第1课时 相似多边形教案

合集下载

4.3相似多边形1课时(教案)

4.3相似多边形1课时(教案)
5.在学习过程中,培养学生合作交流、自主探究的学习习惯,提高学生的团队合作能力。
三、教学难点与重点
1.教学重点
(1)相似多边形的定义及性质:理解相似多边形的含义,掌握其性质,如对应角相等、对应边成比例等。
举例:等腰三角形的相似性质,矩形、菱形等特殊多边形的相似性质。
(2)相似多边形的判定方法:学会运用SSS、SAS、AA等判定方法判断两个多边形是否相似。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似多边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.教学难点
(1)相似多边形的判定方法:学生容易混淆判定条件,难以判断两个多边形是否相似。
突破方法:通过实例演示,让学生直观感受相似多边形的判定方法,加强练习,巩固知识。
(2)相似多边形面积比和周长比的计算:学生容易忘记相似比与面积比、周长比的关系。
突破方法:通过具体实例,让学生理解相似多边形面积比和周长比的计算方法,加深记忆。
五、教学反思
在今天的教学过程中,我发现学生们对相似多边形的概念和性质表现出较高的兴趣。在导入新课环节,通过日常生活中的例子引发学生们的思考,他们能够积极参与讨论,这为后续的教学奠定了良好的基础。
在新课讲授环节,我发现大部分学生能够跟上课程的节奏,但对于相似多边形的判定方法和面积比、周长比的计算仍存在一定的困难。在讲解过程中,我尽量使用简单的语言和丰富的例子来阐述这些难点,希望学生们能够逐步消化吸收。

九年级数学北师大版上册 第4章《4.3相似多边形》教学设计 教案

九年级数学北师大版上册 第4章《4.3相似多边形》教学设计 教案

设计人审核人上课时间第周科目数学班级共1课时,第 1 课时教学内容北师大版数学书86页至88页课题 4.3相似多边形学习目标1、经历相似多边形概念的形成过程,了解相似多边形的含义.2、在探索相似多边形边、角的关系中,进一步发展学生的观察、判断、归纳能力.3、在交流和反思过程中,体验数学活动中充满了探索性和创造性.重难点教学重点:探索相似多边形的概念过程,以及从定义的角度去判断两个多边形是否相似教学难点:探索相似多边形的概念过程导学流程情境引入一、自主学习请找出形状相同的图形:探索发现:六边形ABCDEF与六边形A1B1C1D1E1F1是形状相同的图形;其中∠A与∠A1, ∠B与∠B1, ∠C与∠C1, ∠D时间二、点拨归纳概念总结:例1、如图,梯形ABCD与梯形A′B′C′D′相似,AD∥BC,A′D′∥B′C′,∠A=∠A′,AD=4,A′D′=6,AB=6,B′C′=12,∠C=60°.求:(1)梯形ABCD与梯形A′B′C′D′的相似比k;(2)A′B′和BC的长;(3)∠D′的大小..64126AB CD A'B'C'D'如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是()A.∠E=2∠KB.BC=2HIC.六边形ABCDEF的周长=六边形GHIJKL的周长D.以上答案都不对EFAB CD KLGHIJ例2、如图,G是正方形ABCD的对角线AC上一点,。

《相似多边形》教案

《相似多边形》教案

3相像多边形【知识与技术】1.认知趣像多边形的观点和性质.2.在简单情况下,能依据定义判断两个多边形相像.3.会用相像多边形的性质解决简单的几何问题.【过程与方法】理解相像多边形的观点和性质,并能娴熟运用.【感情态度】激发学习兴趣,培育想象力,发掘学生潜力.【教课要点】相像多边形的定义和性质.【教课难点】如何判断两个多边形能否相像.一、情境导入 ,初步认识如图:四边形 A 1B1C1D1是四边形 ABCD 经过相像变换所得的图象.请分别求出这两个四边形的对应边的长度 ,并分别量出这两个四边形各个内角的度数 . 而后与你的伙伴议论:这两个四边形的对应角之间有什么关系?对应边之间有什么关系?【教课说明】培育学生从图片直观地获守信息的能力,并经过亲自体验概括总结相像图形的共同特色 .由此自然地引出课题——相像多边形 . 二、思虑研究,获得新知1.相像多边形:各对应角相等、各对应边成比率的两个多边形叫做相像多边形.对应极点的字母写在对应的地点上,如四边形 A 1B1C1D1∽四边形 ABCD.相像多边形对应边的比叫做相像比.图中四边形 A 1B1C1D1与四边形 ABCD 的相像比为k=1/2.2.察看下边两个图,判断:它们形状同样吗?它们是相像图形吗?这两个五边形是,即_______________________________________.3.问题:假如两个多边形相像,那么它们的对应角有什么关系?对应边呢?相像多边形的性质: ____________________________________________.【教课说明】经过对各样相像图形特色的一个自然感知的过程,使学生都能用自己的语言概括总结出相像多边形的特色.【概括结论】相像多边形的对应角相等,对应边成比率.相像用“∽”表示,读作“相似于” .三、运用新知,深入理解1.以下每组图形的形状同样,它们的对应角有如何的关系?对应边呢?(1)正三角形 ABC 与正三角形 DEF;(2)正方形 ABCD 与正方形 EFGH.解: (1)因为正三角形每个角都等于60°,因此∠ A= ∠D=60°,∠ B=∠E=60°,∠C=∠F= 60°.因为正三角形三边相等,因此 AB ∶DE=BC ∶EF=CA∶FD;(2)因为正方形的每个角都是直角,因此∠ A= ∠E=90°,∠ B=∠F=90°,∠C=∠G=90°,∠ D= ∠H=90°,因为正方形的四边相等,因此 AB ∶EF=BC∶ FG=CD∶GH=DA ∶HE.2.两个相像多边形,此中一个多边形的周长和面积分别是10 和 8,另一多边形的周长为 25,则另一个多边形的面积是 ________.解答:两个相像多边形的周长的比等于相像比,因此相像比是10∶ 25=2∶ 5,而面积的比等于相像比的平方,设另一个多边形的面积是x,则 8:x=( 2∶5)2,解得: x=50,即另一个多边形的面积是50.3.两个相像的五边形,一个五边形的各边长分别为1,2,3,4,5,另一个的最大边长为 10,则后一个五边形的最短边的长为________.剖析:依据相像多边形的对应边的比相等可得.解:两个相像的五边形,最长的边是 5,另一个最大边长为10,则相像比是 5∶10=1∶2,依据相像五边形的对应边的比相等,设后一个五边形的最短边的长为x,则 1∶ x=1∶2,解得: x=2 ,即后一个五边形的最短边的长为 2.4.如图,四边形 ABCD ∽四边形 A ′B′C′D′,则∠ 1=_____,AD=_____.分析:依据相像多边形对应边之比相等,对应角相等可得.解答:四边形 ABCD ∽四边形 A ′B′C′D′,则∠ 1=∠B=70°,A DD C . AD DC即21 18 3,解得 AD=28 ,∠ 1=70°. AD2445.设四边形 ABCD 与四边形 A1B1C1D1 是相像的图形,且 A 与 A 1、B 与 B1、 C 与C1是对应点,已知AB=12 ,BC=18,CD=18,AD=9 ,A 1B1=8,则四边形 A 1B1C1D1的周长为 ________.分析:四边形 ABCD 与四边形 A 1B1C1 D1是相像的图形,则依据相像多边形对应边的比相等,便可求得 A 1B1C1D1的其余边的长,便可求得周长.解答:∵四边形 ABCD 与四边形 A 1 1 1 1 是相像的图形,B C D∴ AB BC CD DA .A1B1B1C1C1D1D1 A1又∵ AB=12 ,BC=18, CD=18,AD=9 ,A 1B1=8,∴12 18189,8 B1C1C1 D1D1 A1∴B1C1=12,C1D1=12,D1A1=6,∴四边形 A 1B1C1D1的周长 =8+12+12+6=38.【教课说明】学生在应用中更深层次认知趣像多边形的基本涵义;初步掌握相像多边形的对应角相等,对应边成比率的性质.四、师生互动,讲堂小结经过本节课的学习,你有何收获?还有哪些疑问?【教课说明】鼓舞学生联合本节课的学习过程,说说自己的收获与感想,让学生学会疏理、概括和总结 .1、部署作业 :教材“习题 3.4”中第 1 、2 题 .2、达成创优作业中本课时“课时作业”部分.本节课是在研究相像多边形的过程中,进一步发展学生概括、类比、反省、沟通、论证等方面的能力,提升数学思想水平,领会反例的作用及直觉的不行靠性.。

相似多边形教案

相似多边形教案

相似多边形教案一、教学目标1.了解相似多边形的定义和性质;2.掌握相似多边形的判定方法;3.掌握相似多边形的性质在实际问题中的应用。

二、教学重点1.相似多边形的定义和性质;2.相似多边形的判定方法。

三、教学难点相似多边形的性质在实际问题中的应用。

四、教学过程1. 导入通过展示一些相似的图形,引导学生思考相似的概念,并引出相似多边形的概念。

2. 讲解1.相似多边形的定义:如果两个多边形的对应角相等,对应边成比例,则这两个多边形是相似的。

2.相似多边形的性质:–对应边成比例;–对应角相等;–对应线段的比例相等。

3.相似多边形的判定方法:–对应角相等;–对应边成比例;–对应线段的比例相等。

3. 练习1.给出两个多边形,让学生判断它们是否相似,并说明理由。

2.给出一个多边形和一个比例因子,让学生求出相似的多边形。

3.给出一个多边形和一个相似的多边形,让学生求出它们之间的比例因子。

4. 拓展让学生思考相似多边形的性质在实际问题中的应用,如测量高楼、测量山高等。

5. 总结让学生总结相似多边形的定义、性质和判定方法,并强调相似多边形在实际问题中的应用。

五、教学评价1.通过练习,检查学生对相似多边形的理解程度;2.通过拓展,检查学生对相似多边形的应用能力;3.通过总结,检查学生对相似多边形的掌握程度。

六、教学反思相似多边形是初中数学中的一个重要概念,掌握相似多边形的定义、性质和判定方法对于学生的数学学习和实际问题的解决都有很大的帮助。

在教学过程中,要注意引导学生思考和发现,让学生在实践中掌握知识,提高学生的应用能力。

同时,要注意巩固学生的基础知识,让学生在掌握相似多边形的基础上更好地学习后续内容。

北师大版九年级数学上册《相似多边形》教案

北师大版九年级数学上册《相似多边形》教案

《相似多边形》教案教学目标(一)教学知识点经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形.(二)能力训练要求经历探索图形的边、角关系,培养学生的观察能力,分析判断能力.(三)情感与价值观要求通过观察、推断可以获得教学猜想,体验数学活动充满着探索性和创造性.教学重点探索相似多边形的定义,以及用定义去判断两个多边形是否相似.教学难点探索相似多边形的定义的过程.教学方法指导探索法.教具准备投影片两张.教学过程一、创设问题情境,引入新课[师]大家从语文的角度来分析一下“相似”一词的意思.[生]“相似”就是差不多,但也不是完全相同,既有相同部分也有不同部分.[师]很好,那“相似多边形”应怎么理解呢?[生]“相似多边形”即为两个边数相同的多边形,并且形状一样、大小可能不同.[师]大家的分析能力非常棒,究竟“两个相似多边形”需满足什么条件呢?本节课我们将进行探索.二、新课讲解1.探究相似多边形的定义下图中的两个多边形分别是幻灯片上的多边形ABCDEF和银幕上的多边形A1B1C1D1E1F,它们的形状相同吗?1图4-14(1)在上图的两个多边形中,是否有相等的内角?设法验证你的猜测.(2)在上图的两个多边形中,相等内角的两边是否成比例?[师]请大家动手验证一下.[生]在上图中,六边形ABCDEF 与六边形A 1B 1C 1D 1E 1F 1是形状相同的图形,其中 ∠A 与∠A 1,∠B 与∠B 1,∠C 与∠C 1,∠D 与∠D 1,∠E 与∠E 1,∠F 与∠F 1分别对应相等,AB 与A 1B 1,BC 与B 1C 1,CD 与C 1D 1,DE 与D 1E 1,EF 与E 1F 1,F A 与F 1A 1的比都相等.[师]从上可知,幻灯片上的六边形与银幕上的六边形形状相同,只是大小不同,它们的对应角相等、对应边成比例.那么,形状相同的多边形是都有这种关系呢,还是只有六边形才有呢?下面我们继续进行探讨.[例题]下列每组图形形状相同,它们的对应角有怎样的关系呢?对应边呢?(1)正三角形ABC 与正三角形DEF ;(2)正方形ABCD 与正方形EFGH .[师]请大家互相交流.[生]解:(1)由于正三角形每个角都等于60°,所以∠A =∠D =60°,∠B =∠E =60°,∠C =∠F =60°由于正三角形三边相等,所以FDCA EF BC DE AB ==. (2)由于正方形的每个角都是直角,所以∠A =∠E =90°,∠B =∠F =90°,∠C =∠G =90°,∠D =∠H =90°.由于正方形四边相等,所以HEDA GH CD FG BC EF AB === [师]从上面的讨论结果来看,大家能否猜测出相似多边形的定义呢?[生]可以.对应角相等,对应边成比例的两个多边形叫做相似多边形(similar polygons).相似多边形对应边的比叫做相似比(similarity ratio).[师]相似应该怎样表示呢?请认真看书.[生]六边形ABCDEF与六边形A1B1C1D1E1F1相似.记作六边形ABCDEF∽六边形A1B1 C1D1E1F1,其中AB∶A1B1等于相似比.[师]在记两个多边形相似时,要注意什么?[生]要注意把表示对应角顶点的字母写在对应的位置上.2.想一想(1)如果两个多边形相似,那么它们的对应角有什么关系?对应边呢?若两个多边形相似,那么它们的对应角相等,对应边成比例.3.议一议投影片(§4.4B)1.观察下面两组图形,(1)中的两个图形相似吗?为什么?(2)中的两个图形呢?与同伴交流.图4-152.如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?[生]1.(1)中的两个图形不相似.因为相似形需要满足两个条件,一个是对应角相等,一个是对应边成比例,虽然(1)中的两个图形对应边成比例,但对应角不相等,所以两个图形不相似.(2)中的两个图形也不相似.因为它们的对应边不成比例,所以两个图形不相似.2.如果两个多边形不相似,那么它们的对应角也可能都相等,如(2)中的两个图形;如果两个多边形不相似,那么它们的对应边也可能成比例,如(1)中的两个图形对应边成比例,但对应角不相等.4.做一做一块长3 m ,宽1.5 m 的矩形黑板如图所示,镶在其外围的木质边框宽7.5 cm .边框的内外边缘所成的矩形相似吗?为什么?请大家交流后回答.图4-16[生]答:不相似.内边缘的矩形长为300 cm ,宽为150 cm ,外边缘的矩形长为315 cm ,宽为165 cm ,因为315300≠165150,所以内外边缘所成的矩形不相似. 三、课堂练习判断下列每组中的两个图形是相似多边形吗?并说明理由.(1)两个大小不等的矩形;(2)两个大小不等的正五边形;(3)一个正方形与一个平行四边形;(4)两个大小不等的菱形.解:(1)两个大小不等的矩形不一定相似,虽然它们的对应角相等,都是直角,但它们的对应边不一定成比例.(2)两个大小不等的正五边形是相似多边形,因为它们的对应角相等,对应边成比例.(3)一个正方形与一个平行四边形不相似,因为平行四边形的四个角不相等,四条边也不相等,所以对应角不相等,对应边也不成比例.(4)两个大小不等的菱形不一定相似.因为菱形的边长相等,两个菱形满足对应边成比例,但对应角不一定相等,所以不一定相似.四、课时小结本节课通过探究相似多边形满足的条件,从而推导出相似多边形的定义,并能根据定义判断某些图形是否为相似多边形.五、课后作业习题4.4。

相似多边形及性质-优秀教案

相似多边形及性质-优秀教案

23.4 相似多边形及性质(第1课时,共2课时)【教学目标】1.相似多边形的周长比,面积比与相似比的关系.2.经历探索相似多边形的性质的过程,培养学生的探索能力. 【教学重点】相似多边形的周长比、面积比与相似比的关系. 【教学难点】相似多边形周长比、面积比与相似比的关系的推导. 【教学过程】一.引入新课 听故事 想问题很久以前,某地发生大旱,地里的庄稼都干死了,于是大家到庙里向神祈求下雨.神说,如果你们做一个比现在的方桌大一倍的方桌来祭我,我就给你们降水.于是大家重新做了一个摆设祭品的方桌.新方桌的边长是原来的2倍.可是神愈发怒了.想一想如果△ABC ∽△A ′B ′C ′,相似比为k ,那么△ABC 与△A ′B ′C ′的周长比和面积比分别是多少? [生]△ABC 与△A ′B ′C ′的周长比为k ,面积比为k 2. 二、新课如图4-45,四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2,相似比为k .(1)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的周长比是多少?(2)连接相应的对角线A 1C 1,A 2C 2,所得的△A 1B 1C 1与△A 2B 2C 2相似吗? △A 1C 1D 1与△A 2C 2D 2呢?如果相似,它们的相似各是多少?为什么?(3)设△A 1B 1C 1,△A 1C 1D 1,△A 2B 2C 2,△A 2C 2D 2的面积分别是,111C B A S ∆ 222222111,,D C A C B A D C A S S S ∆∆∆ 那么222111222111D C A D C A C B A C B A S S S S ∆∆∆∆=各是多少?(4)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的面积比是多少?提示:△A 1B 1C 1∽△A 2B 2C 2、△A 1C 1D 1∽△A 2C 2D 2,且相似比都为k . ∵四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2 ∴2211221122112211D A DA D C D C CBC B B A B A === ∠D 1A 1B 1=∠D 2A 2B 2,∠B 1=∠B 2. ∠B 1C 1D 1=∠B 2C 2D 2,∠D 1=∠D 2. 在△A 1B 1C 1与△A 2B 2C 2中∵22112211C B CB B A B A = ∠B 1=∠B 2. ∴△A 1B 1C 1∽△A 2B 2C 2. ∴2211B A B A =k . 同理可知,△A 1C 1D 1∽△A 2C 2D 2,且相似比为k . 发现得:(3)提示:△A 1B 1C 1∽△A 2B 2C 2,△A 1C 1D 1∽△A 2C 2D 2.得其面积之比等于相似比的平方,再利用等比性质得:22222222222222)(k S S S S k D C A C B A D C A C B A =++∆∆∆∆,得相似四边形的面积之比等于相似比的平方.如果把四边形换成五边形,那么结论又如何呢?让学生完成相似五边形的周长比等于相似比;面积比等于相似比的平方的证明 照此方法,将四边形换成五边形,那么也有相同的结论. 由此可知:相似多边形对应对角线之比等于相似比. 相似多边形的周长比等于相似比.相似多边形的面积比等于相似比的平方. 三.练习1.课本P90第7题2、课本P89 练习题1、2 四.小结相似多边形对应对角线之比等于相似比. 相似多边形的周长比等于相似比. 相似多边形的面积比等于相似比的平方. 五.作业 课本P89习题23.4第2、5题 课后作业:习题23.4第1、4题同步练习六.反思23.4 相似多边形及性质(第2课时,共2课时)授课人: 刘华 教学时间:【教学目标】1.相似多边形的周长比,面积比在实际中的应用.2.经历探索相似多边形的性质的过程,培养学生的探索能力. 【教学重点】相似多边形的周长比、面积比与相似比关系的归纳. 【教学难点】相似多边形周长比、面积比与相似比的关系的应用. 【教学过程】 一.知识点回顾:相似多边形的性质:● 相似三角形对应高的比,对应角平分线的比,对应中线的比, ● 相似三角形的周长的比都等于相似比. ● 相似三角形面积的比等于相似比的平方. ● 相似比等于1的两个三角形全等.● 相似多边形对应对角线的比等于相似比. ● 相似多边形的周长等于相似比.● 相似多边形面积的比等于相似比的平方.二.例题讲解例1如图,在梯形ABCD 中,ADBC ,AD =2,BC =8,EF‖BC ,且EF 分别交AB 、DC 于E 、F . (1)若梯形AEFD ∽梯形EBFD ,求EF 的长;(2)求满足(1)条件下的梯形AEFD 与梯形EBFD 的周长比. 分析:(1)由相似得相似比可求线段的长;(2)由相似多边形的性质可求周长比.由学生完成求解过程. 解:(1)∵梯形AEFD ∽梯形EBFD∴BCEFEF AD =得:16822=⨯=*=BC AD EFEF 的长是非曲4;(2)∵梯形AEFD ∽梯形EBFD∴2142===++++++EF AD CF BC EB EF FD EF AE AD∴梯形AEFD 与梯形EBFD 的周长比等于1:2.例2.如图,在△ABC 中,∠C =90°,以它的边为对应边,在三角形外分别作三个相似多边形.问斜边上多边形的面积S1与两直角边上多边形面积之和(S2+S3)有什么关系?为什么?解:根据相似多边形性质,得A EB CFD232221AC S BC S AB S ==由等比性质,得223221AC BC S S ABS ++= 又 ∵222AC BC AB +=∴ S 1=S 2+S 3三.练习:补例1、同步练习P75第8题。

相似多边形教案

相似多边形教案

相似多边形教案相似多边形教案教学目标:1. 了解什么是相似多边形;2. 学会如何判断两个多边形相似;3. 学会如何计算相似多边形的边长和面积。

教学重点:1. 判断两个多边形相似的条件;2. 计算相似多边形的边长和面积。

教学难点:1. 判断两个多边形相似的方法;2. 计算相似多边形的边长和面积的公式。

教学准备:1. 尺子;2. 直角三角板;3. 计算器;4. 板书工具。

教学过程:Step 1 引入新知识老师用一张纸上面画出一个多边形,并问学生是否知道这是一个什么图形。

学生回答多边形。

老师进一步引导学生思考,多边形有哪些特点?学生给出答案,如由一系列连线所组成,边数多于3个等等。

老师再进一步问学生是否知道什么是相似多边形?学生可能不知道,老师解释相似多边形是指边与边对应成比例,角与角对应相等的多边形。

Step 2 判断相似多边形的条件老师现在用纸板上画出两个多边形,一个较大,一个较小,让学生观察它们。

然后老师提问,如何判断这两个多边形是否相似?学生可能不知道,老师解释判断相似多边形的条件有两个:1. 其对应的边成比例;2. 其对应的角相等。

Step 3 利用相似多边形的性质计算老师告诉学生,相似多边形的边长和面积可以通过比例关系来计算。

老师写出相似多边形的边长和面积计算公式,并通过几个例子让学生理解。

Step 4 练习与巩固老师让学生进行一些练习,如判断两个多边形是否相似,以及计算相似多边形的边长和面积。

Step 5 拓展老师告诉学生相似多边形的概念不仅可以在平面几何中应用,还可以在立体几何中应用。

老师可以给出一个立体图形,如一个棱台,让学生思考如何判断它与另一个棱台是否相似,以及如何计算相似棱台的边长和体积。

Step 6 总结与展望老师和学生一起总结学过的知识,再次强调相似多边形的判断条件和计算公式。

并展望相似多边形的应用,如在建筑、地图等方面。

Step 7 课堂作业布置一些课堂作业,如判断两个多边形是否相似,以及计算相似多边形的边长和面积。

相似多边形-冀教版九年级数学上册教案

相似多边形-冀教版九年级数学上册教案

相似多边形-冀教版九年级数学上册教案一、学习目标1.了解相似多边形的定义和判定方法,掌握相似多边形的性质;2.掌握相似三角形的知识,能够运用相似三角形的性质解决实际问题。

二、教学内容1.相似多边形的定义和性质;2.相似三角形的定义和判定方法;3.相似三角形的性质;4.相似多边形和相似三角形实际问题。

三、教学重难点1.相似多边形的判定方法和性质;2.相似三角形的定义和判定方法。

四、教学过程1.导入新课通过课堂实例让学生感受大小和形状的联系,引入相似多边形的概念。

2.相似多边形的定义和判定方法通过多组示意图展示相似多边形的定义和判定方法。

相似多边形:两个多边形各对应边成比例,对应角相等的多边形是相似多边形。

判定方法:既可以用两个多边形的各对应边成比例,对应角相等判定;也可以用任意两条边成比例,对应角相等判定。

3.相似多边形的性质(1)对应角相等;(2)对应边成比例。

4.相似三角形的定义和判定方法通过多组示意图展示相似三角形的定义和判定方法。

相似三角形:两个三角形各对应角相等,对应边成比例的三角形是相似三角形。

判定方法:既可以用两个三角形的各对应角相等,对应边成比例判定;也可以用任意两个角相等,对应边成比例判定;还可以利用两个角的正弦比判定。

5.相似三角形的性质(1)对应角相等;(2)对应边成比例。

6.相似多边形和相似三角形实际问题设计一些实际问题,让学生能够运用相似多边形和相似三角形的知识,解决实际问题。

例如:某建筑公司要在一块矩形土地上建造一个中庭,该中庭的形状为一个正方形花坛和四条半圆弧围墙,如图所示。

已知长为8m,宽为6m的矩形土地的面积为48m²,要求在矩形土地中央建造一个占矩形面积1/12的花坛,请问花坛的面积和半圆弧围墙的长度各是多少?五、课后作业1.作业本P67-68习题1、2、3、6、7;2.编写两个实际问题,应用相似多边形或相似三角形的知识解决问题。

六、教学反思本节课通过多组示意图的展示,让学生理解相似多边形和相似三角形的概念和判定方法,进一步掌握相似多边形和相似三角形的性质和应用技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.填空:(1)形状相同的图形是指相同,但不一定相同的图形.
(2)叫做相似形.
(3)相似形于全等形的关系:___________________________________
2.常见的平面图形中一定是形状相同的图形有______________________
二、情景激趣导入新课
国旗上的左上角有五颗五角星,这五颗五角星的形状相同吗?
你还见过形状相同但大小未必相等的图形吗?
三、自主学习合作探究
仔细阅读课本4页“观察与思考”,探索相似多边形的定义。
下图中的两个多边形分别多边形ABCDEF和多边形A′B′C′D′E′F′
(1)在上图的两个多边形中,是否有相等的内角?(测量角的大小)
(2)在上图的两个多边形中,相等内角的两边是否成比例?(测量线段长度)
4.四边形ABCD相似与四边形A′B′C′D′,AB=3,BC=5,∠B=40°,A′B′=9,
则B′C′=___________∠B′=____
5、如图,矩形的草坪长20m,宽10m,沿草坪四周外围有1m的环行小路,小路的内外边缘所成的矩形相似吗?
作业:必做题:习题1.1第1、2、3题
选做题:习题1.1第4、5题
教学反思:
(3)这两个多边形是相似形吗?
因此,相等,成比例的两个多边形叫做相似多边形.
相似多边形的比叫做相似比.
六边形ABCDEF与六边形A′B′C′D′E′F′相似.记作
(注意:表示对应角顶点的字母写在对应的位置上.
完成课本7页练习1、2两个题目自学课本6页例题1.
四、归纳总结提升能力
本节学习了哪些知识?
请同学总结相似形,相似多边形,相似比。五、Fra bibliotek堂测试检查效果
1.下列各对图形中一定相似的是()
A:两个直角三角形B:两个等腰三角形C:两个菱形D:两个正方形
2.一个五边形的边长为1,2,3,4,5另一个与它相似的五边形最长边为7.则它的周长为____________.
3.两个正五边形的边长分别为m和n,这两个五边形__________(填相似或不相似)
年级科目
九年级数学
课题
1.1相似多边形
主备人
审核人
总课时数
1
教学
目标
1.掌握相似多边形的定义以及相似比
2.能根据定义判断两个多边形是否是相似多边形.
重点难点
探索相似多边形的定义,以及用定义去判断两个多边形是否相似
探索相似多边形的定义的过程.
教学过程
一、前置练习积累知识(自学课本交流与发现完成以下任务)
相关文档
最新文档