九年级上人教版数学练习册答案

合集下载

人教版九年级上册数学第二十一章练习和习题答案

人教版九年级上册数学第二十一章练习和习题答案

人教版九年级上册数学第二十一章练习和习题答案人教版九年级上册数学第4页练习答案1.解:(1)5x²-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1.(2)4x²-81=0,二次项系数为4,一次项系数为0,常数项为-81. (3)4x²+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25.(4)3x²-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1.【规律方式:化为一般形式即把所有的项都移到方程的左侧,右边化为0的行驶,在肯定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包括前面的符号.】2.解:(1)4x²=25,4x²-25=0.(2)x(x-2)=100,x²-2x-100=0.(3)x∙1=(1-x)²-3x+1=0.人教版九年级上册数学第6页练习答案解:(1)2x²-8=0,∴x²=4,∴x_1=2,x_2=-2.(2)9x^2-5=3,移项,得9x^2=8,x^2=8/9,∴x_1=(2√2)/3,x_2=-(2√2)/3.(3)(x+6)²-9=0,移项,得(x+6)²=9.∴x+6=±3,∴x_1=-3,x_3=-9.(4)3(x-1)²-6=0,移项,化简得(x-1)²=2,∴x-1=±√2,∴x_1=1-√2,x_2=1+√2.(5)x²-4x+4=5,(x-2)²=5,∴x-2=±√5,∴x_1=2-√5,x_2=2+√5.(6)9x²+5=1.9x²=1-5,9x^2=-4.∵-4<0,,9x^2+5=1-5,9x^2=-4.∵-4<0,,9x^2+5=1无实数根.【规律方式:利用直接开平方式,首先应把方程化为左侧是含未知数的完全平方的形式.】人教版九年级上册数学第9页练习答案1.(1)25 5 (2)36 6 (3)25/4 5/2 (4)1/9 1/3【规律方式:对一个式子进行配方,先将二次项的系数变成1,然后在一次项以后加上一次项系数一般的平方,即得完全平方式.】2.解:(1)x²+10x+9=0,x²+10x+25-25+9=0,(x+5)²=16,x+5=±4,∴x_1=-1,x_2=-9.(2) x^2-x-7/4=0,x^2-x+(1/2)^2-(1/2)²-7/4=0,(x-1/2)²=2,x-1/2=±√2,∴x_1=1/2-√2,x_2=1/2+√2.(3)3x²+6x-4=0,3(x²+2x)-4=0.3(x²+2x+1-1)-4=0.3(x+1)²=7,(x+1)²=7/3,x+1=±√21/3,x_1=-1-√21/3,x_2=-1+√21/3.(4)4x^2-6x-3=0,4(x^2-3/2 x)=3,(x-3/4)^2=21/16,x-3/4=±√21/4,∴x_1=3/4-√21/4,x_2=3/4+√21/4.(5)x²+4x-9=2x-11,x²+2x+2=0,(x+1)²=-1,∴原方程无实数根.(6)x(x+4)=8x+12,x²-4x-12=0,(x-2)²=16,x-2=±4,∴x_1=6,x_2=-2.【规律方式:配方式解方程时,补充的项应为一次项系数一半的平方,组成完全平方后,在用直接开平方式来解.】人教版九年级上册数学第12页练习答案1.解:(1)x²+x-6=0,∵a=1,b=1,c=-6,∴b²-4ab=1+24=25>0,∴x=(-1±√25)/2,∴x_1=(-1-5)/1=-3,x_2=(-1+5)/2=2. (2) x^2-√3 x- 1/4=0,∵a=1,b=-√(3,)c=-1/4,∴b²-4ac=3-4×(-1/4)=4>0,∴x= (√3±2)/2,∴x_1=(√3-2)/2,x_2=(√3+2)/2.(3)3x²-6x-2=0,∵a=3,b=-6,c=-2,∴b²-4ac=36-4×3×(-2)=60>0,∴x= (6±√60)/(2×3)=(6±2√15)/6=(3±√15)/3,∴x_1=(3-√15)/3,x_2=(3+√15)/3.(4)4x²-6x=0,∵a=4,b=-6,c=0,∴b²-4ac=36-4×4×0=36>0,∴x= (6±6)/(2×4),x_1=0,x_2=3/2.(5)x²+4x+8=4x+11,整理,得x²-3=0,∵a=1,b=0,c=-3,∴b²-4ac=0-4×1×(-3)=12>0,∴x= (±√12)/2=±√3,∴x_1=√3,x_2=-√3.(6)x(2x-4)=5-8x,整理,得2x²+4x-5=0,∵a=2,b=4,c=-5,∴b²-4ac=16-4×2×(-5)=56,∴=(-4+√56)/(2×2)=(-4±2√14)/4=(-2±√14)/2,∴x_1=(-2-√14)/2,x_2=(-2+√14)/2.【规律方式:利用公式法解方程有如下四个步骤:一是将方程化为一般形式,即ax²+bx+c=0(a≠0)的形式;二是找出二次项系数a,一次项系数b及常数项c;三是求出b²-4ac的值;四是将a,b,b²-4ac的值代入求根公式,求出方程解.】2.解:x²-75x+350=0,∵a=1,b=-75,c=350,∴b²-4ac=(-75)²-4×1×350=4225,∴x= (75±√4225)/(2×1)=(75±65)/2,∴x_1=5,x_2=70(舍去).答:应切去边长为5cm的正方形.人教版九年级上册数学第14页练习答案1.解:(1)x²+x=0,x(x+1)=0,∴x=0或x+1=0,∴x_1=0,x_2=-1.(2)x²-2√3 x=0,x(x-2√3)=0,∴=0或x-2√3=0,∴x_1=0,x_2=2√3.(3)3x²-6x=-3,x²-2x+1=0,(x-1)²=0,∴x_1=x_2=1.(4)4x²-121=0,(2x-11)∙(2x+11)=0,∴2x-11=0或2x+11=0,∴x_1=11/2,x_2=-11/2.(5)3x(2x+1)=4x+2,3x(2x+1)-2(2x+1)=0,(2x+1)(3x-2)=0,,2x+1=0或3x-2=0,∴x_1=-1/2,x_2=2/3.(6)(x-4)²=(5-2x)²,(x-4)²-(5-2x)²=0,(x-4+5-2x)(x-4-5+2x)=0,(1-x)(3x-9)=0,∴1-x=0或3x-9=0,∴x_1=1,x_2=3.2.解:设小圆形场地的半径为Rm,则大圆形场地的半径为(R+5)m,由题意,得2πR²=π(R+5)^2,2R²=(R+5)^2,R²-10R-25=0,∴R= (10±√(10²+4×25))/2=(10±10√2)/2=5±5√2,R1=5-5√2(舍去),R2=5+5√2.答:小圆形场地的半径为(5+5√2)m.人教版九年级上册数学第16页练习答案解:(1)设x_1,x_2是方程x²-3x=15的两根,整理x²-3x=15,x²-3x-15=0,所以x_1+x_2=3,x_1∙x_2=-15.(2)设x_1,x_2 是方程3x²+2=1-4x的两根,整理3x²+2=1-4x,得3x²+4x+1=0,所以x_1+x_2=-4/3,x_1∙x_2=1/3.(3)设x_1,x_2 是方程5x^2-1=4x^2+x的两根,整理5x^2-1=4x^2+x,得x^2-x-1=0,所以x_1+x_2=1,x_1∙x_2=-1.(4)设x_1 x_2是方程2x²-x+2=3x+1的两根,整理方程2x²-x+2=3x+1,得2x²-4x+1=0,所以x_1+x_2=2,x_1 x_2=1/2.人教版九年级上册数学习题21.1答案1.解:(1)3x²-6x+1=0,二次项系数为3,一次项系数-6,常数项为1.(2)4x²+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81.(3)x²+5x=0,二次项系数为1,一次项系数为5,常数项为0.(4)x²-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1.(5)x²+10=0,二次项系数为1,一次项系数为0,常数项为10.(6)x²+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2.2.解:(1)设这个圆的半径为Rm,由圆的面积公式得πR²=6.28,∴πR²-6.28=0.(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x²-3x-18=0.3.解:方程x²+x-12=0的根是-4,3.4.解:设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x ∙(x+1)=132,∴x^2+x-132=0.5.解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式,得∙(0.5-x)=0.06,∴x²-0.5x+0.06=0.6.解:设有n人参加聚会,按照题意,可知(n-1)+(n-2)+(n-3)+…+3+2+1=10.即(n(n-1))/2=10,n²-n-20=0.7.解:由题意可知2²-c=0,∴c=4,∴原方程为x²-4=0,∴=±2,∴这个方程的另一个根为-2.人教版九年级上册数学习题21.2答案1.解:(1)36x²-1=0,移项,得36x²=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x_1=1/6,x_2=-1/6.(2)4x²=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x_1=9/2,x_2=-9/2.(3)(x+5)²=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x_1=0,x_2=-10.(4)x²+2x+1=4,原方程化为(x+1)^2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x_1=1,x_2=-3.2.(1)9 3 (2)1/4 1/2 (3)1 1 (4)1/25 1/53.解:(1)x²+10x+16=0,移项,得x²+10x=-16,配方,得x²+10x+5²=-16+5²,即(x+5)²=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x_1=-2,x_2=-8.(2)x²-x-3/4=0,移项,得x^2-x=3/4,配方,得x^2-x=3/4,配方,得x^2-x+1/4=3/4+1/4,即(x-1/2)^2=1,开平方,得x- 1/2=±1,∴原方程的解为x_1=3/2,x_2=-1/2.(3)3x²+6x-5=0,二次项系数化为1,得x²+2x-5/3=0,移项,得x²+2x=5/3,配方,得x²+2x+1=5/3+1,即(x+1)²=8/3,开平方,得x+1=±2/3 √6,∴x+1=2/3 √6或x+1=-2/3 √6,∴原方程的解为x_1=-1+2/3 √6,x_2=-1-2/3 √6. (4)4x²-x-9=0,二次项系数化为1,得x²-1/4x-9/4=0,移项,得x²-1/4 x= 9/4,配方,得x²-1/4x+1/64=9/4+1/64,即(x-1/8)²=145/64,开平方,得x-1/8=±√145/8,∴x-1/8=√145/8 或x- 1/8=-√145/8,∴原方程的解为x_1=1/8+√145/8,x_2=1/8-√145/8.4.解:(1)因为△=(-3)²-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根.(2)因为△=(-24)²-4×16×9=0,所以与原方程有两个相等的实数根.(3)因为△=(-4√2)^2-4×1×9=-4<0,因为△=(-8)²-4×10=24>0,所以原方程有两个不相等的实数根.5.解:(1)x²+x-12=0,∵a=1,b=1,c=-12,∴b²-4ac=1-4×1×(-12)=49>0,∴x= (-1±√49)/2=(-1±7)/2,∴原方程的根为x_1=-4,x_2=3.(2)x²-√2x-1/4=0,∵a=1,b=-√2,c=-1/4,∴b²-4ac=2-4×1×(-1/4)=3>0,∴x= (√2+√3)/2,∴原方程的根为x_1=(√2+√3)/2,x_2=(√2-√3)/2.(3)x²+4x+8=2x+11,原方程化为x²+2x-3=0,∵a=1,b=2,c=-3,∴b²-4ac=2²-4×1×(-3)=16>0,∴x= (-2±√16)/(2×1)=(-2±4)/2,∴原方程的根为x_1=-3,x_2=1.(4)x(x-4)=2-8x,原方程化为x²+4x-2=0,∵a=1,b=4,c=-2,∴b²-4ac=4²-4×1×(-2)=24>0,∴x= (-4±√24)/(2×1)=(-4±2√6)/2,原方程的根为x_1=-2+√6,x_2=-2√6.(5)x²+2x=0,∵a=1,b=2,c=0,∴b²-4ac=2²-4×1×0=4>0,∴x= (-2±√4)/(2×1)=(-2±2)/2,∴原方程的根为x_1=0,x_2=-2. (6)x^2+2√5x+10=0,∵a=1,b=2√5,c=10,∴b^2-4ac=(2√5)²-4×1×10=-20<0,∴原方程无实数根.6.解:(1)3x²-12x=-12,原方程可化为x²-4x+4=0,即(x-2)²=0,∴原方程的根为x_1=x_2=2.(2)4x^2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x_1=-6,x_2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0,∴x-1=0或3x-2=0,∴原方程的根为x_1=1,x_2=2/3.(4)(2x-1)²=(3-x)²,原方程可化为【(2x-1)+(3-x)】【(2x-1)-(3-x)】=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0,∴原方程的根为x_1=-2,x_2=4/3.7.解:设原方程的两根别离为x_1,x_2.(1)原方程可化为x^2-3x-8=0,所以x_1+x_2=3,x_1∙x_2=-8.(2)x_1+x_2=-1/5,x_1∙x_2=-1.(3)原方程可化为x²-4x-6=0,所以x_1+x_2=4,x_1∙x_2=-6.(4)原方程可化为7x²-x-13=0,所以x_1+x_2=1/7,x_1∙x_2=-13/7.8.解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,按照题意,得1/2 x(x+5)=7,所以x²+5x-14=0,解得x_1=-7,x_2=2,因为直角三角形的边长为√(x²+(x+5)^2 )=√(2²+7²)=√53 (cm).答:这个直角三角形斜边的长为√53cm.9.解:设共有x家公司参加商品交易会,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x^2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x_1=10,x_2=-9,∵x必需是正整数,∴x=-9不符合题意。

人教版九年级上册数学同步练习《用列举法求概率》(习题+答案)

人教版九年级上册数学同步练习《用列举法求概率》(习题+答案)

25.2用列举法求概率内容提要1.在一次随机实验中可能出现的结果只有有限个,且各种结果出现的可能性大小相等,通过列举实验结果分析出随机事件发生的概率,这一方法叫列举法.2.当一次实验可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法和树状图法.25.2.1列举法基础训练1.随机抛掷一个正方体骰子,朝上的一面是偶数的概率是()A.1 B.12C.13D.162.如图,随机闭合开关1S,2S,3S中的两个,则灯泡发光的概率是()A.34B.23C.13D.123.为支援希望工程“爱心包裹”活动,小慧准备通过热线捐款,他只记得号码的前5位,后三位由5,3,2这三个数字组成,但具体顺序忘记了,他一次就拨通电话的概率是()A.12B.14C.16D.184.如图,甲为三等分数字转盘,乙为四等分数字转盘,同时自由转动两个转盘,当转盘停止活动后(若指针指在边界处则重转),两个转盘指针指向数字都是偶数的概率是.5.学校开展“感恩父母”活动,方同学想为父母做道菜,他发现冰箱里有三种蔬菜(芹菜、洋葱、土豆)、两种肉类(猪肉、牛肉),他想做一道蔬菜炒肉,则可能产生的菜品种类有种.6.已知一元二次方程220x x c++=,随机从2-,1-,1,2四个数中选一个作为c的值,则可以使得该方程有解的概率为.7.将下面的4张牌正面向下放置在桌面上,一次任意抽取两张.(1)用列举法写出抽取的所有可能结果;(2)求抽取两张点数之和为奇数的概率.8.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放入4个完全相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里摸出两个球(第一次摸出球后不放回).商场根据两个小球所标的金额之和返还相应价格的购物券,可以重新在本商场内消费.一天,某顾客刚好消费200元.(1)该顾客至少可得元购物券,至多可得到元购物券;(2)请你用列举法求出该顾客所获得购物券的金额不低于30元的概率.25.2.2列表法和树状图法基础训练1.连续抛掷两次骰子,它们的点数都是4的概率是()A.16B.14C.116D.1362.小浩同学笔袋里有两支红笔和两支黑笔(4支笔的款式相同),上课做笔记时,他随机从笔袋中抽出两支笔,刚好是一红一黑的概率是()A.16B.14C.13D.233.甲、乙、丙、丁四名运动员参加4100米接力赛,甲冲刺能力强,因此跑第四棒.若剩下3人随机排列,那么这四名运动员在比赛过程中的接棒顺序有()A.3种B.4种C.6种D.12种4.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.34B.14C.13D.125.两个正四面体骰子的各面分别标明数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为.6.学校开设了“摄影与欣赏”“英语阅读”“新闻与人生”三类综合实践课程,每位同学可以任选一个课程,则小欣和小姗同学选中同一课程的概率是.7.如图,同学A有3张卡片,同学B有2张卡片,他们分别从自己的卡片中随机抽取一张,则抽取的两张卡片上的数字相同的概率是.8.为迎接体育中考,小雯决定利用寒假进行体能训练,她每天随机完成下表中的两项内容,则训练时不用带体育器材的概率是.项目①快走②跳绳③慢跑④骑自行车训练量20分钟500下30分钟3km9.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为7-,1-,3,乙袋中的三张卡片所标的数值为2-,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点(),A x y的所有情况;(2)求点A落在第三象限的概率.10.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出一位选手获得三位评委评定的各种可能的结果;(2)求一位选手晋级的概率.能力提高1.如图,在22⨯的正方形网格中有9个格点,已经取定点A和B,在余下的7个点任取一点C,使ABC∆为直角三角形的概率是()A.12B.25C.37D.472.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是()A.23B.12C.13D.163.号码锁上有2个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个,任意拨一个号码,能打开锁的概率是()A.19B.110C.181D.11004.在数1-,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数2y x=-图象上的概率是()A.12B.13C.14D.165.在222x xy y□□的两个空格□中,任意填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是.6.某校合唱队有x个男生和y个女生,随机抽取一人做队长,则队长是男生的概率为37,为扩大规模又招入10个男生,此时队长是男生的概率为59,则原总人数x y+等于.7.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0,1,2,3,先由甲在心中任选一个数字,记为m,再由乙在心中任选一个数字,记为n,若m,n满足1m n-≤,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.8.在一个布袋中装有2个红球和2个蓝球,它们除颜色外其他都相同.(1)搅匀后从中摸出一个球记下颜色,放回搅匀再摸出第二个球,求两次都摸到蓝球的概率;(2)搅匀后从中摸出一个球记下颜色,不放回继续摸出第二个球,求两次都摸到蓝球的概率.9.小刚和小强玩飞行棋游戏,要想起飞必须投掷一枚骰子并且得到6,可以起飞之后同时投掷两枚骰子,点数之和即为飞行步数.(1)求投掷一枚骰子可以起飞的概率;(2)如右图,是飞行棋谱的一部分,若小华得到起飞机会,则第一次投掷两枚骰子,到达哪一格的可能性最大?拓展探究1.辨析下列事件(1)小刚做掷硬币的游戏,得到结论:掷均匀的两枚硬币,会出现三种情况:两正,一,他的结论对吗?说说你的理由.正一反,两反,所以出现一正一反的概率是13(2)小刚和父母都想去看恒大的足球比赛,但三人只有一张门票.爸爸建议通过抽签来决定谁去,但他们三人还为先抽和后抽的问题吵得不亦乐乎,你觉得有必要吗?请说明理由.2.某校九年级(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球b0.32推铅球 5 0.10合计50 1(1)求,a b(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.3.不透明的口袋里装有如下图标有数字的三种颜色的小球(大小、形状相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为12.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用树状图法或列表法求两次摸到的都是红球的概率;(3)若小明共摸6次球(每次摸1个球,摸后放回),球面得分之和为20,问小明有哪几种摸法?(只考虑分数的组合,不考虑6个球被摸出的先后顺序)25.2 参考答案:25.2.1 列举法基础训练1.B 2.B 3.C 4.165.6 6.347.(1)(4,5),(4,6),(4,8),(5,6),(5,8),(6,8) (2)12 8.(1)10 50 (2)2325.2.2 列表法和树状图法 基础训练1.D 2.D 3.C 4.D 5.14 6.13 7.138.16 9.(1)如表,点(,)A x y 共9种情况. (2)29数值 7- 1-3 2- 7-,2- 1-,2-3,2- 1 7-,1 1-,13,1 6 7-,6 1-,63,6 10.(1(2)41()82P ==晋级. 能力提高1.D 2.C 3.D 4.D 5.12 6.35 7.588.(1)14 (2)16 9.(1)16 (2)7 拓展探究1.(1)他的结论不正确,应当把两枚硬币标记上A ,B ,则会产生A 正B 正、A 正B 反、A 反B 正、A 反B 反四种情况,所以出现一正一反的概率是12. (2)我认为没有必要,因为不论谁先抽或后抽,三人能够去看比赛的概率都是13.2.(1)0.24a =,16b =;(2)扇形统计图略,3600.1657.6︒⨯=︒;(3)9103.(1)1 (2)16(3)三种摸法,球面分数分别是①5,3,3,3,3,3;②5,5,3,3,3,1;③5,5,5,3,1,1.。

人教版九年级上册数学第二十五章练习和习题答案

人教版九年级上册数学第二十五章练习和习题答案

人教版九年级上册数学第128页练习答案解:(1)是必然事件;(4)是不可能事件;(2)(3)(5)(6)是随机事件.人教版九年级上册数学第129页练习答案1.解:P(落在海洋里)=7/10,P(落在陆地上)=3/10. ∵7/10>3/10,∴“落在海洋里”的可能性更大.2.解:(1)不能.(2)黑桃.(3)能,拿走一张黑桃或再加一张红桃.3.解:抛一枚骰子,“出现点数是2”和“出现点数是3”都是随机事件,“出现点数大于6”是不可能事件,“出现点数小于7”是必然事件.人教版九年级上册数学第133页练习答案1.解:有两种结果,它们的可能性相等,P(正面向上)=1/2.2.解:不相等.P(摸到红球)=5/8,P(摸到绿球)=3/8.3.解:不相等:A区的方格共8个,标号表示在这8个方格中有一个方格藏有地雷,因此点击A区域的任一方格遭地雷的概率是1/8. B区域的方格数为9×9-9=72,其中有地雷的方格数为10-1=9,因此点击B区域中的任一方格,遭到地雷的概率是9/72. 由于1/8=9/72,即点击A区域与点击B区域遭到地雷的可能性相同.所以点击A区域与B区域的安全性相同.人教版九年级上册数学第138页练习答案1.解:所能产生的全部结果列举如下:红红,红绿,绿红,绿绿.所有的结果共4个,并且这4个结果出现的可能性相等.(1)P(第一次摸到红球,第二次摸到绿球)=1/4. (2)P(两次都摸到相同颜色的小球)=2/4=1/2.(3)P (两次摸到的球中有一个绿球和一个红球)=2/4=1/2.2.解:用列表法表示.由表可知所求概率P=14/36=7/18.人教版九年级上册数学第139页练习答案1.用树状图表示如图56所示.(1)由树状图可知P(三辆车全部继续直行)=1/27.(2)由树状图可知P(两辆车向右转,一辆车向左转)=3/27=1/9.(3)由树状图可知P(至少有两辆车向左转)=7/27.人教版九年级上册数学第144页练习答案学子斋 > 课后答案 > 九年级上册课后答案 > 人教版九年级上册数学课本答案 >人教版九年级上册数学第144页练习答案1.解:(1)从左到右依次填0.56,0.60,0.52,0.52,0.49,0.51,0.50.(2)P (投中)≈0.52.提示:1/6≈0.17人教版九年级上册数学第147页练习答案解:从上到下依次填0.940,0.935,0.940,0.845,0.870,0.883,0.891,0.898,0.904,0.901,∴种子发芽的概率大约为0.9,,1000kg种子中大约有1000×(1-0.9)=100kg不能发芽.人教版九年级上册数学习题25.1答案1.解:是随机事件的是:(2)(3)(5)(6);是必然事件的是:(1);是不可能事件的是:(4).2.解:若硬币均匀,则公平,否则不公平.因为掷一枚均匀硬币,正面向上的概率和反面向上的概率各为1/2,所以采用这种方法确定哪一队首先开球是公平的.3.解:P(不合格产品)=1/10.4.解:(1)1/3. (2)0 (3)2/3.5.解:任选四个扇形图上红色,2个扇形图上蓝色6.解:(1)不能.(2)不会相等.因为球共有2+3+4=9(个),所以取出红球的概率是2/9,取出绿球的概率是2/9=1/3 ,取出篮球的概率是4/9,(3)由(2)可知取出篮球的概率是最大的.(4)使各颜色球的数目相等.人教版九年级上册数学习题25.2答案1.解:从13张黑桃牌中任意抽取一张,有13种结果,并且每种结果出现的可能性都相等.(1)P(抽出的牌是黑桃6)=1/13.(2)P(抽出的牌是黑桃10)=1/13.(3)P(抽出的牌带有人像)=3/13.(4)P(抽出的牌上的数小于5)=4/13.(5)P(抽出的牌的花色是黑桃)=1.2.解:(1)投掷一个正12面体一次,共有12种等可能的结果,向上一面的数字是2或3的有两种结果,所以P(向上一面的数字是2或3)=2/12=1/6.(2)向上一面的数字是2的倍数或3的倍数共有8种情况,即点数分别为2,4,6,8,10,12,3,9,所以P(向上一面的数字是2的倍数或3的倍数)=8/12=2/3.3.解:列表如下:由表可以看到共有16种结果,且每种结果的可能性相同.(1)两次取出的小球的标号相同共有4种结果,即(1,1),(2,2),(3,3),(4,4),所以P(两次取出的小球的标号相同)=4/16=1/4.(2)两次取出的小球的标号的和等于4共有3种结果,(3,1),(1,3),(2,2),所以即P(两次取出的小球的标号的和等于4)=3/16.4.解:由图可知蚂蚁寻找事物的路径共有2+2+2=6(条),而能获得事物的路径共有2条,所以它获得食物的概率P=2/6=1/3.5.解:(1)P(取出的两个球都是黄球)=1/3×1/2=1/6. (2)P(取出的两个球中有一个白球一个黄球)=2/3×1/2+1/3×1/2=1/2.6.解:树状图如图57所示,∴P(三只雏鸟中恰有两只雄鸟)=3/8.7.解:列表如下:∴P(一次打开锁)=2/6=1/3.8.解:树状图如图58所示,∴P(两张小图片恰好合成一张完整图片)=4/12=1/3.9.解:(1)由题意得x/(x+y)=3/8,∴8x=3x+3y,5x=3y,y=5/3x.(2)由题意得(10+x)/(x+y+10)=1/2 , ∴20+2x=x+y+10,y=x+10. 解得x=15,y=25.人教版九年级上册数学习题25.3答案1.解:事件发生的频率逐渐趋于一个稳定值.2.提示:图钉尖不着地的面积大,因为图钉帽重,所以它着地的可能性大.3.解:(1)从左到右依次填0.75, 0.83, 0.78, 0.79, 0.80, 0.80.(2)这些频率逐渐稳定在0.8左右.(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率为0.8.4.提示:(1)略.(2)当d不变,l减小时,概率P会变小.当l不变,d减小时,概率P会变大.5.提示:有道理.用样本估计总体.6.提示:P(现年20岁的这种动物活到25岁)=5/8,P(现年25岁的这种动物活到30岁)=3/5.人教版九年级上册数学第25章复习题答案1.解:(1)P(字母为“b”)=2/11.(2)P(字母为”i“)=2/11 .(3)P(字母为”元音“字母)=4/11.(4)P(字母为”辅音“字母)=7/11.2.解:A盘停止时指针指向红色的概率与B盘停止时指针指向红色的概率相同.理由如下:设A盘停止时指针指向红色为A事件,B盘停止时指针指向红色为B 事件,则P(A)=4/12=1/3,P(B)=1/3,∴P(A)=P(B).3.解:(1)P(任意抽取一张是王牌)=2/54=1/27.(2)P(任意抽取一张是Q)= 4/54 =2/27.(3)P(任意抽取一张是梅花)=13/54.4.解:P(颜色搭配正确)=1/2,P(颜色搭配错误)=1/2.5.解:(1)0.68 0.74 0.68 0.69 0.6825 0.701 (2)0.76.解:同时投掷两枚骰子,等可能的结果共有36种,点数的和小于5的有6种,即(1,1)(2,2)(3,1)(1,3)(2,1)(1,2),所以P(点数的和小于5)=6/36=1/6.7.解:(1)P(包中没有混入的M号衬衫)=7/50.(2)P(混入的M号衬衫数不超过7)=(7+3+10+15+5)/50=4/5 .(3)P(混入的M号衬衫数超过10)=3/50 .8.解:用树状图表示如图59所示,∴两个人获胜的概率均为3/9=1/3 .9.解:用树状图表示如图60所示,∴ P(这三张图片恰好组成一张完整风景图片)=3/27=1/9.。

人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案

人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案

人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1点与圆的位置关系1. 点与圆的位置关系:设⊙O的半径为r点P到圆心的距离为OP=d点P在⇔d>r点P在⇔d=r点P在⇔d<r。

2.三点圆:不在直线上的三个点一个圆。

3.三角形的外接圆:经过三角形的三个顶点可以作一个圆这个圆叫做三角形的圆.外接圆的圆心是三角形三条边的的交点叫做这个三角形的外心。

考点2直线和圆的位置关系1.直线与圆的位置关系:(1)直线和圆有两个公共点时我们说这条直线和圆.这条直线叫做圆的线。

(2)直线和圆只有一个公共点时我们说这条直线和圆.这条直线叫做圆的线这个点叫做点。

(3)直线和圆没有公共点时我们说这条直线和圆。

(4)设⊙O的半径为r圆心O到直线l的距离d直线l和⊙O⇔d<r直线l和⊙O⇔d=r直线l和⊙O⇔d>r。

2.切线的判定定理和性质定理(1)切线的判定定理:经过半径的外端并且于这条半径的直线是圆的切线。

(2)切线的性质定理:圆的切线于过切点的半径。

3.切线长定理:(1)切线长:经过圆外一点的圆的切线上这点和点之间线段的长叫做这点到圆的切线长。

(2)切线长定理:从圆外一点可以引圆的两条切线它们的切线长这一点和圆心的连线两条切线的夹角。

4.内切圆:与三角形各边都相切的圆叫做三角形的.内切圆的圆心是三角形三条的交点叫做三角形的内心。

限时训练:一选择题:在每小题给出的选项中只有一项是符合题目要求的。

1.(2024·全国·同步练习)以点P(1,2)为圆心r为半径画圆与坐标轴恰好有三个交点则r应满足( )A. r=2或√ 5B. r=2C. r=√ 5D. 2≤r≤√ 52.(2024·全国·同步练习)如图在△ABC中O是AB边上的点以O为圆心OB为半径的⊙O与AC相切于点D BD平分∠ABC AD=√ 3OD AB=12CD的长是( )A. 2√ 3B. 2C. 3√ 3D. 4√ 33.(2024·江苏省·同步练习)下列命题中真命题的个数是( ) ①经过三点可以作一个圆②一个圆有且只有一个内接三角形③一个三角形有且只有一个外接圆④三角形的外心到三角形的三个顶点的距离相等⑤直角三角形的外心是三角形斜边的中点。

人教版初中数学九年级上册《课本习题参考答案》第四页11-第九页

人教版初中数学九年级上册《课本习题参考答案》第四页11-第九页

习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时,20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24 m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18 解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2)x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为xcm,由题意可知1/2x(14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)∙(x+10)=0解得x1=9,x2=-10(舍)答:每个支干长出来9个小分支习题21.3第5题答案解:设菱形的一条对角线长为x cm,则另一条对角线长为(10-x)cm,由菱形的性质可知:1/2 x∙(10-x)=12,整理,的x2-10x+24=0,解得x1=4,x2=6.当x=4时,10-x=6当x=6时,10-x=4所以这个菱形的两条对角线长分别为6cm和4cm.由菱形的性质和勾股定理,得棱长的边长为:所以菱形的周长是4cm习题21.3第6题答案解:设共有x个队参加比赛,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=90/2,即1/2x(x-1)=45整理,得x2-x-90=0解得x1=10,x2=-9因为x=-9不符合题意,舍去所以x=10答:共有10个队参加比赛习题21.3第7题答案解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450解得x1=1/12,x2=-25/12因为x=- 25/12 不符合题意,舍去所以x= 1/12≈0.083=8.3%答:水稻每公顷产量的年平均增长率约为8.3%习题21.3第8题答案解:设镜框边的宽度应是x cm,根据题意得:(29+2x)(22+2x)-22×29=1/4×29×22整理,得8x2+204x-319=0解得x= [-204±]/16所以x1=[-204+)]/16,x2=[-204-)]/16因为x= [-204-)]/16<0不合题意,舍去所以x= [-204+)]/16≈1.5答:镜框边的宽度约1.5cm习题21.3第9题答案解:设横彩条的宽度为3x cm,则竖彩条的宽为2x cm.根据题意得:30×20×1/4=30×20-(30-4x)(20-6x),整理,得12x2-130x+75=0解得x1=[65+5)]/12,x2=(65-5)/12因为30-4x>0,且20-6x>0所以x<10/3所以x= (65+5)/12不符合题意,舍去所以x=(65-5)/12≈0.6所以3x≈1.8,2x≈1.2答:设计横彩条的宽度约为1.8cm,竖彩条的宽度约为1.2cm习题21.3第10题答案(1)设线段AC的长度为x,则x2=(1-x)×1,解得x1=(-1+)/2,x2=(-1-)/2(舍),∴AC=(-1+)/2(2)设线段AD的长度为x,则x2=((-1+)/2-x)∙(1+)/2,解得x1=(3-)/2,x2=-1(舍),∴AD=(3-)/2(3)设线段AE的长度为x,则x2=((3-)/2-x)∙(3-)/2,解得x1=-2+,x2=(1-)/2 (舍)∴AE=-2+【规律方法:若C为线段AB上一点,且满足AC2=BC∙AB,则AC/AB=(-1)/2∙(-1)/2也叫作黄金比,C点为黄金分割点,一条线段上有两个黄金分割点.】第6页练习答案练习题答案复习题21第1题答案(1)196x2-1=0,移项,得196x2=1,直接开平方,得14x=±1,x=±1/14,∴原方程的解为x1=1/14,x2=-1/14(2)4x2+12x+9=81,原方程化为x2+3x-18=0∵a=1,b=3,c=-18,b2-4ac=32-4×1×(-18)=81>0∴x1=-6,x2=3(3)x2-7x-1=0∵a=1,b=-7,c=-1,b2-4ac=(-7)2-4×1×(-1)=53>0,(4)2x2+3x=3,原方程化为2x2+3x-3=0,∵a=2,b=3,b=-3,b2-4ac=32-4×2×(-3)=33>0,∴x= (-3± )/(2×2)=(-3±)/4,∴x1=(-3+)/4,x2=(-3-)/4(5)x2-2x+1=25,原方程化为x2-2x-24=0,因式分解,得(x-6)(x+4)=0,∴x-6=0或x+4=0,∴x1=6,x2=-4(6)x(2x-5)=4x-10,原方程化为(2x-5)(x-2)=0,,2x-5=0或x-2=0,∴x1=5/2,x2=2(7)x2+5x+7=3x+11,原方程化为x2+2x-4=0,∵a=1,b=2,c=-4,b2-4ac=22-4×1×(-4)=20>0∴x= (-2±)/(2×1)=(-2±2)/2=-1±∴x1=-1+,x2=-1-(8)1-8x+16x2=2-8x,原方程化为(1-4x)(-1-4x)=0,1-4x=0或-1-4x=0,∴x1=1/4,x2=-1/4复习题21第2题答案解:设其中一个数为(8-x),根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0,解得x1=6.5,x2=1.5当x=6.5时,8-x=1.5当x=1.5时,8-x=6.5答:这两个数是6.5和1.5复习题21第3题答案解:设矩形的宽为x cm,则长为(x+3)cm由矩形面积公式可得x(x+3)=4整理,得x2+3x-4=0解得x1=-4整理,得x2+3x-4=0解得x1=-4,x2=1因为矩形的边长是正数,所以x=-4不符合题意,舍去所以x=1所以x+3=1+3=4答:矩形的长是4cm,宽是1cm复习题21第4题答案解:设方程的两根分别为x1,x2(1)x1+x2=5,x1∙x2=-10(2)x1+x2=-7/2,x1∙x2=1/2(3)原方程化为3x2-2x-6=0,∴x1+x2=2/3,x1∙x2=-2 (4)原方程化为x2-4x-7=0,∴x1+x2=4,x1∙x2=-7复习题21第5题答案解:设梯形的伤低长为x cm ,则下底长为(x+2)cm,高为(x-1)cm,根据题意,得1/2 [x+(x+2)]∙(x-1)=8,整理,得x2=9,解得x1=3,x2=-3.因为梯形的低边长不能为负数,所以x=-3不符合题意,舍去,所以x=3,所以x+2=5,x-1=2.画出这个直角梯形如下图所示:复习题21第6题答案解:设这个长方体的长为5x cm,则宽为2 x cm,根据题意,得2x2+7-4=0,解得x1=1/2,x2=-4.因为长方体的棱长不能为负数,所以x=-4不合题意,舍去,所以x= 1/2.所以这个长方体的长为5x=1/2×5=2.5(cm),宽为2x=1(cm).画这个长方体的一个展开图如下图所示.(注意:长方体的展开图不唯一)复习题21第7题答案解:设应邀请x个球队参加比赛,由题意可知:(x-1)+(x-2)+…+3+2+1=15,即1/2 x(x-1)=15解得x1=6,x2=-5因为球队的个数不能为负数所以x=-5不符合题意,应舍去所以x=6答:应邀请6个球队参加比赛复习题21第8题答案解:设与墙垂直的篱笆长为x m,则与墙平行的篱笆为(20-2x)m根据题意,得x(20-2x)=50解得x1=x2=5所以20-2x=10(m)答:用20m长的篱笆围城一个长为10m,宽为5m的矩形场地.(其中一边长为10m,另两边均为5m)复习题21第9题答案解:设平均每次降息的百分率变为x,根据题意得:2.25%(1-x)2=1.98%整理,得(1-x)2=0.88解得x1=1 -x2=1+因为降息的百分率不能大于1所以x=1+不合题意,舍去所以x=1-≈0.0619=6.19%答:平均每次降息的百分率约是6.19%复习题21第10题答案解:设人均收入的年平均增长率为x,由题意可知:12000(x+1)2=14520,解这个方程,得x+1=±x=-1或x=--1又∵x=--1不合题意,舍去∴x=(-1)×100%=10%答:人均收入的年平均增长率是10%复习题21第11题答案解:设矩形的一边长为x cm,则与其相邻的一边长为(20-x)cm,由题意得:x(20-x)=75解得x1=5,x2=15,从而可知矩形的一边长15cm,与其相邻的一边长为5cm 当面积为101cm2时,可列方程x(20-x)=101,即x2-20x+101=0∵△=-4<0∴次方程无解∴不能围成面积为101cm2的矩形复习题21第12题答案解:设花坛中甬道的宽为x m.梯形的中位线长为1/2 (100+180)=140(m),根据题意得:1/2(100+180)×80×1/6=80∙x∙2+140x-2x2整理,得3x2-450x+2800=0解得x1=(450+)/6=75+5/3,x2=(450-)/6=75-5/3因为x=75+5/3不符合题意,舍去所以x=75-5/3≈6.50(m)故甬道的宽度约为6.50m复习题21第13题答案(1)5/4=1.25(m/s),所以平均每秒小球的滚动速度减少1.25m/s(2)设小球滚动5m用了x s∙(5+(5-1.25x))/2x=5,即x2-8x+8=0解得x1=4+2(舍),x2=4-2≈1.2答:小球滚动5 m 约用了1.2s第9页练习答案练习第1题答案练习第2题答案。

人教版初中数学九年级上册《课本习题参考答案》第九页-六六页

人教版初中数学九年级上册《课本习题参考答案》第九页-六六页

第14页练习答案练习第1题答案练习第2题答案第16页练习答案练习题答案第22章习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y轴,顶点坐标是(0,0)抛物线y= -1/5x2的开口向下,对称轴是y轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t又∵线段的长度只能为正数∴∴0<t<6,即自变量t的取值范围是0<t<6习题22.1第9题答案解:∵s=9t+1/2t2∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2(2)设函数解析式为y=a x2+bx+c(a≠0),将点(-1,-1)(0,-2)(1,1)代入得∴函数解析式为y=2x2+x-2(3)设函数解析式为y=a(x+1)(x-3) (a≠0),将点(1,-5)代入,得-5=a(1+1)(1-3)解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=a x2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=a x2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10)习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s第29页练习答案练习第1题答案练习第2题答案习题22.2第1题答案(1)图像如下图所示:(2)有图像可知,当x=1或x=3时,函数值为0习题22.2第2题答案(1)如下图(1)所示:方程x2-3x+2=0的解是x1=1,x2=2(2)如下图所示:方程-x2-6x-9=0的解是x1=x2=-3习题22.2第3题答案(1)如下图所示:(2)由图像可知,铅球推出的距离是10m习题22.2第4题答案解法1:由抛物线的轴对称性可知抛物线的对称轴是直线x=(-1+3)/2=1 解法2:设抛物线的解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴x=-(-2a)/2a=1,即这条抛物线的对称轴是直线x=1习题22.2第5题答案提示:图像略(1)x1=3,x2=-1(2)x<-1或x>3(3)-1<x<3习题22.2第6题答案提示:(1)第三或第四象限或y轴负半轴上(2)x轴上(3)第一或第二象限或y轴正半轴上,当a<0时(1)第一或第二象限或y轴正半轴上(2)x轴上(3)第三或第四象限或y轴负半轴上第32页练习答案练习题答案习题22.3第1题答案(1)∵a=-4<0∴抛物线有最高点∵x=-3/[2×(-4)]=3/8,y=[4×(-4)×0-32]/[2×(-4)]=9/16∴抛物线最高点的坐标为(3/8,9/16)(2)∵a=3>0∴抛物线有最低点∵x=-1/(2×3)=-1/6,y=(4×3×6-12)/(4×3)=71/12∴抛物线最低点的坐标为(-1/6,71/12)习题22.3第2题答案解:设所获总利润为y元.由题意,可知y=(x-30)(100-x),即y=-x2+130x-3000 =-(x-65)2+1225∴当x=65时,y有最大值,最大值是1225,即以每件65元定价才能使所获利润最大习题22.3第3题答案解:s=60t-1.5t2=-1.5(t2-40t+400)+1.5×400=-1.5(t-20)2+600∴当t=20时,s取最大值,且最大值是600,即飞行着陆后滑行600m才能停下来习题22.3第4题答案解:设一条直角边长是x,那么另一条直角边长是8-x设面积为y,则y=1/2x•(8-x),即y=-(1/2)x2+4x对称轴为直线x=-b/2a=-4/(2×(-1/2))=4当x=4时,8-x=4,ymax=8∴当两条直角边长都为4时,面积有最大值8习题22.3第5题答案解:设AC的长为x,四边形ABCD 的面积为y.由题意,可知y=1/2AC•BD ∴y= 1/2 x(10-x), 即y=-1/2x2+5x=-1/2(x-5)2+25/2∴当x=5时,y有最大值,y最大值=25/2此时,10-x=10-5=5,故当AC=BD=5时,四边形ABCD的面积最大,最大面积为25/2习题22.3第6题答案解:∵∠A=30°,∠C=90°,且四边形CDEF是矩形∴FE//BC,ED//AC∴∠DEB=30°在Rt△AFE中,FE=1/2AE在Rt△EDB中,BD=1/2EB,设AE=x,则FE=1/2x令矩形CDEF的面积为S,则S=FE•ED= 1/2 x •/2(12-x)=/4(12x- x2)∴当x=6时,S最大值=9,此时AE=6,EB=12-x=6∴AE=EB,即点E是AB的中点时,剪出的矩形CDEF面积最大习题22.3第7题答案解:设AE=x,AB=a,正方形EFGH的面积为S,由正方形的性质可知AE=DH,即AH=a-x在Rt△AEH中:HE2=AH2+AE2=(a-x)2+x2=2x2-2ax+a2=2(x-1/2 a) 2+1/2a2∴当x=1/2a时,S有最小值,且S最小值=1/2a2,此时AE=1/2a,EB=1/2a,即点E是AB边的中点∴当点E是AB边的中点时,正方形EFGH的面积最小习题22.3第8题答案解:设房价定为每间每天增加x元,宾馆利润为y元由题意可知,y=(180+x-20)(50-x/10)=-1/10x2+34x+8000=-1/10(x-170)2+10890∴当x=170时,y取最大值,且y最大值=10890,此时180+x=350(元)∴房间每天每间定价为350元时,宾馆利润最大习题22.3第9题答案解:用定长为L的线段围成矩形时,设矩形的一边长为x则S矩形=x•(1/2L-x)=-x2+1/2 Lx=-(x-1/4L)2+1/16L2,当x=1/4 L时,S最大值=1/16L2用定长为L的线段围成圆时,设圆的半径为R,则2R=L,S圆=R2=(L/2)2=L2/4ᅲ∵1/16L2=/16L2,L2/4=4/16L2,且π<4∴1/16L2<L2/4∴S矩形<S圆∴用定长为L的线段围成圆的面积大第33页练习答案练习题答案复习题第1题答案解:由题意可知,y=(4+x)(4-x)= -x2+16,即y与x之间的关系式是y=-x2+16 复习题第2题答案解:由题意可知,y=5000(1+x)2=5000x2+10000x+5000,即y与x之间的函数关系式为:y=5000x2+10000x+5000复习题第3题答案D(1)∵a=1>0∴抛物线开口向上又∵x=-2/(2×1)=-1,y=(4×1×(-3)-22)/(4×1)=-4∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,-4).图略(2)∵a=-1<0∴抛物线开口向下又∵x=-6/(2×(-1))=3,y=(4×(-1)×1-62)/(4×(-1))=10∴抛物线的对称轴是直线x=3,顶点坐标是(3,10).图略(3)∵a=1/2>0∴抛物线开口向上又∵x=-2/(2×1/2)=-2, y= (4×1/2×1-22)/(4×1/2)=-1∴抛物线的对称轴是直线x=-2,顶点坐标是(-2,-1).图略(4)∵a=-1/4<0∴抛物线开口向下又∵x=-1/(2×(-1/4))=2,y=(4×(-1/4)×(-4)-12)/(4×(-1/4))=-3 ∴抛物线的对称轴是直线x=2,顶点坐标是(2, -3).图略解:∵s=15t-6t2∴当t=-15/(2×(-6))=5/4时,s最大值=(4×(-6)×0-152)/(4×(-6))=75/8,即汽车刹车后到停下来前进了75/8m复习题第6题答案(1)分别把(-3,2),(-1,-1),(1,3)代入y=ax2+bx+c得a=7/8,b=2,c=1/8所以二次函数的解析式为y=7/8x2+2x+1/8(2)设二次函数的解析式为y=a(x+1/2)(x-3/2)把(0, -5)代入,得a=20/3所以二次函数的解析式为y=20/3x2-20/3 x-5复习题第7题答案解:设垂直于墙的矩形一边长为xm,则平行于墙的矩形的另一边长为(30-2x)m设矩形的面积为ym2,则y=x(30-2x)=-2x2+30x=-2(x-15/2)2+112.5 ∴当x=15/2时,y有最大值,最大值为112.5,此时30-2x=15∴当菜园垂直于墙的一边长为15/2m,平行于墙的另一边长为15m时,面积最大,最大面积为112.5m2复习题第8题答案解:设矩形的长为x cm,则宽为(18-x)cm,S侧=2x•(18-x)=-2x2+36x=-2(x-9)2+162当x=9时,圆柱的侧面积最大,此时18-x=18-9=9当矩形的长与宽都为9cm时旋转形成的圆柱的侧面积最大复习题第9题答案(1)证明:∵四边形ABCD是菱形∴AB=BC=CD=AD又∵BE=BF=DG=DH∴AH=AE=CG=CF∴∠AHE∠AEH,∠A+∠AEH+∠AHE=180,∠A+2∠AHE=180〬又∵∠A+∠D=180〬∴∠D=2∠AHE,同理可得∠A=2∠DHG∴2∠AHE+2∠DHG=180〬∴∠AHE+∠DHG=90〬∴∠EHG=90〬,同理可得∠HGF=∠GFE=90〬∴四边形EFGH是矩形(2)解:连接BD交EF于点K,如图7所示,设BE的长为x,BD=AB=a∴四边形ABCD为菱形,∠A=60〬∴∠EBK=60〬,∠KEB=30〬在Rt△BKE中,BE=x,则BK=1/2x,EK=/2xS矩形EFGH=EF•FG=2EK•(BD-2BK)=2×/2 x(a-2×1/2x)=x(a-x)=-(x2-ax)=-(x2-ax+a2/4-a2/4)=-(x-a/2)2+/4a2当x=a/2时,即BE=a/2时,矩形EFGH的面积最大第35页练习答案第37页练习答案第39页练习答案第40页练习答案练习第1题答案练习第2题答案第23章习题23.1第1题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题23.1第2题答案解:如下图所示,旋转中心为O点,旋转角为OA所转的角度习题23.1第3题答案解:如下图所示:习题23.1第4题答案解:旋转图形分别为△A₁B₁C₁,△A₂B₂C₂,如下图所示:习题23.1第5题答案(1)旋转中心为O₁点,旋转角为60〬,如下图所示:(2)旋转中心为O₂点,旋转角为90〬,如下图所示:习题23.1第6题答案提示:旋转角就是以旋转中心为顶点的周角被均匀地等分问题(360〬÷5=72〬,360〬÷3=120〬)解:(1)旋转角为72°,114°,216°,288°,360°时,旋转后的五角星与自身重合(2)等边三角形绕中心点O旋转120〬,240〬,360〬时与自身重合习题23.1第7题答案风车图案由四个全等的基本图形构成,可由其中一个基本图形绕中心旋转90〬,180〬,270〬得到习题23.1第8题答案提示:旋转中心在等腰三角形的外部解:五角星中间的点为旋转中心,旋转角为72〬,114〬,216〬,288〬习题23.1第9题答案(1)如下图所示:(2)∵BC=3,AC=4,∠C=90〬习题23.1第10题答案提示:线段BE与DC在形状完全相同的两个三角形中,可考虑旋转变换,点A是两个三角形的公共点,因此点A是旋转中心解:BE=DC,理由如下:因为△ABD与△ACE都是等边三角形所以AE=AC, AB=AD,∠DAB=∠CAE=60〬所以∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE所以△BAE绕点A顺时针旋转60〬时,BA与DA重合,AE与AC重合,则△BAE 与△DAC完全重合所以BE=DC第59页练习答案练习第1题答案练习第2题答案练习第3题答案习题23.2第1题答案如下图所示:习题23.2第2题答案解:依题可知,是中心对称图形的有:禁止标志、风轮叶片、正方形、正六边形它们的对称中心分别是圆心,叶片的轴心,正方形对角线的交点,正六边形任意两条最长的对角线的交点习题23.2第3题答案如下图所示,四边形ABCD关于原点O对称的四边形为A\\\\\\\'B\\\\\\\'C\\\\\\\'D\\\\\\\'习题23.2第4题答案解:∵A(a,1)与A\\\\\\\'(5,b)关于原点O对称习题23.2第5题答案解:依题意可知此图形时中心对称图形,对称中心是O₁O₂的中点习题23.2第6题答案解:如下图所示,做出△ABC以BC的中点O为旋转中心旋转180〬°后的图形△DCB,则四边形ABCD即为以AC,AB为一组邻边的平行四边形习题23.2第7题答案解:如下图(1)中的△DCE是由△ACB以C为旋转中心,顺时针旋转90〬得到的.在下图(2)中,先以AC为对称轴作△ABC的轴对称图形△AFC,再把△AFC以C为旋转中心,逆时针旋转90〬,即可得到△DCE习题23.2第8题答案解:依题意知这两个梯形是全等的因为菱形是以它的对角线的交点为对称中心的中心对称图形根据中心对称的性质过对称中心的任意一条直线都将图形分成两个全等的图形所以它们全等习题23.2第9题答案不一定当两个全等的梯形的上底与下底之和等于它的一条腰长的时候,这两个全等的梯形可以拼成一个菱形,其他情况不行习题23.2第10题答案解:如下图所示:连接BE,DF,EF,BD,AC,BD与EF交于点O∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠1=∠2∵△ADE是等边三角形∴DE=AD,∠3=60〬∵△BCF为等边三角形∴BC=BF,∠4=60〬∴DE=BF∴∠1+∠3=∠2+∠4,即∠BDE=∠DBF∴DE//BF∴四边形BEDF为平行四边形∴BD与EF互相平分于点O又∵四边形BEDF为平行四边形∴BD与AC互相平分于点O,即OD=OB,OE=OF,OA=OC ∴△ADE和△BCF成中心对称第61页练习答案练习第2题答案练习第3题答案复习题第1题答案如下图所示:复习题第2题答案解:图(2)是由图(1)这个基本图案绕着图案的中心旋转90〬,180〬, 270〬后与原图形所形成的复习题第3题答案解:图中这4个图形都是中心对称图形,其对称中心为O点,如下图所示:复习题第4题答案如下图所示:解:依题意可知△EBC可以看做是△DAC以点C为旋转中心、逆时针旋转60〬°得到的复习题第6题答案解:依题意可知:右边倾斜的树以其根部为旋转中心,旋转一定的角度使树成直立的状态,再以与树干平行的一条直线为对称轴作树的对称图形,即可得到左边直立的树复习题第7题答案解:矩形FABE,菱形EBCD都为中心对称图形,过对称中心的任意一条直线,都可将图形分成面积相等的两部分如下图所示,直线MN可把这张纸分成面积相等的两部分复习题第8题答案解:当梯形是下底角为60〬且上底等于腰长的等腰梯形时,可以经过旋转和轴对称形成题中图(2)的图案第62页练习答案练习题答案第66页练习答案练习第1题答案练习第2题答案。

人教版数学九年级上册 24.2---24.4练习题含答案

人教版数学九年级上册  24.2---24.4练习题含答案

24.2点和圆、直线和圆的位置关系一.选择题1.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=30°,则∠C的度数是()A.70°B.45°C.30°D.20°2.等边△ABC的三个顶点都在⊙O上,点P是圆上不与A、B、C重合的点,∠BPC的度数是()A.60°B.120°C.60°或120°D.无法确定3.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角()A.小于60°B.等于60°C.大于60°D.大于或等于60°4.如图,AB,AC,BD是⊙O的切线,切点分别是P,C,D.若AC=5,BD=3,则AB 的长是()A.2B.4C.6D.85.如图,P A,PB分别与⊙O相切于点A,B、过圆上点C作⊙O的切线EF分别交P A,PB 于点E,F,若P A=4,则△PEF的周长是()A.4B.8C.10D.126.如图,点A,B,D在⊙O上,∠A=15°,BC是⊙O的切线,点B为切点,OD的延长线交BC于点C,若BC的长为2,则DC的长是()A.1B.4﹣2C.2D.4﹣47.如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F,若AE=5,AC=4,则BE的长为()A.B.C.D.8.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8B.10C.13D.149.如图,⊙O的直径AB=8cm,AM和BN是它的两条切线,切点分别为A、B,DE切⊙O 于E,交AM于D,交BN于C.设AD=x,BC=y,则y与x的函数图象是()A.xy=16B.y=2x C.y=2x2D.xy=810.如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,过点O作OD⊥AC交⊙O于点D,连接CD,若∠P=30°,AP=12,则CD的长为()A.2B.3C.2D.4二.填空题11.如图,在平面直角坐标系xoy中,A(8,0),⊙O半径为3,B为⊙O上任意一点,P 是AB的中点,则OP的最小值是.12.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm,这张光盘的半径是.13.如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是.14.如图,Rt△OAB中,∠OAB=90°,OA=8cm,AB=6cm,以O为圆心,4cm为半径作⊙O,点C为⊙O上一个动点,连接BC,D是BC的中点,连接AD,则线段AD的最大值是cm.15.如图,在直角坐标系中,一直线l经过点M(,1)与x轴、y轴分别交于A、B两点,且MA=MB,可求得△ABO的内切圆⊙O1的半径r1=﹣1;若⊙O2与⊙O1、l、y 轴分别相切,⊙O3与⊙O2、l、y轴分别相切,…,按此规律,则⊙O2014的半径r2014=.三.解答题16.如图,BC是半⊙O的直径,A是⊙O上一点,过点A的切线交CB的延长线于点P,过点B的切线交CA的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=,半⊙O的半径为2,求P A的长度.17.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.18.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.19.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.参考答案与试题解析一.选择题1.【解答】解:∵BC是⊙O的切线,OB是⊙O的半径,∴∠OBC=90°,∵OA=OB,∴∠A=∠ABO=30°,∴∠BOC=60°,∴∠C=30°.故选:C.2.【解答】解:如图,∵△ABC为等边三角形,∴∠A=60°,∴∠BPC=∠A=60°,∵∠A+∠P′=180°,∴∠P′=180°﹣60°=120°,∴当P点在上时,∠BPC=120°.故选:C.3.【解答】解:在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角小于60°.故选:A.4.【解答】解:∵AB,AC,BD是⊙O的切线,切点分别是P,C,D.∴AP=AC,BD=BP,∴AB=AP+BP=AC+BD,∵AC=5,BD=3,∴AB=5+3=8.故选:D.5.【解答】解:∵P A、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交P A、PB于点E、F,切点C在弧AB上,∴AE=CE,FB=CF,P A=PB=4,∴△PEF的周长=PE+EF+PF=P A+PB=8.故选:B.6.【解答】解:∵BC是⊙O的切线,点B为切点,∴OB⊥BC,∵∠A=15°,∴∠BOC=2∠A=30°,∵BC=2,∴OC=2BC=4,OB=OD=2,∴DC=OC﹣OD=4﹣2.故选:B.7.【解答】解:连接OD,如图,∵⊙O与BC相切于点D,∴OD⊥BC,∵∠ACB=90°,∴OD∥AC,∴△BOD∽△BAC,∴=,即=,∴BE =.故选:B .8.【解答】解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PF A =PGA =90°,∴S △PBC =BCPE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4,∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13,∴由切线长定理可知:S △APG =S 四边形AFPG =, ∴=×AGPG ,∴AG =, 由切线长定理可知:CE =CF ,BE =BG ,∴△ABC 的周长为AC +AB +CE +BE=AC +AB +CF +BG=AF +AG=2AG=13,故选:C .9.【解答】解:作DF ⊥BN 交BC 于F ,∵AM和BN是⊙O的两条切线,∴AB⊥AD,AB⊥BC,又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=8,∵BC=y,∴FC=BC﹣BF=y﹣x;∵AM和BN是⊙O的两条切线,DE切⊙O于E,∴DE=DA=x,CE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,DC2=DF2+CF2,∴(x+y)2=64+(x﹣y)2,∴xy=16故选:A.10.【解答】解:∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∵∠P=30°,∴OP=2OC,∠POC=90°﹣∠P=60°,∵AP=12,即OA+OP=12,∴3OC=12,解得OC=4,∴∠AOC=120°,∵OD⊥AC,∴=,∴∠AOD=∠COD=60°,而OD=OC,∴△OCD为等边三角形,∴CD=OC=4.故选:D.二.填空题(共5小题)11.【解答】解:根据题意,当P在⊙O内,且OP+P A=OA时,OP有最小值,如图,∵A(8,0),⊙O半径为3,∴OA=8,OB=3,∴AB=8+3=11,∵P是AB的中点,∴AP=5,5,∴OP=OA﹣AP=8﹣5.5=2.5,∴OP的最小值是2.5,故答案为2.5.12.【解答】解:作OB⊥AB,连接OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的半径是3cm.故答案为:3cm.13.【解答】解:如图1所示,S=r(AB+BC+AC)=r×42=21r,△ABC过点A作AD⊥BC交BC的延长线于点D,如图2,设CD=x,由勾股定理得:在Rt△ABD中,AD2=AB2﹣BD2=400﹣(7+x)2,在Rt△ACD中,AD2=AC2﹣x2=225﹣x2,∴400﹣(7+x)2=225﹣x2,解得:x=9,∴AD=12,=BC×AD=×7×12=42,∴S△ABC∴21r=42,∴r=2,该圆的最大面积为:S=πr2=π22=4π(cm2),故答案为:4πcm2.14.【解答】解:由题意知OB=10连接OC ,作直角△ABO 斜边中线OE ,连接ED ,则DE =OC =2,AE =OB =5. 因为AD <DE +AE ,所以当DE 、AE 共线时AD =AE +DE 最大为7cm .故答案为:7.15.【解答】解:连接OO 1、AO 1、BO 1,作O 1 D ⊥OB 于D ,O 1 E ⊥AB 于E ,O 1 F ⊥OA 于F ,如图所示:则O 1 D =O 1 E =O 1 F =r 1,∵M 是AB 的中点,∴B (0,2),A (2,0),则S △OO 1B =×OB ×r 1=r 1,S △AO 1O =×AO ×r 1=r 1S △AO 1B =×AB ×r 1=××r 1=2r 1S △AOB =×2×2=2;∵S △AOB =S △OO 1B +S △AO 1O +S △AO 1B =(3+)r 1=2, ∴r 1==﹣1;同理得:r 2=,r 3=…∴r n =,依此类推可得:⊙O 2014的半径r 2014=;故答案为:.三.解答题(共4小题)16.【解答】(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠F AO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=,即,∴PB=,∵∠P AE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠P AE=∠AEB,∠P=∠P,∴△APB∽△CP A,∴,即P A2=PBPC,∴,解得P A=.17.【解答】解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠ADO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,而∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,DE是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比为:.18.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵BD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.19.【解答】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=4024.3正多边形和圆一.选择题1.半径为R的圆内接正六边形边长为()A.R B.R C.R D.2R2.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a等于()A.cm B.2cm C.2cm D.cm3.如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个4.正六边形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对边5.如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N,则下列结论正确的是()A.EM:AE=2:B.MN:EM=:C.AM:MN=:D.MN:DC=:26.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是()A.5B.6C.7D.87.正六边形的边心距为,这个正六边形的面积为()A.B.C.D.128.第六届世界数学团体锦标赛于2015年11月25日至11月29日在北京举行,其会徽如图所示,它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC 全等的四边形依次环绕而成的正七边形.设AD=a,AB=b,CF=c,EF=d,则该会徽内外两个正七边形的周长之和为()A.7(a+b+c﹣d)B.7(a+b﹣c+d)C.7(a﹣b+c+d)D.7(b+c+d﹣a)9.用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是()A.mm B.mm C.mm D.mm 10.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°二.填空题11.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC 是该圆内接正n边形的一边,则该正n边形的面积为.12.如图,圆O的周长是1cm,正五边形ABCDE的边长是4cm,圆O从A点出发,沿A →B→C→D→E→A顺时针在正五边形的边上滚动,当回到出发点时,则圆O共滚动了周.13.如图,⊙O的半径为,以⊙O的内接正八边形的一边向⊙O内作正方形ABCD,则正方形ABCD的面积为.14.如图,A,B,C是⊙O上顺次三点,若AC,AB,BC分别是⊙O内接正三角形,正方形,正n边形的一边,则n=.15.如图,在平面直角坐标系中,正六边形OABCDE边长是6,则它的外接圆心P的坐标是.三.解答题16.已知正方形的面积为2平方厘米,求它的半径长、边心距和边长.17.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.18.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为10;求图中阴影部分的面积.19.如图,正方形ABCD内接于⊙O,M为的中点,连接BM,CM.(1)求证:BM=CM;(2)求∠BOM的度数.参考答案与试题解析一.选择题1.【解答】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=R.故选:B.2.【解答】解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∴∠BCD=∠BAC=30°,由AC=3,得CD=1.5,Rt△ABD中,∵∠BAD=30°,∴AB=2BD=a,∴AD==a,即a=1.5,∴a=(cm),故选:A.3.【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形F ABOD都是平行四边形,共6个,故选:C.4.【解答】解:A、正六边形和菱形均具有,故不正确;B、正六边形和菱形均具有,故不正确;C、正六边形具有,而菱形不具有,故正确;D、正六边形和菱形均具有,故不正确;故选:C.5.【解答】证明:∵五边形ABCDE是正五边形,∴DE=AE=AB,∠AED=∠EAB=108°,∴∠ADE=∠AEM=36°,∴△AME∽△AED,∴,∴AE2=ADAM,∵AE=DE=DM,∴DM2=ADAM,设AE=DE=DM=2,∴22=AM(AM+2),∴AM=﹣1,(负值设去),∴EM=BN=AM=﹣1,AD=+1,∵BE=AD,∴MN=BE﹣ME﹣BN=3﹣,∴MN:CD=:2,故选:D.6.【解答】解:如图,圆心角为∠1,∵五边形的内角和为:(5﹣2)×180°=3×180°=540°,∴五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2﹣180°=216°﹣180°=36°,∵360°÷36°=10,∵360°÷36°=10,∴他要完成这一圆环共需10个全等的五边形.∴要完全拼成一个圆环还需要的正五边形个数是:10﹣3=7.故选:C.7.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=,∠AOG=30°,∵OG=OA cos 30°,∴OA===2,∴这个正六边形的面积=6S=6××2×=6.△OAB故选:C.8.【解答】解:如图,∵它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形,∴AM=BM﹣AB=AD﹣AB=a﹣b,FN=EF+EN=EF+CF=c+d,∴内外两个正七边形的周长之和为7(a﹣b)+7(c+d)=7(a﹣b+c+d),故选:C.9.【解答】解:根据题意得:圆内接半径r为mm,如图所示:则OB=,∴BD=OB sin30°=×=(mm),则BC=2×=(cm),完全覆盖住的正六边形的边长最大为mm.故选:A.10.【解答】解:∵OA=AB=OB,∴△OAB是等边三角形,选项A正确,∴∠AOB=60°,∵OC⊥AB,∴∠AOC=∠BOC=30°,AC=BC,弧AC=弧BC,∴=12,∠BAC=∠BOC=15°,∴选项B、C正确,选项D错误,故选:D.二.填空题(共5小题)11.【解答】解:如图,连接OE,根据题意可知:AB⊥CD,AE=AO=EO,∴∠AOC=90°,∠AOE=60°,∴∠EOC=30°,∴EC是该圆内接正12边形的一边,∵△COE是顶角为30度的等腰三角形,作EG⊥OC于点G,∴EG=OE=,=12×OCEG=12×1×=3.∴正12边形的面积为:12S△COE故答案为:3.12.【解答】解:圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,∵圆O的周长是1cm,正五边形ABCDE的边长是4cm,∴圆在边上转了4×5=20圈,而圆从一边转到另一边时,圆心绕五边形的一个顶点旋转了五边形的一个外角的度数,∴圆绕五个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了21圈.故答案为:21.13.【解答】解:连接OA、OD,过A作AE⊥OD于E,如图所示:则∠AEO=∠AED=90°,∵∠AOD是正八边形的中心角,∴∠AOD==45°,∴△AOE是等腰直角三角形,∴AE=OE=OA=1,∴DE=OD﹣OE=﹣1,∴AD2=AE2+DE2=1+(﹣1)2=4﹣2,∴正方形ABCD的面积=AD2=4﹣2,故答案为:4﹣2.14.【解答】解:如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=30°,由题意得30°=,∴n=12,故答案为:12.15.【解答】解:连接P A,P A,∵正六边形OABCDE的外接圆心是P,∴∠OP A==60°,PO=P A,∴△POA是等边三角形,∴PO=P A=OA=6,过P作PH⊥OA于H,则∠OPH=∠OP A=30°,OH=OA=3,∴PH===3,∴P的坐标是(3,3),故答案为:(3,3).三.解答题(共4小题)16.【解答】解:∵正方形的面积为2,∴正方形的边长为AB=,边心距OC=AB=,对角线长为2,∴半径为1,∴正方形的半径为1,边心距为,边长为.17.【解答】解:延长P A到E,使AE=PC,连接BE,∵∠BAE+∠BAP=180°,∠BAP+∠PCB=180°,∴∠BAE=∠PCB,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴∠ABE=∠CBP,BE=BP,∴∠ABE+∠ABP=∠ABP+∠CBP=90°,∴△BEP是等腰直角三角形,∴P A+PC=PE=PB.即:=,∴为定值.18.【解答】解:连接CO、DO,∴S阴影部分=6(S扇形OCD﹣S正三角形OCD)=6(﹣25)=100π﹣150.19.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为的中点,∴=,∴=,∴BM=CM;(2)解:连接OA、OB、OM,∵四边形ABCD是正方形,∴∠AOB=90°,∵M为的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.24.4弧长和扇形面积一.选择题1.圆锥的母线长为9,底面圆的直径为8,则圆锥的侧面积为()A.18πB.36πC.54πD.72π2.钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过长度()cm A.πB.πC.πD.π3.一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为()A.πB.2C.3D.44.已知扇形的圆心角为120°,半径为5cm,则此扇形的弧长为()A.πcm B.πcm C.πcm D.πcm5.一个扇形的圆心角为120°,半径为,则这个扇形的面积是()A.B.4πC.2πD.π6.如图所示,分别以n边形的顶点为圆心,以2cm为半径画圆,则图中阴影部分的面积之和为()A.πcm2B.2πcm2C.4πcm2D.nπcm27.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD,若AC=10,∠BAC=30°,则图中阴影部分的面积为()A.5πB.7.5πC.D.π8.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长2为半径画弧,形成树叶形(阴影)图案,则树叶形图案的面积为()A.B.π﹣2C.2π﹣2D.2π﹣49.如图,在△ABC中,∠C=90°,AB=,分别以A、B为圆心,AC,BC为半径在△ABC的外侧构造扇形CAE,扇形CBD,且点E,C,D在同一条直线上,若BC=2AC,且的长度恰好是的倍,则图中阴影部分的面积为()A.πB.πC.πD.π10.如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x 轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=1,则阴影部分面积为()A.πB.π﹣1C.+1D.二.填空题11.圆锥的底面半径为5,母线长为7,则圆锥的侧面积为.12.圆锥的高为3cm,底面半径为2cm,则圆锥的侧面积是cm2.13.如图,圆锥的母线长l为10cm,侧面积为50πcm2,则圆锥的底面圆半径r=cm.14.如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为.15.如图,在扇形OAB中,点C在上,∠AOB=90°,∠ABC=30°,AD⊥BC于点D,连接AC,若OA=2,则图中阴影部分的面积为.三.解答题16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB、AC于M、N两点,求图中阴影部分的面积.(保留π)17.已知:如图,C为半圆O上一点,AC=CE,过点C作直径AB的垂线CP,弦AE分别交PC、CB于点D、F.(1)求证:AD=CD;(2)若DF=,∠CAE=30°,求阴影部分的面积.18.如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2.(1)求⊙O1的半径;(2)求图中阴影部分的面积.19.如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).参考答案与试题解析一.选择题1.【解答】解:∵底面圆的直径为8,∴底面圆的半径为4,∴圆锥的侧面积=×4×2π×9=36π.故选:B.2.【解答】解:分针40分钟转过的度数为:360°×=240°,分针针端转过长度==cm,故选:B.3.【解答】解:设圆锥的底面半径为r,根据题意得2πr3=6π,解得r=2,即圆锥的底面半径为2.故选:B.4.【解答】解:l==π(cm).故选:B.5.【解答】解:由扇形面积公式得:,故选:A.6.【解答】解:∵n边形的外角和为360°,半径为2cm,==4πcm2,∴S阴影故选:C.7.【解答】解:∵AC是直径,∴∠ABC=90°,∵∠BAC=30°,AC=10,∴BC=AC=5,AB=BC=5,∠ACB=60°,∵OC=OB,∴△OBC 是等边三角形,∴∠BOC =∠AOD =60°,∵S △AOD =S △DOC =S △BOC =S △AOB ,∴S 阴=2S 扇形OAD=2×= 故选:C .8.【解答】解:观察图形可知:S 树叶形图案=2S 扇形﹣S 正方形=2×﹣22=2π﹣4故选:D .9.【解答】解:如图,连接ED ,作AM ⊥EC 于M ,BN ⊥CD 于N .∵BC =2AC ,∴设AC =x ,BC =2x ,∵∠C =90°,∴x 2+(2x )2=5,∴x =1,2x =2,AC =1,BC =2,∵∠AMC =∠BNC =∠ACB =90°,∴∠ACM +∠CAM =90°,∠ACM +∠BCN =90°,∴∠BCN =∠CAM ,∵∠CBN +∠BCN =90°,∴∠CAM +∠CBN =90°,∵AE =AC ,AM ⊥EC ,BC =BD ,BN ⊥CD ,∴∠CAE =2∠CAM ,∠CBD =2∠CBN ,∴∠CAE +∠CBD =180°, ∵的长度恰好是的倍,设∠CBD =m ,∠CAE =n ,∴=×,∴4m =5n ,∵m +n =180°,∴m =100°,n =80°,∴S 阴=+=,故选:B .10.【解答】解:∵∠ACB =90°,OA =OB =1,∴AC =BC =, ∴△ABC 是等腰直角三角形,∴AB =2OA =2,∵△ABC 绕点B 顺时针旋转点A 在A ′处,∴BA ′=AB =2,∴BA ′=2OB ,∴∠OA ′B =30°,∴∠A ′BA =60°,即旋转角为60°,S 阴影=S 扇形BAA ′+S △A ′BC ′﹣S △ABC ﹣S 扇形BCC ′,=S 扇形ABA ′﹣S 扇形CBC ′, =﹣, =﹣=.故选:D .二.填空题(共5小题)11.【解答】解:根据题意得,圆锥的侧面积=×2π×5×7=35π. 故答案为35π.12.【解答】解:∵圆锥的底面半径为2cm ,高为3cm , ∴圆锥的母线长为cm ,∴圆锥的侧面积为π×2×=2π(cm ).故答案为:2π.13.【解答】解:∵圆锥的母线长是10cm,侧面积是50πcm2,∴圆锥的侧面展开扇形的弧长为:l===10π(cm),∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===5(cm),故答案为:5.14.【解答】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S==10π扇形OBC∴图中阴影部分的面积=10π,故答案为10π.15.【解答】解:连接OC,作CM⊥OB于M,∵∠AOB=90°,OA=OB=2,∴∠ABO=∠OAB=45°,AB=2,∵∠ABC=30°,AD⊥BC于点D,∴AD==,BD=AB=,∵∠ABO=45°,∠ABC=30°,∴∠OBC=75°,∵OB =OC ,∴∠OCB =∠OBC =75°,∴∠BOC =30°,∴∠AOC =60°,CM =OC ==1,∴S 阴影=S △ABD +S △AOB ﹣S 扇形OAB +(S 扇形OBC ﹣S △BOC )=S △ABD +S △AOB ﹣S 扇形OAC ﹣S △BOC =+×﹣﹣ =1+﹣π.故答案为1+﹣π.三.解答题(共4小题)16.【解答】解:连接AD ,在△ABC 中,AB =AC ,∠A =120°,BC =2,⊙A 与BC 相切于点D ,则AD ⊥BC ,,,∴∠B =30°,,∴S △ABC ﹣S 扇形AMN =.17.【解答】(1)证明:∵AC=CE,∴弧AC=弧CE,∴∠CAE=∠B.∵CP⊥AB,∴∠CPB=90°∴∠B+∠BCP=90°.∵AB是直径,∴∠ACB=90°.∴∠ACP+∠BCP=90°.∴∠B=∠ACP.∴∠CAE=∠ACP.(2)解:连接OC,∵∠CAE=30°,∴∠ACD=30°,∠COA=60°.∴∠CDF=60°.∵AB是直径,∴∠ACB=90°.∴∠BCP=60°.∴∠BCP=∠DCF=∠CFD=60°.∴AD=CD=DF=.∴DP=AD sin30°=.∴CP=CD+DP=2.(5分)∴S阴影=S扇形﹣S△AOC=﹣=.(6分)18.【解答】解:(1)在正方形ABCD中,AB=AD=4,∠A=90°,∴BD==4∴BO1=BD=∴⊙O1的半径=.(2)设线段AB与圆O1的另一个交点是E,连接O1E ∵BD为正方形ABCD的对角线∴∠ABO=45°∵O1E=O1B∴∠BEO1=∠EBO1=45°∴∠BO1E=90°∴S1=S扇形O1BE ﹣S△O1BE==﹣1根据图形的对称性得:S1=S2=S3=S4∴S阴影=4S1=2π﹣4.19.【解答】解:(1)如图;(2)∵,∴点P经过的路径总长为6π.。

九年级上册(人教版)数学练习题含答案

九年级上册(人教版)数学练习题含答案

狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长人教版九年级上册数学测试《第二十一章二次根式》练习题一、填空题(每小题2分,共20分)221.在、、、、中是二次根式的个数有______个. a3x1ab1x2. 当= 时,二次根式取最小值,其最小值为。

x1x3. 化简的结果是_____________ 824. 计算:= ·23 a5. 实数在数轴上的位置如图所示:化简:a 21102. a1(a2)______26. 已知三角形底边的边长是cm,面积是cm,则此边的高线长. 61227.若则. a b c a2b3c40,201020108. 计算:= (32)(32)122x29. 已知,则 = x3x102x11111112233410. 观察下列各式:,,,……,请你将334455猜想到的规律用含自然数的代数式表示出来是.n(n≥1)线二、选择题(每小题3分,共24分)11. 下列式子一定是二次根式的是()22x x2x2x2A. B. C. D. x2x12. 下列二次根式中,的取值范围是的是() 1狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长1A.2-x B.x+2 C.x-2 D. x-213. 实数在数轴上的对应点的位置如图所示,式子a,b,ca①②③④中c b c0a b a cbc acab acb 203 211正确的有()A.1个B.2个C.3个D.4个 14. 下列根式中,是最简二次根式的是()222 A. B. C. D. 12a12b0.2b5abx y15. 下列各式中,一定能成立的是()2222A. B. ( 2.5)(2.5)a(a)22C. D. x2x1x1x 9x3x3116.设的整数部分为,小数部分为,则的值为() a42ba b22A.B.C.D.2211221m17. 把根号外的因式移到根号内,得()mmA. B. C. D.m m m2218. 若代数式的值是常数,则的取值范围是() a(2a)(a4)2a≥4a≤2a2a42≤a≤4A.B.C.D.或三、解答题(76分) 19. (12分)计算: 212 (1) (2) 184(253)22 1 2狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长11410 (3) (4) 451081125()(32)232822xx2x1x120. (8分)先化简,再求值:,其中. x32x2x2x 1 3狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长421.(8分)已知:,求:的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上人教版数学练习册答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998数 学 · 九 年 级 上 · 人 教 版第 二 十 一 章 二 次 根 式 6 . (1 )2 ;(2 )- 6 槡57 . 1第 1 节 二 次 根 式8 .- 槡21 .C 2 .B 3 .A 4 .D 5 .A 6 .<7 . 槡7槡犪2+ 犫211 4 9 .8 .(1 )狓 ≥ - 1 ;(2 ) 任 何 实 数 ;(3 )犿 ≤练 习 二 (混 合 运 算 )0 ;(4 )犿 = 2 ;(5 )犪 > 0 ;(6 )犪 > 3 1 .D 2 .B 3 .A 4 .3 45 5 .3 槡29 .(1 )80 ;(2 ) 74;(3 )9 6 .(狓 2 + 3 )(狓 + 槡3 )(狓 - 槡3 )7 .1 -4 槡6 10 .4 11 .1 或 - 1 12 .2 犫 + 犮 - 犪8 .(1 )狓 = - 1 ;(2 )狓 ≤ 0第 2 节 二 次 根 式 的 乘 除9 .1+ 槡3 1 .D 2 .C 3 .C 4 .狓 ≥ 2 10 .甲 的 对 ,被 开 方 数 根 要 大 于零 5 . 48 32 3011 .2 0016 .8 狓狔 槡狔 - 槡- 犪 - 犫 槡犪 12 .∵ 槡犪 - 4 + 槡3犪 - 犫 = 07 . - 槡1 - 犪 8 . < < 9 .(1 )- 槡11 ;(2 ) (1 - 犪 ) 槡1 - 犪 ;(3 ) - 2犪犫10 . (1 )- 2 ;(2 )2而 槡犪 - 4 ≥ 0 , 槡3犪- 犫 ≥ 0∴ 槡犪 - 4=0,且槡3犪-犫=0解之得犪=4,犫=12∴犪+犫=4+12=160.222211.30槡6cm2提示:作一个腰为的等腰直角三13.112.(1)槡117;(2)8槡2;(3)5槡5角形,以其斜边为直角边作直角三犃犅犆犃犆13.0角形,其中则以点为圆心,犃犆犈犈犆=1.犃14.提示:平方后比较,槡2+槡6<槡3+槡5.以直角三角形的斜边长为半径画弧,犃犆犈第3节二次根式的加减它与数轴正半轴的交点即为表示的点,即槡3练习一(加减运算)可找到槡3+1的点.1.B2.02853.(1)-14槡2;(2)4.(1)0;(2)10169槡10;(3)槡35.(1)24槡6;(2)槡6-槡5图11人 教 版 · 数 学 · 九 年 级 ( 上 )第 二 十 二 章 一 元 二 次 方 程 (2 )第 一 种 方 法 出 现 分 式 犫2犪,配 方比 较第 1 节 一 元 二 次 方 程 1 . 4 狓 2 - 5狓 + 3 = 0 4 - 5 3 繁;两 边 开 方 时 分 子 、分 母 都 出 现 “± ”,相 除后 为 何 只 有 分 子 上 有 “± ”,不 好 理 解 ;还 易误认 为 槡4犪 2 = 2犪 .所 以 ,第 二种 方 法 好 . 2 . D 3 .C4 . C 5 .B 6 .狓 2 + 2狓 - 1 = 0 .13 .(1 )狓 2 + 7狓 + 6 = (狓 + 1 )(狓 + 6 );7 . 设 最 小 的 整 数 为 状 , 则 状 2 + 状 - 272 = 0 .(2 )狓 2 - 7狓 - 60 = (狓 - 12 )(狓 + 5 );8 . 设 这 个 人 行 道 的 宽 度 为 狓 m , 则 (3 )狆 2 + 7狆 - 18 = (狆 + 9 )(狆 - 2 ); (24 - 2狓 )(20 - 2狓 )= 32 . (4 )犫 2 + 11犫 + 28 = (犫 + 4 )(犫 + 7 ).9 . 设 中 粳 “6427 ”稻 谷 的 出 米 率 的 增 长 率 14 .(1 )犿 1 = - 1 ,犿 2 = - 2 ;为 狓 ,则 稻 谷 产 量 的 增 长 率 为 2狓 .根 据 题 意 ,得 (2 )狓 1 = 1 ,狓 2 = 6 ;500 (1 + 2 狓 )· 70 % (1 + 狓 ) = 462 ,化 简 (3 )犿 1 = 3 ,犿 2 = 4 ; 可 得 :50狓 2 + 75狓 - 8 = 0 . (4 )狓 1 = 4 ,狓2 = 2 . 10 . (1 )设 11 、12 月 的 平 均 月 增 长 率 为练 习 二狓 , 则 100 (1 + 狓 ) + 100 (1 + 狓 )2= 231 ; 1 .B 2 . 0 或 - 2 3 . 0 - 1 1 (2 )1100 吨 . 11 . 设 最 短 的 直 角 边 长 为 狓 ,则 长 直 角 4 .14 边 为 狓 + 14 ,可 得 狓 (狓 + 14 )= 120 .5 . 13 6 . 2 .5 m7 . 设 三 、四 月 份 平 均 每 月 增 长的 百 分 率 12 . 设 兔 舍 平 行 于 旧 墙 的 长 为 狓 m ,则宽 为 1 (35 - 狓 ) m .根据 题 意 ,得 ( ) , 35 - 狓 = 1502 狓 · 12为 狓 ,依 题 意 得 60 ×(1 - 10 % ) (1 + 狓 )2= 96 . 解 得 狓 = 13 ≈ 33 .3 % . 8 . 设 2007 年 年 获 利 率 为狓 , 则 2008 年化简得:狓2-35狓+300=0,的年获利率为(狓+0.1),100(1+狓)(1+狓解得狓1=15,狓2=20.+0.1)=156,解得狓=20%,0.1+狓第2节降次———解一元二次方程=30%.练习一9.因为8<狓<14,通过估算可知1.B2.C狓=10.3.(1)狓1=2,狓2=4;10.设应挖狓m,则(64-4狓)(162-(2)狓1=2,狓2=10.2狓)=9600,解得狓=1m.4.(1)狓1,2=1±槡63;11.A12.C13.C14.D15.C16.217.1018.犽>1(2)狓1=8,狓2=-193.19.(1)方程无实数根;(2)方程有两个不相等的实数根;5.(1)狓1=0,狓2=2;(2)狓=520.(1)答案不唯一.根据一元二次方6.狓1=-2,狓2=17.1s程根的判别式,只要满足犿<5的实数即8.13±槡347≈32分9.4或1.010.8,9可;如犿=1,得方程狓2+4狓=0,它有两个不等实数根:狓1=0,狓2=-4;11.若一元二次方程犪狓2+犫狓+犮=0(2)答案不唯一.要依赖(1)中的犿的的两个根是狓1、狓2,则二次三项式犪狓2+犫狓值,由根与系数的关系可得答案.α=0,+犮=(狓+狓1)(狓+狓2).12.(1)两种方法的本质是相同的,都β=4,α2+β2+αβ=0+16+0=16.21.(1)Δ=(犿-1)2-4(-2犿2+犿)运用的是配方法.2-6犿+1=(3犿-1)2=9犿2参 考 答 案 与 提 示要 使 狓1 ≠ 狓 2 , ∴ Δ > 0 ,得 犿 ≠2( ) + 犿 - 1 狓 - 2 犿另 解 :由 狓1 3 .2+ 犿 = 0即 (狓 1- 3 )(狓7 . 2所 以 犽 >2 - 3 )< 0得 狓 1 = 犿 ,狓 2 = 1 - 2 犿 ,由 狓 1 ≠ 狓 2 解 得 . 第 3 节 实 际 问 题 与 一 元 二 次 方 程(2 )∵ 狓 1 = 犿 ,狓 2 = 1 - 2 犿 ,狓 2 + 狓 12 2 = 2 练 习 一∴ 犿1 .C 2 .A2+ (1 - 2 犿 )2 = 2解 得 犿 1 = -15 ,犿 2 = 1 .3 . 设 这 两 年 平 均 增 长 的 百分 率 为 狓 ,则 8 (1 + 狓 )2 = 9 ,解 得 狓 ≈ 6 % .另 解 :也 可 用 韦 达 定 理 来 解 .4 . 设 三 、四 月 份 的 平 均 增长 率 为 狓 ,则 22 .(1 )狓 1 = - 1 ,狓 2 = - 1 ,狓1 + 狓 2 =1 000 (1 - 10 % )(1 + 狓 )2 = 1 296 , 解 得 狓 = 20 % .- 2 ,狓 1 · 狓 2 = 1 3 + 槡 13 = 12(2 )狓 ,狓 2 = 3 - 槡13 2 ,狓 1+ 狓 2 5 . 由 题 意 得 狓 = 5 .10 -狓 2 ( 10 )= 25 % , 解 得 = 3 ,狓 1 ·狓 2= - 16 .提 示 : 设 金 边 宽 为 狓 c m , 则 (60 +(3 )狓 1 = 1 ,狓2= -73 ,狓 1 + 狓 2= - 4 3 , 2 狓 )(40 + 2狓 )- 60 × 40 13 75 × 60 × 40 .=狓 1 · 狓2=-737 . 设 垂 直墙 面 的 边 长 为 狓 m ,则 另 一 边 长 为 (33 - 2狓 ) m ,猜 想 :犪狓 2+ 犫狓 + 犮 = 0 的 两 根 为 狓1 与 列 方 程 得 狓 (33 - 2狓 ) = 130 , 解 得狓 2 ,则 狓 1 + 狓 2 = - 犫 犪,狓 1 · 狓 2= 犮 犪 , 狓 1 = 6 .5 ,狓 2 = 10 . 当 狓 = 6 .5 时 ,33 - 2狓 = 20 > 18 不 符 应 用 :另 一 根 为 2 - 槡3 ,犮 = 1 合 要 求 ,舍 去 ; 23 . 依 题 意 有 :当 狓 = 10 时 ,33 - 2狓 = 13 < 18 符 合狓 1 + 狓 2 = - 2 (犿 + 2 ) ①烄要 求 .狓 1狓 2 = 犿 2 - 5 ② 烅 狓 1 2 + 狓 2 = 狓1狓 2 + 16③ 2故 花 坛 的 长 为 13 m ,宽 为 10 m . 8 . (1 )∵ 四 月 份 用 电 180 度 ,交 电 费 , Δ = 4 (犿 + 2 )2 - 4 (犿 2 - 5 )≥ 0恰 好 为 每 度 0 .2元 , ∴ 四 月 份 用 电 没 超 过 犪烆 ④由 ① ② ③ 解 得 :犿 = - 1 或 犿 = - 15 ,又 度 ,五 月 份 用 电 250 度 ,交 电 费 56 元 ,每 度 超94由 ④ 可 知 犿 ≥ - , ∴ 犿 = - 15 (舍 去 ),故 犿 = - 1 .过 0 .2 元 . ∴ 五 月 份 用 电 超 过 了 犪 度 . (2 ) 由 题 意 得 ,(250 - 犪 )· 犪 625 + 0 .2犪 24 .由 一 元 二 次 方 程 根 与 系 数 关 系 = 56 整 理 得 ,犪 2 -375犪 + 56 × 625 = 0 即 (犪 可 知 :- 200 )(犪 - 175 ) = 0 ,∴ 犪1 = 200 ,犪2= 175狓 1 + 狓 2 = 2犽 - 3 ,狓 1 ·狓 2 = 2犽 - 4 . 又 ∵ 犪 ≥ 180 , ∴犪 = 200 .9 . (1 ) 18 000 千 克 ;(1 ) 1 + 狓 2 > 0 ,狓 1 · 狓(2 )在 果 园 出 售 ,毛 收 入 为狓2>018000×1.1即2犽-3>0,2犽-4>0=19800元;在市场出售,毛收入为18000×1.3-所以犽>2;(2)狓1+狓2>0,狓1·狓2<018×8×25=19800元;虽然,两个收入相同,但市场出售还要即2犽-3>0,2犽-4<0所以32<犽<2;费人力、物力,所以选择在果园出售方式好;(3)设增长率为狓,则(19800-7800)(3)不妨设狓1>3,狓2<3,则狓1-3>0,[1+(1+狓)+(1+狓)2]=57000,解狓2-3<0,得狓=0.5=50%.3人 教 版 · 数 学 · 九 年 级 ( 上 )10 .(1 )狔 = (30 - 2狓 )狓 ;(2 )10 ,8 ; 连 28 条 不 同的 直 线 ,求 空 间 共 有 多 少 个 点(3 ) 不 是 ;狓 = 7 .5 时 ,最 大 为 112 .5 m 2 . (5 ) 平 面 上 有 28 条 直 线 ,若 任 意 两 条 不 练 习 二 平 行 ,任 意 三 条 不 共 点 ,则 有 多 少 个 交 点1 . 设 甬 路 宽 度 为 狓 m ,根 据 题 意 得 (40 -和 这 个 问 题 列 方 程 的 思 想 一 样 的 实 际2 狓 )(26 - 狓 ) = 144 × 6 ,解 得 狓 1 = 2 ,狓 2 = 44 问 题 很 多 ,如 : (不 合 题 意 ,舍 去 ),所 以 甬 路 宽 为 2 m . (1 ) 春 节 前 后 , 几 个 人 互 打 电 话 问 候 ,2 . 根 据 题 意 可 得 方 程 若 共 打 了 20 次 电 话 ,问 共 有 几 人(50 - 2 - 狓 ) × (30 - 2狓 ) = 50 × 302 ,(2 ) 元 旦 前 后 ,几 个 同 学 互 相 赠 送 贺 年 卡 ,若 共 赠 送 了 20 张 贺 年卡 ,问 共 有 几 人化 简 可 得 狓 2- 63狓 + 345 = 0 ,(3 ) 在 某 两 地 的 铁 路 线 上 ,共 有 20 个 不解 得 : 狓 1 ≈ 6 .06 ,狓 2 = 56 .94 , 同 的 火 车 站 ,问 这 条 铁 路 共 需 设 计 多 少 个 不 经 检 验 ,狓 2 不 合 题 意 舍 去 ,所 以 狓 的 值同 的 火 车票 约 取 6 .06 m .5 . (1 ) 由 题 意 设 2 月 ,3 月 每 月 增 长 的3 . 设 狓 s 后 两 只 蚂 百 分 率 为 狓 ,则 蚁 与 犗 点 组 成 的 三 角 形25 [1 + (1 + 狓 ) + (1 +狓 )2]= 91 ,面 积 等 于 450 c m 2 . 解 得 狓 = 0 .2 = 20 % . 即 2 月 、3 月 份 每(1 ) 若 这 只 蚂 蚁 在月 平 均 增 长 的 百 分 率为 20 % . 犗 犃 上 ,根 据 题 意 得(2 )显 然 ,3 月 份 的 生 产 收 入 为1 2 (50 - 2狓 )· 3狓 =( )· , 解 得 , 2狓 - 50 3狓 = 450 狋 = 30 1图 2450 ,解 得 狋1 = 10 ,狋 2 = 15 . (2 ) 若 这 只 蚂 蚁 在 犗 犅 上 ,根据 题 意 得1 2狋 2 = - 5 (不 合 题 意 ,舍 去 ).所 以 分 别 在 10 s ,15 s ,30s 时 两 只 蚂 蚁与 犗 点 组 成 的 三 角 形 面 积 等 于 450 c m2 .4 .设 有 状 个 人 参 加 聚 会 ,则在 这 状 个 人中 任 何 1 个 人 ,他 (她 ) 都 要 与 除 自 己 以 外 的 (状 - 1 ) 个 人 握 手 ; 又 因 为 甲 与 乙 握 手 与 乙与 甲 握 手 是 同 一 次 握 手 ,所 以 握 手 总 次 数 为1 2 状 (状 - 1 ).所 以 ,状 (状 - 1 ) = 56 .25 × (1 + 0 .2 )2 = 25 ×1 .44 = 36 (万 元 )设 治 理 状 个 月 后 所 投 资 金 开 始 见 效 ,则 有 91 + 36 (状 - 3 )- 111 ≥ 20 状 ,状 ≥ 8 .即 治 理 8 个 月 后 所 投 资 金开 始 见 效 . 6 . 设 商 品 降 低 了 狓 个 100 元 ,则 优 惠 价 是 (3 500 - 100 狓 )元 ,每 个 商 品 的 利 润 是[(3 500 - 100 狓 )- 2 500 ]元 ,销 售 量 为 (8+ 2 狓 )个 ,由 题 意 得[(3 500 - 100 狓 ) - 2 500 ](8 + 2狓 )=8 × (3 500 - 2 500 )(1 + 12 .5 % ),解 得 狓 1 = 1 ,狓 2 = 5 .所 以 ,优 惠 价 应 定 为 3 000 元 或 3 400元 . 到 底 定 为 多 钱 ,要 视 具 体 情 况 而 定 . 7 . (1 )70 ,4 ,2007 . (2 )设 2009 年 和 2010年 两 年 绿 地 面 积 和 这 个 问 题 所 列 方 程 相 同 的 实 际 问 题 的 年 平 均 增 长 率 为 狓 , 很 多 ,如 :根 据 题 意 ,得 70 (1 +狓 )2= 84 .7 . (1 )状 个 村 庄 , 每 两 个 之 间 都 有 一 条 公整 理 后 ,得 (1 + 狓 )2= 1 .21 . 路 ,若 有 人 统 计 共 有 28 条 公 路 ,问 共 有 多 少个 村 庄 解 这 个 方 程 , 得 狓 1 = 0 .1 ,狓 2= - 2 .1(不 合 题 意 ,舍 去 ). (2 ) 在 某 两 地 的 铁 路 线 上 ,共 有 28 个 不 同故所求平均增长率为10%.的火车站,问这条铁路共有多少个不同的票价(3)一次乒乓球循环赛,每个队都要见面,共举行了28场比赛,问共有多少个代表第二十三章旋转第1节图形的旋转队参加(4)空间状个点,任意三点不共线,可以1.C2.B3.D4.A4参考答案与提示5.相同相等旋转中心(3)分别以这两组图形为平移的“基本图形”,各平移两次,即可得到最终的6.45°90°7.犅犆犇犆60°8.底角是60°,腰与底相等的等腰梯形图形.9.图略10.五角星11.(1)不正确.例如图(1)的情况下不正确,但图(2)的情况下正确.(2)犅犈=犇犌成立.如图3,连结犅犈.∵四边形犃犅犆犇和犃犈犉犌都是正方形,∴犃犇=犃犅,犃犌图3图5图610.如图7所示,△犃″犅″犆″与△犃′犅′犆′是关于原点犗成中心对称的.=犃犈,∠犇犃犅=∠犌犃犈=90°.∴∠犇犃犌+∠犌犃犅=90°=∠犅犃犈+∠犌犃犅.∴∠犇犃犌=∠犅犃犈.∴△犇犃犌≌△犅犃犈.∴犅犈=犇犌.12.(1)犃犅=2m,犃犆=槡3m.(2)画出犃点经过的路径,如图4所示.图711.两个全等的正方形犃犅犆犇和犆犇犈犉组成矩形犃犅犉犈,它是中心对称图形,对称中心就是对角线犃犉与犅犈的交点犗,四边形犆犇犈犉绕犗顺时针(或逆时针)旋转180°后,能与四边形犃犅犆犇重合.注意到四边形犆犇犈犉绕点犇顺时针旋图4转90°后或绕点犆逆时针旋转90°后能与∵∠犃犅犃1=180°-60°=120°,正方形犃犅犆犇重合,所以可以作为旋转中犃1犃2=犃犆=槡3m,心(不是对称中心但包含对称中心)的点∴犃点所经过的路径长=120180×π×有3个,即犇、犗、犆.12.(1)以犅犆为对称轴作对称变换(如2+槡3=43π+槡3≈5.9(m).图8).(或以犅犆的中点犗把△犃犅犆绕犗点旋转180°)第2节中心对称1.B2.C3.C4.C5.关于原点对称6.37.48.(1)①④,(2)③④,(3)④,(4)④9.(1)以一个三角形的一条边为对称轴作与它轴对称的图形.(图5)图8(2)将得到的这组图形以一条边的中点(2)把△犃犅犆绕犃犆的中点犗旋转为旋转中心旋转.(图6)180°即可(如图9).5人 教 版 · 数 学 · 九 年 级 ( 上 )(2 )如 图 12 所 示 ,点 犃′ 与点 犃 关 于 直线 犔 成 轴 对 称 ,连 接 犃′ 犅 交 直 线 犔 于 点 犘 , 则 点 犘 为 所 求 .图 9 四 边 形 是 菱 形 ,平 行 四 边 形 .10 .答 案 不 唯 一 , 下 面 举 出 两 例 (如 图13 所 示 ). 13 .答 案 不 唯 一 , 下 面 举 出 三 例 , 如 图 10 所 示 .图 1311 .略图 10第 3 节 课 题 学 习 图 案 设 计 第 二 十 四 章圆1 .左 右 ,上 下第 1 节 圆2 .圆 心 逆 时 针 90°练 习一3 .4 5° (答 案 不 唯 一 )1 .A 2 .B3 .A4 .3 犗 90° 矩 形 犃 犅 犉 犎 犉 犎 5 .旋 转 变 换 ,平 移 变 换 (答 案 不 唯 一 )6 .平 移 变 换 ,旋 转 变 换 (答 案 不 唯 一 )4 .6 槡3 5 .30 6 .5 0° 7 .8 8 .200°7 . 提 示 :(1 )犃 犉 = 犆 犈 ;(2 )两 次 旋 转 变 换 (答 案 不 唯 一 )9 .5 0° 10 .1 5° ︵11 .6 4° 12 .3 0° 13 .犅 犇 的 中 点8 .图 案 如 图 11 所 示 ,四 边 形 犈 犗 犆 犎 的 14 . 以 犕 为 圆 心 ,以 大 于 犕 到 ⊙ 犗 的 最面 积 是 4 c m2 . 小 距 离 且 小 于 犕 到 ⊙ 犗 的 最大 距 离 为 半 径 画 圆 ,与 ⊙ 犗 的 交 点 即 分 别 为 犃 、犅 .15 .1 c m 或 7 c m 16 .25c m817.3槡5cm18.75°练习二1.B2.C3.B4.A5.9图116.2.5m9.(1)平移后的小船如图12所示.7.50°8.130°9.5槡3cm10.证明:如图14所示,作犗犌⊥犆犇于犌,则犆犌=犇犌.∵犈犆⊥犆犇,犇犉⊥犆犇,犗犌⊥犆犇,∴犈犆∥犇犉∥犗犌.图14∴犗犈=犗犉.又∵犗犃=犗犅,∴犃犈=犅犉.11.连结犃犆.由勾股定理得,犃犆=图126参 考 答 案 与 提 示14 .(1 )如 图 16 所 示 ,槡 犃 犅2+ 犅 犆槡2 =3 2 + 4 2 = 5 . 证 明 :连 结 犗 犇 .当 狉 = 犃 犅 = 3 时 ,⊙ 犃 经 过 点 犅 ,点 犆 、 ∵ 犃 犅 是 直 径 ,犃 犅 犇 在 ⊙ 犃 外 ;当狉 = 犃 犇 = 4 时 ,⊙ 犃 经 过 点 犇 ,点 犅 在 ⊙ 犃 内 ,点 犆 在 ⊙ 犃 外 ;当 狉 = 犃 犆= 5 时 ,⊙ 犃 经 过 点 犆 ,点 犅 、犇 在 ⊙ 犃 内 .⊥ 犆 犇 ,︵ ∴ 犅 犆 = ︵犅犇 . 所 以 ,(1 ) 当 狉 < 3 时 ,点 犅 、犆 、犇 均 在 圆 外 ;(2 ) 当 3 ≤ 狉 < 4 时 ,点 犅 、犆 、犇 中 有 两 点在 圆 外 ;(3 ) 当 4 ≤ 狉 < 5 时 ,点 犅 、犆 、犇 中 只= 12 ∴ ∠ 犆 犗 犅 = ∠ 犇 犗 犅 ∠ 犆 犗 犇 . 图 16有 一 点 在 圆 外 .12 . 如 图 15 所 示 , (1 ) 连 结 犅 犈 , 则 ∠ 犅 犈 犆 = 90° .∵ 犃 犅 = 犅 犆 , 犅 犈 平 分 ∠ 犃 犅 犆 , ∴ ∠ 犃 犅 犈 = ∠ 犆 犅 犈 .又 ∵ ∠ 犆 犘 犇 = 1∠ 犆 犗 犇 , 2 ∴ ∠ 犆 犘 犇 = ∠ 犆 犗 犅 . (2 )∠ 犆 犘′ 犇 与 ∠ 犆 犗 犅 的 数 量 关 系 是 :∠ 犆 犘′ 犇 + ∠ 犆 犗 犅 = 180 ° .∵ ∠ 犆 犘′ 犇 + ∠ 犆 犘 犇 = 180 ° ,∠ 犆 犘 犇= ∠ 犆 犗 犅 ,∴ ∠ 犆 犘′ 犇 + ∠ 犆 犗 犅 = 180 ° .第 2 节 点 、 直 线 、 圆 和 圆 的 位 置 关 系练 习 一图 15 ︵ ︵ ∴ 犇 犈 =犆 犈 ,∴ ∠ 犈 犇 犆 = ∠ 犈 犆 犇 .(2 )∵ 犇︵犈 = 犆︵犈 , ∴ 犇 犈 = 犆 1 .C 2 .C 3 .C 4 .D 5 .36 .∠ 犅 = ∠ 犆7 .∵ 犃 犆 = 犅 犆 ,∴ ∠ 犃 = ∠ 犅 .∵ 直 线 犇 犈 切 ⊙ 犗 于 点 犆 ,∴ ∠ 犃犈.犆犇=∠犅.∵犃犅=犅犆,犅犈⊥犃犆,∴犃犈=犆犈.∴犃犈=犆犈=犇犈=3cm,∴∠犃犆犇=∠犃.∴犇犈∥犃犅.8.(1)如图17所示,连结犗犆.犃犆=6cm.在Rt△犃犅犈中,犅犈=犃犅2-犃犈2又,,∠犃=∠犃∴△犃犅犈∽△犃犆犇()为的平分线,13.1∵犃犇∠犈犃犆槡=槡52-32=4,2-32=4,∵犅犆为⊙犗直径,∴∠犃犈犅=∠犃犇犆=90°.∴犃犅犃犆=犅犈犆犇,即56=4犆犇.∴犆犇=4.8cm.∴∠犈犃犇=∠犇犃犆.∵犘犆切⊙犗于点犆,∴∠犘犆犗=90°.图17∵∠犘犆犅=30°,∴∠犅犆犗=60°.∵犗犅=犗犆,∴△犅犗犆是等边三角形.∴∠犆犅犃=∠犅犗犆=60°.(2)在Rt△犗犆犘中,∵犗犆=犗犘cos∠犅犗犆=12,∴犗犘=2犗犆=6.∵四边形犃犅犆犇是圆内接四边形,∴犘犃=犗犘+犗犃=6+3=9.∴∠犈犃犇=∠犅犆犇.9.证明:如图18所示,连结犗犆.又∵∠犇犃犆=∠犇犅犆,∵犅犆∥犗犘,∴∠犅犆犇=∠犇犅犆.∴犅犇=犇犆.∴∠犘犗犆=∠犅犆犗,(2)补充下列条件中的任意一个,都能∠犘犗犃=∠犅.使直线犇犉经过圆心.∵犗犅=犗犆,①犅犉=犆犉;②犇犉⊥犅犆;③犇犉平分∴∠犅犆犗=∠犅.∠犅犇犆.(理由略)∴∠犘犗犆=∠犘犗犃.7人教版·数学·九年级(上)又∵犗犆=犗犃,犗犘∴∠犗犆犇=90°.=犗犘,∴∠犇犆犙+∴△犘犗犆∠犗犆犃=90°.≌△犘犗犃,∴∠犇犆犙+∴∠犘犆犗∠犘犃犙=90°.在Rt△犙犘犃中,=∠犘犃犗.∵犘犃⊥犃犅,∴∠犘犃犗=90°,图18∠犙犘犃=90°,∴∠犘犃犙+∠犙图21∴∠犘犆犗=90°=90°.∴犘犆是⊙犗的切线.∴∠犇犆犙=∠犙.∴犇犙=犇犆.10.(1)如图19即△犆犇犙是等腰三角形.所示,证明:连练习二结犗犕.1.B2.A3.2或64.30°∵犗犕=犗犃,∴∠犃=∠犗犕犃.∵犅犃=犅犆,图19∴∠犃=∠犆.∴∠犗犕犃=∠犆.∴犗犕∥犅犆.切于点,∵犕荦⊙犗犕15.π犪26.75°7.648.提示:连结三个圆的圆心构成等边三角形.最高点到地面的距离是2+槡3.9.证明:如图22所示,延长犆犗2交⊙犗2于点犉,交∴∠犗犕荦=90°.∵∠犕荦犆=∠犗犕荦=90°,犇犈于点犌,连结∴犕荦⊥犅犆.(2)当犗犃<犗犅时,上述结论成立.当犗犃>犗犅时,上述结论也成立.犃犅、犅犉.在⊙犗中,2∠犅犉犆=∠犅犃犆.图22如图20所示,以∵四边形犃犅犈犇是⊙犗1的内接四犗犃<犗犅为例证明如下:边形,∴∠犅犃犆=∠犈.∴∠犅犉犆=∠犈.证明:连结犗犕.∵犆犉是⊙犗2的直径,∴∠犉犅犆=90°.∵犗犕=犗犃,∴∠犅犆犉+∠犅犉犆=90°.∴∠犃=∠犗犕犃.∴∠犅犆犉+∠犈=90°.图20∵犅犃=犅犆,∴∠犆犌犈=90°,∴犗2犆⊥犇犈.10.证明:∴∠犃=∠犆.如图23所示,连∴∠犗犕犃=∠犆.接犕荦、荦犃,连∴犗犕∥犅犆.∵犕荦切⊙犗于点犕,接犅犕并延长交∴∠犗犕荦=90°.犆犇于点犈.∵∠犕荦犆=∠犗犕荦=90°,∵⊙犕与图23∴犕荦⊥犅犆.11.“△犆犇犙是等腰三角形”还成立.⊙荦外切于犘点,∴犕荦经过点犘.证明:如图21所示,连结犗犆.∴∠犅犘犕=∠犃犘荦.∵犗犃=犗犆,∴∠犗犃犆=∠犗犆犃.∵犕犅=犕犘,∴∠犅犘犕=∠犅.∵∠犗犃犆=∠犘犃犙,∵荦犃=荦犘,∴∠犃犘荦=∠犘犃荦.∴∠犗犆犃=∠犘犃犙.∵犆犇切⊙犗于犆点,∴∠犅=∠犘犃荦.∴犅犈∥荦犃.∵犃犇切⊙荦于点犃,∴荦犃⊥犃犇.8参考答案与提示∴犅犈⊥犃犇,即犅犈⊥犆犇,∴11.(1)如图24所示,︵犅犆=︵犅犇.则四边形犃犅犆犇为正方形,那么井盖半径犗犆=犃犅,这样就可求出井盖的直径.学生2:如图26(2),把角尺顶点犃放在连结犗犙.∵犚犙是⊙犗的切线,井盖边上某点,记角尺一边与井盖边缘交于点犅,另一边交于点犆(若角尺另一边无法达∴∠犗犙犘+∠犚犙犘到井盖的边上,把角尺当直尺用,延长另一=90°.∵犗犃⊥犗犅,边与井盖边缘交于点犆),度量犅犆长即∴∠犗犘犅+∠犅=90°.∵犗犅=犗犙,图24为直径.学生3:如图26(3),把角尺当直尺用,量出犃犅的长度,取犃犅中点犆,然后把角尺∴∠犗犙犘=∠犅.顶点与犆点重合.有一边与犆犅重合,让另一∴∠犚犙犘=∠犗犘犅=∠犚犘犙.边与井盖边交于犇点,延长犇犆交井盖边于∴犚犘=犚犙.(2)延长犅犗交⊙犗于点犆.连结犆犙.点犈,度量犇犈长即为直径.∵犅犆是⊙犗的直径,∴∠犅犙犆=90°.学生4:如图26(4),把井盖卡在角尺∵犗犃⊥犗犅,∴∠犅犗犘=90°.间,记录犅、犆的位置,再把角尺当作直尺用,∴∠犅犙犆=∠犅犗犘.可测得犅犆的长度.记圆心为犗,作犗犇⊥又∵∠犅=∠犅,∴△犅犙犆∽△犅犗犘.犅犆,犇为垂足,由垂径定理得犅犇=犇犆=∴犅犙犅犗=犅犆犅犘.12犅犆,且∠犅犗犇=∠犆犗犇.由作图知∵犗犘=犘犃=1,∴犅犗=犃犗=2.2+12=槡5,犅犆=2犅犗=4.∴犅犘=槡2∠犅犗犆=90°,∴∠犅犗犇=12×90°=45°.在犅犙4∴=2槡5∴犘犙=8槡55.∴犅犙=8槡553槡5-5=槡5..犅犇Rt△犅犗犇中,犅犗=,这样就可求出sin45°井盖的半径,进而求得直径.12.(1)∠犅犘犆=∠犆犘犇成立.(2)(1)中的结论仍然成立,如图25所示.过点犘作两圆的公切线犘犕,则∠犕犘犅=∠犃,图25∠犕犘犆=∠犅犆犘.∴∠犅犘犆=∠犕犘犆-∠犕犘犅=∠犅犆犘-∠犃=∠犆犘犃.∴∠犅犘犆=∠犆犘犇.第3节正多边形和圆1.C2.D3.B4.25.略6.120,槡3,π7.7槡38.学生1:如图26(1),把井盖卡在角度尺间,可测得犃犅的长.记井盖所在圆的圆心为犗,连接犗犅、犗犆,由切线的性质得犗犅⊥犃犅,犗犆⊥犃犆,又,犃犅⊥犃犆,犗犅=犗犆,图269人教版·数学·九年级(上)学生5:如图26(5),把角尺当作直尺用,△犅犗犇.先测得犃犅的长度,记录犃、犅的位置,再量(2)犁阴影=犁扇形犗犃犅-犁扇形犗犆犇=2π.犃犆=犃犅,记录犆的位置,然后测得犅犆的长11.方法1:仔细观察,不难发现:犃、犅、度.作等腰三角形犅犃犆底边犅犆上的高犃犇,犇犆阴影部分面积相等(正方形面积-圆的面为垂足.∵犃犇垂直平分犅犆,∴由垂径定理可积),由四选一型选择题的特点,只能选犇.求出犃犇,那么,在Rt△犅犇犗中,犗犅2=犅犇方法2:因为犃、犅、犆中圆弧的半径均为2+犗犇2=犅犇狉,则狉2=犅犇2+(犃犇-犃犗)2.设井盖半径为2+(犃犇-狉)2,∵犅犇、犃犇都已犪2,犇中圆弧的半径为犪,所以犃、犅、犆、犇的知.∴解一元二次方程就可求出井盖的半径狉,这样就可求出井盖的直径.9.(1)a、b、c,a、c;(2)略第4节弧长和扇形面积练习一2-π(犪面积分别为:犁犪244-π);=犁=犪犇)2犃=犁犅=犁犆=犪22-2π犪2-×犪×1[犪]=2犪2-421.C2.B3.C4.B5.A236.π7.1π犪22=犪2(4-π).2显然,犇最大.应选犇.练习二方法3:因为犃、犅、犆中圆弧的1.D2.13.2π124.160°5.57.326.π犪2(),=4πcm7.犾=状π犚180=120π×6180∵弧长犾等于圆锥的底面周长,即犆=4π,半径均为犪,所以犃、犅、犆的面积为:)22犪犁犃=犁犅=犁犆=犪2-π(2-π(2犪2(4-π);=4图28∴底面半径狉=犆2π=2(cm),∴犁底=犇中圆弧的半径为犪,可将原图形犇中白色区域对角线连结,然后将对角线上方的4π(cm2).图沿着逆时针方向旋转90°,重新拼成图238.π犪228,则π犪22=犪22(4-π).犁犇=犪×2犪-9.证明:如图27所示,连结犗犘、犗犆,设显然,犇最大.应选犇.∠犘犗犆=状°.由已知得状π×5180=图27第二十五章概率初步第1节随机事件与概率52π,解得状=90.∴∠犘犗犆=90°.1.162.12练习一123.234.1412∴∠犘犅犆=∠犘犗犆=45°.∵犃犅是直径,∴∠犃犆犅=90°.5.50.2%6.必然7.浅色8.犃9.B10.A11.B12.B13.3614.摸到红球、白球、黄球的可能性不相∴∠犆犕犅=45°.同.因为红球最多,所以摸到红球的可能性∴∠犘犅犆=∠犆犕犅.∴犕犆=犅犆.10.(1)证明:∵∠犆犗犇=∠犃犗犅=最大,而摸到黄球的可能性最小.练习二90°,∴∠犃犗犆=∠犅犗犇.又∵犗犃=犗犅,犗犆=犗犇,∴△犃犗犆≌11.522.2%10参考答案与提示3.(1)小;(2)一样大;(3)大(3)不一定4.大于5.大于6.A7.A8.B6.(1)131;(2)1205,10,15,209.D10.C11.候车不超过3分钟的可能性较大.7.(1)219(2)519(3)121912.这个游戏不公平,小明更容易获胜.8.280.569.0.31510.(1)表中数据:频数从上到下依次因为任意把两张卡片上的数字相加,和为为:9,21,50;频率从上到下依次为:0.42,奇数的更多.0.04;(2)0.76×400=304;(3)能,不能.13.(1)108,114,120;(2)不能.第2节用列举法求概率练习一11BD五牌糕按总25.535%3%、7.5进货19%.1.D2.B3.C4.C不合理,图钉落地后钉尖朝上和钉12.5.尖朝下的机会不均等.156.2517.188.3219.百万分之二13.(1)不可信.实验次数太少;(2)不10.可以用表格列举所有可能得到的牌好.改变了实验条件,啤酒瓶盖和可乐瓶盖面数字之和:共有16种情况,每种情况发生落地后正面朝上的机会不一定相同;(3)好.的可能性相同,而两张牌的牌面数字之和等这样既能提高速度又不会对实验结果造成于5的情况共出现4次,因此牌面数字之和影响,但应在瓶盖完全相同的条件下进等于5的概率为25%.行实验.11.(1)1个;(2)列举略,两次摸到不同颜色的球的14.可能性为34,这种说法是正确的.概率为犘=1012=56.15.24%第4节课题学习键盘上字母练习二的排列规律1.B2.D3.A4.D略5.13236.12121期中综合练习7.141131521.B2.C3.B4.C5.C6.C8.14组1187.A8.B9.210.-611.1和0槡9.(1)篮球:10%+12%+15%+5%=12.②13.犿≠-1且犿≠242%,足球:20%+12%+18%+5%=55%,乒乓球:15%+18%+15%+5%=53%;所以开展足球运动会有更多人参与;(2)抽到喜欢乒乓球的可能性较大.10.(1)犘(1等奖)=136;犘(2等奖)=槡14.3-515.略16.化简后为狓2+417.略18.19000只19.原式=2狓+4.当狓=槡2-2时,原式=2槡2.19,犘(3等奖)=16;(2)5000元.20.(1)-3,9;(2)是第十个;(3)狓2状狓-3状2=0.2-第3节利用频率估计概率21.提示:(犪-21)(350-10犪)=400,解之得犪1=25,犪1.A2.C3.C4.D2=31.5.(1)相同条件(2)实验的次数因为21×(1+20%)=25.2而犪=3111人教版·数学·九年级(上)不合题意,舍去.狓(11-狓)=30,即狓2-11狓+30=0,解所以350-10犪=100件得狓1=5,狓2=6.所以进货100件,定价为25元.故矩形的长和宽分别为6cm、5cm时,期末综合练习面积是30cm2.由狓(11-狓)=32,即狓2-11狓+32=0,犫2-4犪犮=121-4×1×1.A2.A3.C4.D5.C6.B32<0,方程无实数根,故不能折成面积是2的矩形.7.D8.D9.A10.D32cm25.不改变.11.±2槡2如图30所示,12.狓1=1,狓2=-313.114.5115.①③④⑤16.2717.65°连结犗犘,犗犆=犗犘烌18.略19.420.4(1+狓)2=7∠2=∠犘烍21.原式=槡2-1361222.(1)犘(指针指向奇数区域)=;=(2)方法一:如图29所示,自由转动转盘,当转盘停止时,指针指向阴影部分区域∠2=∠1烎∠1=∠犘犗犘∥犆犇犆犇⊥}犃犅︵犗犘⊥犃犅犘犃=图30︵犘犅犘点为中点.的概率为2;3方法二:自由转动转盘,当它停止时,指针指向的数字不小于3时,指针指26.(1)(方法1)连结犇犗,犗犇是△犃犅犆的中位线,运用中位线的性质.(方法2)连结犃犇,∵犃犅是⊙犗的直径,∴犃犇⊥犅犆.∵犅犇=犆犇,∴犃犅=犃犆.(2)连结犃犇,∵犃犅是⊙犗的直径,向的区域的概率是2.323.(1)可以通过逆时图29针旋转90°使△犃犅犈变到△犃犇犉的位置.(2)犅犈=犇犉.提示:证△犃犅犈≌△犃犇犉(SAS).24.设所折成矩形的长为狓cm,则有∴∠犃犇犅=90°,∴∠犅<∠犃犇犅=90°.∠犆<∠犃犇犆=90°.∴∠犅,∠犆为锐角.∵犃犆和⊙犗交于点犉,连接犅犉,∴∠犃<∠犅犉犆=90°.∴△犃犅犆为锐角三角形.檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪殏《练习册》参考答案下载请登陆:殏檪檪陕西师范大学教育出版集团网址:http://www.snupg.com檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪12。

相关文档
最新文档