实变函数与泛函分析基础第二版 程其襄 第11章课后习题答案

合集下载

《实变函数与泛函分析基础》第二版 程其襄 第十章答案 10§1-7,答案剖析(word文档良心出品)

《实变函数与泛函分析基础》第二版 程其襄  第十章答案 10§1-7,答案剖析(word文档良心出品)

第十章 巴拿赫(Banach)空间中的基本定理1. 设X 是赋范线性空间,12,,,k x x x 是X 中K 个线性无关向量,12,,,k ααα是一组数,证明:在X 上存在满足下列两条件:(1)(),1,2,,v v f x v k α==,(2) M f ≤ 的线性连续泛函f 的充要条件为:对任何数12,,,k t t t ,11kkv vv vv v t Mt xα==≤∑∑都成立。

证明 必要性。

若线性连续泛函f 满足(1)和(2),则1111()kkkkv vv v v vv vv v v v t f t x ft xMt xα=====≤≤∑∑∑∑充分性。

若对任意数12,,,k t t t ,有11kkv vv vv v t Mt xα==≤∑∑。

令0X 为12,,,k x x x 张成的线性子空间。

对任意01kv vv t xX =∈∑,定义上线性泛函:0011:()k kv v v v v v f f t x t α===∑∑。

因0111()k kkv v v v v v v v v f t x t Mt x α====≤∑∑∑,故0f是有界的,且0f M ≤。

由泛函延拓定理,存在X 上的线性连续泛函f ,使f 限制在0X 上就是0f 。

f 显然满足条件(1)和(2)。

证毕。

2.设X 是赋范线性空间,Z 是X 的线性子空间,0x X ∈,又0(,)0d x Z >,证明存在'f X ∈,满足条件: 1)当x Z ∈时,()0f x =; 2)00()(,)f x d x Z = ;3)1f = 。

证明 记0{,}M x y C y Z λλ=+∈∈。

在M 上定义泛函0f :000()(,)f x y d x Z λλ+=,则以下三条件成立:1)当y Z ∈时,0()0f y =; 2)00()(,)f x d x Z =;3)0f 在M 上有界,且01Mf =。

其中3)可以这样证明:若0x y M λ+∈,则00000()(,)yf x y d x Z x x y λλλλλ+=≤+=+,所以01Mf ≤。

《实变函数和泛函分析基础》第二版-程其襄--第十章答案-10§1-7-答案

《实变函数和泛函分析基础》第二版-程其襄--第十章答案-10§1-7-答案

第十章 巴拿赫(Banach)空间中的基本定理1. 设X 是赋范线性空间,12,,,k x x x 是X 中K 个线性无关向量,12,,,k ααα是一组数,证明:在X 上存在满足下列两条件:(1)(),1,2,,v v f x v k α==,(2) M f ≤ 的线性连续泛函f 的充要条件为:对任何数12,,,k t t t ,11kkv vv vv v t Mt xα==≤∑∑都成立。

证明 必要性。

若线性连续泛函f 满足(1)和(2),则1111()kkkkv vv v v vv vv v v v t f t x ft xMt xα=====≤≤∑∑∑∑充分性。

若对任意数12,,,k t t t ,有11kkv vv vv v t Mt xα==≤∑∑。

令0X 为12,,,k x x x 张成的线性子空间。

对任意01kv vv t xX =∈∑,定义上线性泛函:0011:()kkv v v v v v f f t x t α===∑∑。

因0111()k kkv v v v v v v v v f t x t Mt x α====≤∑∑∑,故0f是有界的,且0f M ≤。

由泛函延拓定理,存在X 上的线性连续泛函f ,使f 限制在0X 上就是0f 。

f 显然满足条件(1)和(2)。

证毕。

2.设X 是赋范线性空间,Z 是X 的线性子空间,0x X ∈,又0(,)0d x Z >,证明存在'f X ∈,满足条件: 1)当x Z ∈时,()0f x =; 2)00()(,)f x d x Z = ;3)1f = 。

证明 记0{,}M x y C y Z λλ=+∈∈。

在M 上定义泛函0f :000()(,)f x y d x Z λλ+=,则以下三条件成立:1)当y Z ∈时,0()0f y =; 2)00()(,)f x d x Z =;3)0f 在M 上有界,且01Mf =。

其中3)可以这样证明:若0x y M λ+∈,则00000()(,)yf x y d x Z x x y λλλλλ+=≤+=+,所以01Mf ≤。

实变函数与泛函分析基础》习题解答

实变函数与泛函分析基础》习题解答
n=0
习题 1.4
1. 证:记[0,1]上的无理数所成之集为 I,[0,1]上的有理数全体为 Q.若 I
可数,则 I ∪ Q = [0,1] 可数,这与[0,1]不可数矛盾. 2. 证: A ∈ 2[0,1] ,则 χ A (x) ∈ F.于是 2[0,1] 与 F 的一个子集对等,故
F ≥ 2[0,1] = 2C .另方面, f ∈ F ,{(x, f (x) x ∈[0, 1]}∈ 2R2 .于是 F 对等于
一个子集对等,从而至多可数.
2. 设单调增函数 f 的间断点集为 D, x0 ∈ D : x0 →( f (x0 − 0), f (x0 + 0))
此对应是 D 到直线上某些互不相交的开区间所成之集的一个对等,由习题 1 知,
D 至多可数.
3. An 为 A 的 n 个元素所成子集的全体.由定理 1.3.7 知 An 可数,从而由定
∪ x ∈ A ∩ Bα ⇔ x ∈ ( A ∩ Bα ) . α∈Γ
2.
①因
U U Aα U Bα ⊂ ( Aα ) U ( Bα ) , 所 以
α∈Γ
α∈Γ
U U U U U ( Aα U Bα ) ⊂ ( Aα ) U ( Bα ) . 另 一 方 面 Aα ⊂ ( Aα U Bα ) ,
α∈Γ
8. x ∈ E[ f ≥ a] ⇔ lim fn (x) = f (x) ≥ a, x ∈ E ⇔ ∀ k, ∃ N , 当
n ≥ N 时有
∩ ∪ ∩ fn
(x)
>
a

1 k

x∈
∞ k =1
∞ N =1

E[
n=N
fn
>

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
2.集合的包含关系
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
例7. 若 在R上定义,且在[a,b]上有上界M,即任意对
∈[a,b]有 M.用集合语言表示为:[a,b] { : M}.
用集合语言描述函数性质,是实变函数中的常用方法,请在看下例.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是这证来自了在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
请读者注意:我们怎样把描述函数列性质的 语言,转换为集合语言。
例12 设 是定义在E上的函数列,若x是使 收敛与0的点,则对任意的 ,存在 ,使得对任意 即
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
例1设 和 是定义在E上的函数,则对任意
例2.
例3若记
例4 若 是一族开区间,而 ,则存在
使得 (有限覆盖定理)
例5若 是定义在E上的函数,则
2、集合的交集
设A,B是任意两个集合,由一切既属于A又属于B的元素组成的集合C称为A和B的交集或积集,简称为交或积,记作 ,它可以表示为

实变函数课后习题答案

实变函数课后习题答案

第一章习题1.证明:(1) (A -B )-C =A -(B ∪C ); (2)(A ∪B )-C =(A -C )∪(B -C ). 证明:(1) 左=(A ∩B c )∩C c =A ∩(B c ∩C c )= A ∩(B ∪C )c =右; (2)左=(A ∪B )∩C c =(A ∩C c )∪(B ∩C c )=右. 2.证明: (1)();(2)().IIIIA B A B A B A B αααααααα∈∈∈∈-=--=-(1)ccI IA B A B αααα∈∈⎛⎫=== ⎪⎝⎭证明:左()右;(2)()c cI I A B A B αααα∈∈⎛⎫=== ⎪⎝⎭左右.111111.{},,1.{}1.n n n n n nnA B A B A A n B B A n νννννν-===⎛⎫==- ⎪⎝⎭>=≤≤∞ 3 设是一列集合,作证明:是一列互不相交的集合,而且,证明:用数学归纳法。

当n=2时,B 1=A 1,B 2=A 2-A 1, 显然121212B B B B B B n k =∅== 且,假设当时命题成立,1211,,,kkk B B B B A νννν===两两互不相交,而且,111111111kk k kkkk k n k B A A B A BA B νννννννν++=++====+=-==-⇒下证,当时命题成立,因为而,所以11211+1111111111111,,,;k k k k k k k k k kk k k k k B B B B B B B B B B A A A A A A A νννννννννννννννν++=++===+++====⎛⎫=∅ ⎪⎝⎭⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,两两互不相交;由数学归纳法命题得证。

{}21214.0,,(0,),1,2,,n n n A A n n A n-⎛⎫=== ⎪⎝⎭设求出集列的上限集和下限集。

实变函数与泛函分析基础 习题答案

实变函数与泛函分析基础 习题答案

n=0
n=0
xn+p ln
1 x

0,
1 xp 1

0
1 − x ln x dx = −
n=0
1 0
xn+p ln xdx
=
∞ n=0
(n +
1 p+
1)2
=
∞ n=1
1 (n + p)2 .
ßÎ 15. { fn} E
¨
¹ Ö lim
n→∞
fn(x)
=
f (x)a.e.
E,
¿ f (x) Î ¡ ÆÃ ¶¸²³
E −
ǯ± ¡
ÝÌ [0, 1] ÙÄß ℄Ï ¨
¤¤ f
(x)
=
1, 0,
x x
[0,1] [0,1]
· ¨, ¨.
´
¨ ÙÄ n, [0,1]
¿ max 1≤i≤n
mEin
=
1 n

0(n

∞).
¾
Ó Dn = {Ein},
Ein =
i−1 n
,
i n
, i = 1, 2, · · · , n − 1, Enn =
0.
¨ª
mE[| f |= ∞] = 0.
1
¶¹ | f(x) | Î ¶ ¾ Ê´
´¹Ü° ¾ Ö ǫ > 0, δ > 0, e ⊂ E me < δ
´ ¾ ¡ δ > 0,
N,
n>N
| f (x) | dx < ǫ.
e
men < δ,
n · men ≤ | f (x) | dx < ǫ.

《实变函数与泛函分析基础》第二版程其襄第11章课后习题答案

《实变函数与泛函分析基础》第二版程其襄第11章课后习题答案

第十一章 线性算子的谱1. 设[0,1],()()(),X C Ax t tx t x X ==∈。

证明()[0,1]A σ=,且其中没有特征值。

证明 当[0,1]λ∈时,常值函数1不在I A λ-的值域中,因此I A λ-不是满射,这样()A λσ∈。

反之若[0,1]λ∈,定义算子1:()R R x t tλλλ=-。

则由于[0,1]λ∈,且 11max()(,[0,1])a t bR x x t x t d λλλ≤≤=≤- 因此R λ是C[0,1]中有界线性算子。

易验证()()R I A I A R I λλλλ-=-=,所以()A λσ∈。

总之()[0,1]A σ=,若Af f λ=,则对任意t λ≠,()()tf t f t λ=,可推得()0f t =。

由于()[0,1]f t C ∈,必有()0f t ≡,所以A 无特征值。

证毕。

2. 设[0,2],()()(),.itX C Ax t e x t x X π==∈,证明(){1}A σλλ==。

证明 对任意000,()()()()it itit it e e I A x t e e x t -=-。

因为常值函数1不在0ite I A -的值域中,因此0()ite A σ∈。

这样{1}()A λλσ=⊂。

反之,若1λ≠,定义1:()()()itR R x t x t eλλλ=-。

类似第1题可证R λ是有界线性算子,且()()R I A I A R I λλλλ-=-=。

即()A λσ∈。

因此(){1}A σλλ==。

证毕。

3. 设21223,(,,,)(,,,)n n X l Ax A x x x x x x ===,试求()A σ。

解对任意λ,若1λ<,定义(1,,,,)n x λλλ=,显然22,(,,,,)(1,,,,)n n x l Ax x λλλλλλλλλλ∈===,因此{1}λλ=的内点都是A 的点谱,由于()A σ是闭集,则{1}()A λλσ=⊂。

实变函数论与泛函分析课后答案

实变函数论与泛函分析课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 线性算子的谱1. 设[0,1],()()(),X C Ax t tx t x X ==∈。

证明()[0,1]A σ=,且其中没有特征值。

证明 当[0,1]λ∈时,常值函数1不在I A λ-的值域中,因此I A λ-不是满射,这样()A λσ∈。

反之若[0,1]λ∈,定义算子1:()R R x t tλλλ=-。

则由于[0,1]λ∈,且 11max()(,[0,1])a t bR x x t x t d λλλ≤≤=≤- 因此R λ是C[0,1]中有界线性算子。

易验证()()R I A I A R I λλλλ-=-=,所以()A λσ∈。

总之()[0,1]A σ=,若Af f λ=,则对任意t λ≠,()()tf t f t λ=,可推得()0f t =。

由于()[0,1]f t C ∈,必有()0f t ≡,所以A 无特征值。

证毕。

2. 设[0,2],()()(),.itX C Ax t e x t x X π==∈,证明(){1}A σλλ==。

证明 对任意000,()()()()it itit it e e I A x t e e x t -=-。

因为常值函数1不在0ite I A -的值域中,因此0()ite A σ∈。

这样{1}()A λλσ=⊂。

反之,若1λ≠,定义1:()()()itR R x t x t eλλλ=-。

类似第1题可证R λ是有界线性算子,且()()R I A I A R I λλλλ-=-=。

即()A λσ∈。

因此(){1}A σλλ==。

证毕。

3. 设21223,(,,,)(,,,)n n X l Ax A x x x x x x ===L L L L ,试求()A σ。

解 对任意λ,若1λ<,定义(1,,,,)n x λλλ=L L ,显然22,(,,,,)(1,,,,)n n x l Ax x λλλλλλλλλλ∈===L L L L ,因此{1}λλ=的内点都是A 的点谱,由于()A σ是闭集,则{1}()A λλσ=⊂。

对任意x A ∈,显然Ax x ≤,因此1A ≤,所以(){}{1}A A σλλλλ⊂≤⊂=。

这样我们就证明了(){1}A σλλ==。

4. 设F 是平面上无限有界闭集,{}n α是F 的一稠密子集,在2l 中定义算子T :1211(,,,)(,,)n n n Tx x x x x x αα==L L L L则n α都是特征值,(),\{}n T F F σα=中每个点是T 的连续谱。

证明 对任意n ,(0,0,,1,0,)n e =L L ,其中1在第n 个坐标上。

由题设,n n n Te e α=,因此n α是T 的特征值。

又由于()T σ是闭集,所以{}()n F T ασ=⊂。

若F λ∉,则(,)0d F λ>。

定义算子R λ,若212(,,,)n x x x x l =∈L L ,1212111(,,,,)nn R x x x x λλαλαλα=---L L易验证1(,)R x x d F λλ≤,且()()R I T I T R I λλλλ-=-=。

因此()T F σ⊂。

若{}n F λα∈-,且212(,,,)n x x x x l =∈L L ,使Tx x λ=。

则对任意n ,n n n x x λα=。

由于n λα≠,则0n x =,1,2,n =L 。

这样x=0,因此λ不是特征值,而是连续谱。

证毕。

5. 设λ为线性算子nA 的特征值,则λ的n 次根中至少有一个是算子A 的特征值。

证明 设λ是nA 的特征值,λ的n 次根为12,,,n λλλL 。

存在0x ≠,使()0nA I x λ-=,则12()()()()0nn A I x A I A I A I x λλλλ-=---=L 。

若1()0A I x λ-=,则1λ就是A 的特征值,否则必有某i ,11()()()0i i A I A I A I x λλλ----≠L ,而11()()()0i i A I A I A I x λλλ+---=L ,则1i λ+是A 的特征值。

证毕。

6. 设A 为Banach 空间X 上的有界线性算子,0()A λρ∈,又设{}n A 为X 上一列有界线性算子,且lim 0n n A A →∞-=,证明当n 充分大后,n A 也以0λ为正则点。

证明 00()n n I A I A A A λλ-=---100()[()()]n I A I I A A A λλ-=----。

当n 充分大时,10()()1n I A A A λ---<,这样 10()()n I I A A A λ---- 是可逆的。

此可逆性由本章§2定理1可证,又0I A λ-也是可逆的。

因此当n 充分大后,0n I A λ-也可逆。

证毕。

7. 设A 是为Banach 空间X 上的有界线性算子,则当A λ>时,11()nn n A R A I λλλ∞-+==-=∑,1R Aλλ≤-。

证明 当A λ>时幂级数1n nn Aλλ∞=∑收敛,因此级数1nn n A λ∞+=∑必按算子范数收敛。

111100()()1nnnn n n nn n n n n A A A A I A I A λλλλλλ+∞∞∞∞+++====-=-=-=∑∑∑∑这就证明了110()nn n A A I λλ∞-+=-=∑,111nnn n n n AA R Aλλλλ∞∞++===≤=-∑∑。

证毕。

8. 设A 为X 上的有界线性算子,,()A λμρ∈,则()R R R R λμλμμλ-=-。

其中与,R R λμ的意义同第7题。

证明 在等式11()()R R I A I A μλμλ---=---两边左乘R λ右乘R μ得()(()())R R R I A I A R R R λμλμλμμλμλ-=---=-。

因此()R R R R λμλμμλ-=-,证毕。

9. 设A 是Hilbert 空间H 上的有界线性算子,A*为A 的共轭算子,证明(*){()}()A A A σλλσσ=∈=证明 先证若T 是Hilbert 空间H 上的有界线性算子,若T 可逆,则T*也可逆,且11(*)()*T T --=。

事实上,对任意,x y H ∈,11,,,()**x y TT x y x T T y --<>=<>=<>。

这样1,()**0x y T T y -<->=对任意x H ∈成立,因此1()**y T T y -=恒成立,进而1*()*T T I -=。

同理1*()*T T I -=。

这一证明了T*也可逆,且11()*(*)T T --=。

现在设()A λσ∈,则A I λ-可逆,因此()**A I A I λλ-=-也可逆,从而(*)A λσ∈。

同理若(*)A λσ∈,则()A λσ∈,这就证明了(*){()}A A σλλσ=∈。

证毕。

10. 设1T 是 1X 到2X 的全连续算子,2T 是2X 到3X 的有界线性算子,则21T T 是1X 到3X 的全连续算子。

证明 设{}n x 是1X 中有界点列。

因为1T 全连续,所以1{}n T x 中必有收敛子列。

我们记之为1{}k n T x 。

又因为2T 有界,所以21{}k n T T x 也收敛,因此21{}n T T x 有收敛子列。

这就证明了21T T 是全连续算子。

证毕。

11. 设A 是2l 上线性算子,记1(0,0,,0,1,0,)n n e -=L L 14243个,1k jk j j Ae a e ∞==∑其中2,1k iji j Ae a∞==<∞∑,证明A 是全连续的。

证明 若12(,,,)n x x x x =L L ,定义11:()nn n kjkj j k A A x x ae ∞===∑∑:则n A 是有界秩算子,且2211()n kjkj n k A A x x a∞∞=+=-=∑∑22111()()kjk j n k k xa ∞∞∞=+==≤∑∑∑2211jkj n k a x ∞∞=+==∑∑所以0n A A -≤→()n →∞。

由本章§3定理2,A 是全连续算子。

证毕。

12. n e 的符号同第11题。

作2l 上算子U 。

11,1,2,.k k Ue e k k+==L 证明U 是2l 上全连续算子且(){0}U σ=。

证明 若21i i i x x e l ∞==∈∑,则111i i i Ux x e i ∞+==∑。

令111n i i i U x x e i∞+==∑,则n U 是有限秩算子,且 222211111()()n i i i i n i n U U x x x i i ∞∞∞==+=+-=≤∑∑∑2211i x i∞=≤∑所以0()n U U n -≤→∞。

这样U 是有限秩算子n U 的极限,U 必是全连续算子。

由于全连续算子的非零谱都是特征值,因此要证(){0}U σ=,只要证U 无非零特征值。

倘若0λ≠,211111,,i i i i i i i i i x x e l Ux x x e x e i λλ∞∞∞+====∈==∑∑∑。

即121211(0,,,,,)(,,,)2n n x x x x x x nλ=L L L L 。

则1110,,1,2,i i x x x i iλλ+===L ,由此可得0,1,2,i x i ==L 。

因此λ不是U 的特征值。

证毕。

13.设 10()()()s tA s et dt ϕϕ+=⎰, 求A 的特征值和特征函数。

(提示:记 10()tc e t dt ϕ=⎰ )解 记1()t c e t dt ϕ=⎰。

设ϕ为对应特征值λ的特征函数,则A ϕλϕ=,即s ce λϕ=。

若0λ≠,则sce ϕλ=。

代入c 的表达式:1ss cc e e ds λ=⎰,解得12201(1)2s e ds e λ==-⎰。

因此非零特征值21(1)2e λ=-,特征函数为0()s s c e ϕ=,其中0c 为任意非零常数。

若0λ=,则1()0s e s ds ϕ=⎰,特征函数{}s e ⊥为中任意非零函数。

14.积分算子的核为,1(,)()()nkkk K s t p s q t ==∑,其中{}k p 为线性无关的函数组,则其非零特征值λ相应的特征向量e 有形式 1nkk k e cp ==∑, k c 是常数。

若记 ()()bij i j aq q x p x dx =⎰,则k c 可由下式决定:1,1,2,nk i iki c c qk n λ===∑L 。

证明 (,)()baA K s t t dt ϕϕ=⎰1()()()nb kkak p s q t t dt ϕ==∑⎰1(()())()nb k k ak q t t dt p s ϕ==∑⎰。

相关文档
最新文档