ≠2),f (f (2))的值.【答案】2【解析】:f (0)=1-01+0=1,f (1)=1-11+1=0,f (1-a )=1-(1-a )1+(1-a )=a2-a (a ≠2),f (f (2))=1-f (2)1+f (2)=1-1-21+21+1-21+2=2. 四、课后提升作业一、选择题1.已知f (x )=x 2+1,则f (f (-1))=( ) A .2 B .3 C .4D .510 / 10【答案】D【解析】: 因为f (-1)=(-1)2+1=2,所以f (f (-1))=f (2)=22+1=5.2.已知M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )【答案】B【解析】: A 项中函数的定义域为[-2,0],C 项中对任一x 都有两个y 值与之对应,D 项中函数的值域不是[0,2],均不是函数f (x )的图象.故选B. 3.下列各组函数表示相等函数的是( ) A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 【答案】C【解析】: 选项A 、B 及D 中对应关系都不同,故都不是相等函数. 4.函数f (x )=3x 21-x -23x +1的定义域是( )A.⎣⎡⎦⎤-13,1 B.⎝⎛⎭⎫-13,1 C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13 【答案】B【解析】: 由⎩⎪⎨⎪⎧1-x >0,3x +1>0,可得-13<x <1,从而得B 答案.10 / 105.若函数f (x )=ax 2-1,a 为一个正数,且f (f (-1))=-1,那么a 的值是( ) A .1 B .0 C .-1 D .2【答案】A【解析】: ∈f (x )=ax 2-1,∈f (-1)=a -1, f (f (-1))=f (a -1)=a ·(a -1)2-1=-1. ∈a (a -1)2=0. 又∈a 为正数,∈a =1.6.已知函数y =f (x ),则函数与直线x =a 的交点个数有( ) A .1个 B .2个 C .无数个 D .至多一个【答案】D【解析】根据函数的概念,在定义域范围内任意一个自变量x 的值都有唯一的函数值与之对应,因此直线x =a 与函数y =f (x )的图象最多只有一个交点.7.已知等腰三角形ABC 的周长为10,底边长y 关于腰长x 的函数关系式为y =10-2x ,则此函数的定义域为( ) A .RB .{x |x >0}C .{x |0<x <5} D.⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <5 【答案】 D【解析】 ∈∈ABC 的底边长显然大于0,即y =10-2x >0,∈x <5.又两边之和大于第三边,∈2x >10-2x ,∈x >52,∈此函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <5. 8.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式10 / 10为y =x 2,值域为{1,4}的“同族函数”的个数为( )A .6B .9C .12D .16 【答案】B【解析】由题意知,问题的关键在于确定函数定义域的个数.函数解析式为y =x 2,值域为{1,4},当x =±1时,y =1,当x =±2时,y =4,则定义域可以为{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{-1,2,-2},{1,-2,2},{1,-1,2,-2},因此“同族函数”共有9个.二、填空题9.设f (x )=11-x ,则f (f (a ))=________.【答案】:a -1a(a ≠0,且a ≠1)【解析】:f (f (a ))=11-11-a =11-a -11-a =a -1a (a ≠0,且a ≠1).10.函数y =2x +41-x 的值域为________(用区间表示). 【答案】:(-∞,4]【解析】:令t =1-x ,则x =1-t 2(t ≥0), y =2x +41-x =2-2t 2+4t =-2(t -1)2+4. 又∈t ≥0,∈当t =1时,y max =4. 故原函数的值域是(-∞,4].11.设常数a ∈R ,函数f (x )=|x -1|+|x 2-a |,若f (2)=1,则f (1)=________. 【答案】3【解析】由f (2)=1+|22-a |=1,可得a =4,所以f (1)=|1-1|+|1-4|=3.12.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4,则m 的取值范围为________.10 / 10【答案】 ⎣⎡⎦⎤32,3【解析】 ∈当x =0或x =3时,y =-4;当x =32时,y =-254,∈m ∈⎣⎡⎦⎤32,3. 13.已知函数f (x )=2kx 2-4kx +k +3的定义域为R ,则k 的取值范围是________.【答案】 0≤k <1【解析】 由题意可得kx 2-4kx +k +3>0恒成立. ∈当k =0时,3>0恒成立,所以满足题意;∈当k ≠0时,须使⎩⎪⎨⎪⎧k >0,Δ=(4k )2-4k (k +3)<0, 解得0<k <1.综上所得,k 的取值范围为0≤k <1.三、解答题14.试求下列函数的定义域与值域: (1)f (x )=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f (x )=5x +4x -1; (3)f (x )=x -x +1. 【答案】见解析【解析】:(1)函数的定义域为{-1,0,1,2,3},则f (-1)=[(-1)-1]2+1=5,同理可得f (0)=2,f (1)=1,f (2)=2,f (3)=5,所以函数的值域为{1,2,5}.(2)函数的定义域是{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}.(3)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域是{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),10 / 10于是f (t )=t 2-1-t =⎝⎛⎭⎫t -122-54.又t ≥0,故f (t )≥-54.所以函数的值域是⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥-54. 15.(1)已知函数f (x )的定义域为[-1,5],求函数f (x -5)的定义域; (2)已知函数f (x -1)的定义域是[0,3],求函数f (x )的定义域; (3)若f (x )的定义域为[-3,5],求φ(x )=f (-x )+f (x )的定义域. 【答案】见解析【解析】 (1)由-1≤x -5≤5,得4≤x ≤10,所以函数f (x -5)的定义域是[4,10]. (2)由0≤x ≤3,得-1≤x -1≤2,所以函数f (x )的定义域是[-1,2].(3)已知f (x )的定义域为[-3,5],则φ(x )的定义域需满足⎩⎪⎨⎪⎧ -3≤-x ≤5,-3≤x ≤5,即⎩⎪⎨⎪⎧-5≤x ≤3,-3≤x ≤5,解得-3≤x ≤3.所以函数φ(x )的定义域为[-3,3]. 16.已知函数f (x )=x 21+x 2.(1)求f (2)+⎪⎭⎫ ⎝⎛21f ,f (3)+⎪⎭⎫ ⎝⎛31f 的值;(2)由(1)中求得的结果,你发现f (x )与⎪⎭⎫⎝⎛x 1f 有什么关系?并证明你的结论; (3)求f (2)+⎪⎭⎫⎝⎛21f +f (3)+⎪⎭⎫ ⎝⎛31f +…+f (2 019)+f ⎪⎭⎫⎝⎛20191f 的值. 【答案】见解析【解析】:(1)∈f (x )=x 21+x 2,∈f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1,10 / 10f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)由(1)可发现f (x )+f ⎝⎛⎭⎫1x =1.证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,∈f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2 019)+f ⎝⎛⎭⎫12 019=1. ∈f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 019)+f ⎝⎛⎭⎫12 019=2 018.。
高中数学人教A版必修第一册3.2函数的最值(课件)
函数的基本性质
——函数的最值
复习回顾
1.函数的单调性
一般地,设函数()的定义域为,区间I⊆D:
如果∀1 , 2 ∈ ,当1 < 2 时,都有
(1 ) < (2 ),那么就称函数()在
区间上单调递增。(如右图)
y
y f ( x)
f ( x2 )
6]上单调递减。
x 1
所以,此函数在区间[2,6]的两个端点上分别取得最大值与
最小值。即在x=2时取得最大值是2,在x=6时取得最小值
为0.4.
课堂练习
2x+1
1.已知函数 f(x)=
.
x+1
(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论;
(2)求该函数在区间[2,4]上的最大值和最小值.
20
15
10
5
o
14.7
当t = = 1.5 时,函
2 (-4.9)
数有最大值
1 2 3
4
t
4 (-4.9) 18 - 14.7 2
h=
29
4 (-4.9)
所以,烟花冲出1.5s是它爆裂的最佳时刻,此
时距离地面的高度约为29m.
例题讲授
例2 已知函数 f ( x) 2 ( x [2,
所示,则此函数的最小值、最大值
分别是(
)
A.-1,0
B.0,2
C.-1,2
1
D. ,2
2
ቤተ መጻሕፍቲ ባይዱ
答案:C
例题讲授
例1 “菊花”烟花是最壮观的烟花之一.制造时一般是期望在它到达最高点
时爆裂.如果烟花距地面的高度 h(单位:m)与时间 t(单位:s)之间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
1.3 函数的基本性质
第一章
1.3.1 单调性与最大(小)值
第一章
第 2 课时 函数的最值
课前自主预习
温故知新 1.判断正误: (1)若函数 f(x)在区间(a,b)和(c,d)上均为增函数,则函 数 f(x)在区间(a,b)∪(c,d)上也是增函数. (2)若函数 f(x)和 g(x)在各自的定义域上均为增函数,则 f(x) +g(x)在它们定义域的交集(非空)上是增函数.
当 x=-1.5 时取得最小值即 ymin=-2.
作出函数 f(x)=|x-3|+ x2+6x+9的图象,并说明该函 数的最值情况.
[解析]
-2x,x≤-3 原函数可化为 f(x)=|x-3|+|x+3|=6,-3<x≤3, ,
2x,x>3
图象如图: 由图象可知,函数有最小值为 6,无最大值.
利润=总―收―益→-总成本
构造fx 解析式
利润函数单调性 ――→
求最 大值
[解析] (1)设月产量为 x 台,则总成本为 20 000+100x, 从而 f(x)=-12x2+300x-20 000,0≤x≤400,
60 000-100x, x>400. (2)当 0≤x≤400 时, f(x)=-12(x-300)2+25 000, ∴当 x=300 时,f(x)max=25 000;
5
1 (2)3
1 2
-12
-13
(3)-3
5
-
3 0 -4 0
思路方法技巧
1 利用图象法求函数最值
学法指导:利用图象法求函数最值的方法 (1) 利 用 函 数 图 象 求 函 数 最 值 是 求 函 数 最 值 的 常 用 方 法.这种方法以函数最值的几何意义为依据,对图象易作出 的函数求最值较常用.
从图中看出,图(1)中 f(x)≤yA,图(3)中 f(x)≥yC,图(5)中 yD≤f(x)≤yE,(1)(5)中的 yA、yE 称为函数的最大值,图(3)中的 yC 称为函数 y=x2,x∈(-1,1)的最小值,图(2)(4)两个函数无 最大值,也无最小值.
总结:(1)最大值的概念: 一般地,设函数 y=f(x)的定义域为 I,如果存在实数 M 满足:①对于任意的 x∈I,都有 f(x)≤M ;②存在 x0∈I, 使得 f(x0)=M .那么,称 M 是函数 y=f(x)的最大值. (2)最小值的概念: 设函数 y=f(x)的定义域为 I,如果存在实数 M 满足:① 对于任意的 x∈I,都有 f(x)≥M ;②存在 x0∈I,使得 f(x0)=M . 那么,称 M 是函数 y=f(x)的最小值.
(3)函数 y=x2-2x-3 在[-2,0]上的最小值为________, 最大值为________;在[2,3]上的最小值为________,最大值为 ________ ; 在 [ - 1,2] 上 的 最 小 值 为 ________ , 最 大 值 为 ________.
[答案]
(1)-5
[解析] 按例题的证明方法,易证 f(x)在区间[2,4]上是增 函数,又函数在[1,2]上是减函数,所以函数 f(x)的最小值是 4. 又 f(4)=5,所以函数的最大值是 5.
(2012~2013 包头高一月考检测)已知函数 f(x)=xx+-21. (1)求证:f(x)在[3,5]上为增函数; (2)求 f(x)在[3,5]上的最大、小值.
2 利用单调性求函数最值
学法指导:对函数最值与单调性的认识 (1)运用函数单调性求最值是求函数最值的常用方法,特 别是当函数图象不易作出时,单调性几乎成为首选方法.
(2)函数最值与单调性有如下关系: ①如果函数 y=f(x)在区间[a,b]上是增(减)函数,则在区 间[a,b]的左、右端点处分别取得最小(大)值和最大(小)值. ②如果函数 y=f(x)在区间(a,b]上是增函数,在区间[b, c)上是减函数,则函数 y=f(x),(x∈,(a,c))在 x=b 处有最 大值 f(b); ③如果函数 y=f(x)在区间(a,b]上是减函数,在区间[b, c)上是增函数,则函数 y=f(x),(x∈(a,c))在 x=b 处有最小 值 f(b);
【归纳提升】 (1)M 首先是一个函数值,它是值域的一 个元素.如 f(x)=-x2(x∈R)的最大值为 0,有 f(0)=0,注意 对定义②中“存在”一词的理解.
(2)对于定义域内的全部元素,都有 f(x)≤M 成立,“任 意”是说对每一个值都必须满足不等式.
(3)这两条缺一不可,若只有定义中的①,M 不是最大值, 如 f(x)=-x2(x∈R),对任意 x∈R,都有 f(x)≤1 成立,但 1 不是最大值,否则大于零的任意实数都是最大值了;最大值 的核心是不等式 f(x)≤M,故不能只有定义中的②.
(2)由(1)知,当 x=3 时,函数 f(x)取得最小值为 f(x)=25, 当 x=5 时,函数 f(x)取得最大值为 f(5)=47.
建模应用引路
5 函数最值的实际应用
学法指导:求解实际问题“四步曲” (1)读题:分为读懂和深刻理解两个层次,把“问题情 景”译为数学语言,找出问题的主要关系(目标与条件的关 系). (2)建模:把问题中的关系转化成函数关系,建立函数解 析式,把实际问题转换成函数问题. (3)求解:选择合适的数学方法求解函数.
[解析] (1)任取 x1,x2∈[3,5]且 x1<x2,则 f(x1)-f(x2)=xx11- +12-xx22-+12 =x1-1x2x+1+22-x2x+2-21 x1+2 =x1x2+2x1-xx21-+22-xx21+x2-2 2x2+x1+2
=x13+x21-xx2+2 2 ∵x1,x2∈[3,5]且 x1<x2, ∴x1-x2<0,x1+2>0,x2+2>0, ∴f(x1)-f(x2)<0,∴f(x1)<f(x2), ∴函数 f(x)=xx- +12在 x∈[3,5]上为增函数.
[例 2] (2012~2013 扶沟高中月考试题)利用单调性定义 证明函数 f(x)=x+4x在[1,2]上的单调性并求其最值.
[分析] 当所给函数图象不易作出时,可考虑利用函数单 调性来求函数最值,即先判断函数的单调性,再求最值.
[解析] 设 1≤x1<x2≤2, 即 f(x1)-f(x2)=x1+x41-x2-x42 =(x1-x2)+4xx21-x2x1 =(x1-x2)x1xx12x-2 4
3.从函数 f(x)=x2 的图象上还可看出,当 x=0 时,y=0 是所有函数值中 最小值. 而对于 f(x)=-x2 来说,x=0 时, y=0 是所有函数值中 最大值.
新课引入 某小卖部从批发市场批发某种笔芯,进价是每支 0.35 元, 以每支 0.5 元的价格销售,卖不掉的笔芯还可以每支 0.08 元 的价格退回批发市场.在一个月(30 天)中,有 20 天每天可以 卖出 400 支,其余 10 天每天只能卖出 250 支. 假设每天从批发市场买进的笔芯的数量相同,则每天进 货多少支才能使每月所获得的利润最大?最大利润是多少?
[解析] 设每天从批发部买进笔芯 x 支,250≤x≤400, 每月的纯收入为 y 元,则 y=0.3x+1 050,x∈[250,400].易解: 当每天进货 400 支时,每月所获得的利润最大,最大利润是 1 170 元.
自主预习 问题 1:观察下图所示的函数图象,有何特征?
探究:图(1)函数 y=-x2-2x 的图象有最高点 A,没有最 低点;图(2)函数 y=-2x+1,x∈(-1,+∞)的图象没有最高 点,也没有最低点;图(3)函数 y=x2,x∈(-1,1)的图象无最 高点,有最低点;图(4)函数 y=1x的图象没有最高点,也没有 最低点;图(5)函数 y=x2-2x,x∈[0,4]的图象有最高点 E,最 低点 D.
当 x>400 时, f(x)=60 000-100x 是减函数, f(x)<60 000-100×400<25 000. ∴当 x=300 时,f(x)max=25 000. 即每月生产 300 台仪器时利润最大,最大利润为 25 000 元.
某工厂生产一种机器的固定成本为 5 000 元,且每生产 1 部,需要增加投入 25 元,对销售市场进行调查后得知,市场 对此产品的需求量为每年 500 部,已知销售收入的函数为 N(x) =500x-12x2,其中 x 是产品售出的数量(0≤x≤500).
(4)评价:对结果进行验证或评估,对错误加以改正,最 后将结果应用于现实,做出解释或预测.
也可认为分成“设元——列式——求解——作答”四个 步骤.
[例 3] 某公司生产一种电子仪器的固定成本为 20000 元,每生产一台仪器需增加投入 100 元,已知总收益满足函 数:
R(x)=400x-12x2,0≤x≤400, 其中 x 是仪器的月总 80 000,x>400.
(2)图象法求最值的一般步骤是:
[例 1] 如图为函数 y=f(x),x∈[-4,7]的图象,指出它的 最大值、最小值.
[分析] 利用图象法求函数最值,要注意函数的定义 域.函数的最大值、最小值分别是图象的最高点和最低点的 纵坐标.
[解析] 观察函数图象可以知道,图象上位置最高的点是 (3,3),最低的点是(-1.5,-2),所以函数 y=f(x)当 x=3 时取 得最大值即 ymax=3;
量. (1)将利润表示为月产量的函数 f(x); (2)当月产量为何值时,公司所获利润最大利润=总收益-总成本,故 f(x)=R(x)- 100x.(2)求分段函数最大值,就是将各段的最大值分别求出, 然后取其中最大值的.
(3)
分析数据: 成本、收益
[答案] (1)× (2)√
2.填空: (1)函数 y=|x|的单调增区间为 [0,+∞). (2)函数 y=ax+b(a≠0)的单调区间为 (-∞,+∞) ;函 数 y=(a2-1)x 为减函数,则 a 的取值范围是 (-1,1).