高中物理电磁感应综合问题
电磁感应现象压轴题综合题附答案

电磁感应现象压轴题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L =- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgR v B L=(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L=-3.如图,两足够长的平行金属导轨平面与水平面间夹角为=30θ︒,导轨电阻忽略不计,二者相距l =1m ,匀强磁场垂直导轨平面,框架上垂直放置一根质量为m =0.1kg 的光滑导体棒ab ,并通过细线、光滑滑轮与一质量为2m 、边长为2l正方形线框相连,金属框下方h =1.0m 处有垂直纸面方向的长方形有界匀强磁场,现将金属框由静止释放,当金属框刚进入磁场时,电阻R 上产生的热量为1Q =0.318J ,且金属框刚好能匀速通过有界磁场。
高中物理电磁感应问题解析

高中物理电磁感应问题解析电磁感应是高中物理中的一个重要内容,也是考试中的热点考点之一。
在解决电磁感应问题时,我们需要掌握一些基本原理和解题技巧。
本文将通过具体题目的举例,来说明电磁感应问题的解析方法和考点,并给出一些解题技巧,以帮助高中学生顺利解决这类问题。
1. 线圈中的感应电动势问题:一个半径为R的圆形线圈,匀速通过一个磁感应强度为B的磁场,线圈的面积为S。
求线圈中感应电动势的大小。
解析:根据电磁感应的基本原理,当一个线圈通过磁场时,线圈中会产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。
在这个问题中,磁感应强度不变,所以感应电动势的大小只与线圈的面积有关。
解题技巧:对于线圈中的感应电动势问题,我们只需要关注线圈的面积和磁感应强度的关系。
在计算时,可以将线圈的面积和磁感应强度代入感应电动势的公式中,直接计算出结果。
2. 导体中的感应电流问题:一个导体棒以速度v与一个磁感应强度为B的磁场垂直运动,求导体中感应电流的大小。
解析:当一个导体棒在磁场中运动时,磁场会对导体中的自由电子产生作用力,从而导致电子在导体内部产生漂移,形成感应电流。
根据洛伦兹力的方向,可以确定感应电流的方向。
解题技巧:对于导体中的感应电流问题,需要注意洛伦兹力的方向和感应电流的方向。
当导体棒以速度v与磁场垂直运动时,洛伦兹力的方向与速度和磁场的方向都有关。
可以通过右手定则来确定洛伦兹力的方向,从而确定感应电流的方向。
3. 电磁感应中的能量转化问题:一个半径为r的圆形线圈以角速度ω绕垂直于平面的轴旋转,磁感应强度为B,求线圈中感应电动势的大小。
解析:当一个线圈以角速度ω旋转时,线圈中会产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。
在这个问题中,磁感应强度不变,所以感应电动势的大小只与线圈的角速度有关。
解题技巧:对于线圈中的感应电动势问题,我们只需要关注线圈的角速度和磁感应强度的关系。
电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。
2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。
3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。
电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。
通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。
4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。
(2)在电源内部电流由负极流向正极。
(3)电源两端的电压为路端电压。
5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。
由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。
6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。
(2)功能关系:Q=W克服安培力,电流变不变都适用。
(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。
7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。
高中物理选修21第三章电磁感应(含解析)

高中物理选修2-1第三章电磁感应(含解析)一、单选题1.下列现象中,属于电磁感应现象的是()A.小磁针在通电导线附近发生偏转B.通电线圈在磁场中转动C.闭合线圈在磁场中运动而产生电流D.磁铁吸引小磁针2.下列家用电器中,利用电磁感应原理进行工作的是()A.电吹风B.电冰箱C.电饭煲D.电话机3.下列设备中,利用电磁感应原理工作的是()A.电动机B.白炽灯泡C.发电机D.电风扇4.电磁感应现象在生活及生产中的应用非常普遍,下列不属于电磁感应现象及其应用的是()A.发电机B.电动机C.变压器D.日光灯镇流器5.如图所示,把一条长直导线平行地放在小磁针的上方附近,当导线中有电流通过时,小磁针会发生偏转。
首先观察到这个实验现象的物理学家是()A.奥斯特B.法拉第C.洛伦兹D.楞次6.金属探测器已经广泛应用于安检场所,关于金属探测器的论述正确的是()A.金属探测器可用于食品生产,防止细小的砂石颗粒混入食品中B.金属探测器探测地雷时,探测器的线圈中产生涡流C.金属探测器探测金属时,被测金属中感应出涡流D.探测过程中金属探测器与被测物体相对静止与相对运动探测效果相同7.在物理学中许多规律是通过实验发现的,下列说法正确的是()A.麦克斯韦通过实验首次证明了电磁波的存在B.牛顿通过理想斜面实验发现了物体的运动不需要力来维持C.奥斯特通过实验发现了电流的热效应D.法拉第通过实验发现了电磁感应现象8.关于感应电流,下列说法中正确的是()A.只要闭合电路内有磁通量,闭合电路中就有感应电流产生B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C.线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没有感应电流产生D.只要闭合电路的导体做切割磁感线运动,电路中就一定有感应电流产生9.奥斯特发现电流的磁效应的这个实验中,小磁针应该放在()A.南北放置的通电直导线的上方B.东西放置的通电直导线的上方C.南北放置的通电直导线同一水平面内的左侧D.东西放置的通电直导线同一水平面内的右侧10.图所示的磁场中,有三个面积相同且相互平行的线圈S1、S2和S3,穿过S1、S2和S3的磁通量分别为Φ1、Φ2和Φ3,下列判断正确的是()A.Φ1最大B.Φ2最大C.Φ3最大D.Φ1=Φ2=Φ3二、多选题11.如图所示,直导线MN竖直放置并通以向上的电流I ,矩形金属线框abcd与MN处在同一平面,边ab与MN平行,则()A.线框向左平移时,线框中有感应电流B.线框竖直向上平移时,线框中有感应电流C.线框以MN为轴转动时,线框中有感应电流D.MN中电流突然变化时,线框中有感应电流12.我国已经制订了登月计划,假如航天员登月后想探测一下月球表面是否有磁场,他手边有一只灵敏电流计和一个小线圈,则下列推断中正确的是()A.直接将电流计放于月球表面,看是否有示数来判断磁场有无B.将电流计与线圈组成闭合回路,使线圈沿某一方向运动,如电流计无示数,则判断月球表面无磁场C.将电流计与线圈组成闭合回路,使线圈沿某一方向运动,如电流计有示数,则判断月球表面有磁场D.将电流计与线圈组成闭合回路,使线圈分别绕两个互相垂直的轴转动,月球表面若有磁场,则电流计至少有一次示数不为零13.于感应电流,下列说法中正确的是()A.只要闭合电路里有磁通量,闭合电路里就有感应电流B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C.线框不闭合时,即使穿过线框的磁通量发生变化,线框也没有感应电流D.只要闭合电路的一部分导体切割磁感线运动电路中就一定有感应电流14.电磁感应现象揭示了电与磁之间的内在联系,根据这一发现,发明了许多电器设备.以下电器中,哪些利用了电磁感应原理()A.变压器B.白炽灯泡C.电磁灶D.电吹风15.发现电磁感应规律是人类在电磁学研究中的伟大成就。
2020年高考回归复习—电学选择之电磁感应中的综合问题 包含答案

高考回归复习—电学选择之电磁感应中的综合问题1.如图所示,在水平面上放置间距为L 的平行金属导轨MN 、PQ ,左端连接阻值为R 的定值电阻。
质量为m 的金属杆ab ,垂直导轨静止放置,接入导轨间的电阻也为R ,与导轨间的动摩擦因数为μ,导轨处在竖直向下、磁感应强度大小为B 的匀强磁场中。
金属杆ab 受到平行MN 向左的瞬时冲量I ,向左移动了距离d 停止,运动过程中金属杆ab 始终与导轨垂直且接触良好。
导轨的电阻不计,重力加速度大小为g ,则整个运动过程中( )A .金属杆的最大加速度为2222B L Im RB .通过定值电阻R 横截面的电荷量为2BdLRC .金属杆ab 克服安培力做的功等于金属杆消耗的电能D .回路中产生的焦耳热为22I mgd mμ-2.如图所示,水平放置的U 形光滑框架上接一个阻值为0R 的电阻,放在垂直纸面向里、磁感应强度大小为B 的匀强磁场中一个半径为L 、质量为m 的半圆形硬导体AC 在水平向右的恒定拉力F 的作用下,由静止开始运动距离d 后速度为v ,半圆形硬导体AC 的电阻为r ,其余电阻不计.下列说法正确的是( )A .此时AC 两端电压为002AC BLvR U R r=+B .此过程中回路产生的热量212Q Fd mv =-C .此过程中通过电阻0R 的电荷量为02BLdq R r=+ D .此过程所用时间22012B L dt mg F R r ⎛⎫=+⎪+⎝⎭3.如图所示,一粗糙的平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R 相连,该装置处于匀强磁场中,磁场方向垂直轨道于平面向上。
质量为m 的金属杆ab 以初速度v 0从轨道底端向上滑行,滑行到某高度h 后又返回到底端。
若运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计。
则下列说法正确的是( )A .金属杆ab 上滑过程与下滑过程通过电阻R 的电量一样多B .金属杆ab 上滑过程中克服重力、安培力与摩擦力所做功之和大于12mv 20 C .金属杆ab 上滑过程与下滑过程因摩擦而产生的内能一定相等 D .金属杆ab 在整个过程中损失的机械能等于装置产生的焦尔热4.如图所示,两平行导轨放置在水平面内,导轨右端与阻值为R 1的电阻相连,一长为L 1、宽为L 2(L 1>L 2)的长方形匀强磁场区域边界与导轨平行或垂直,磁感应强度大小为B ,方向竖直向下,一导体棒放置在导轨上并与导轨接触良好,导体棒电阻为R 2.两平行导轨间的距离大于L 1,导轨电阻不计,第一次让导体棒在外力作用下以大小为v 的恒定速度通过磁场区域,第二次将长方形磁场区域的长、宽互换,让导体棒在外力作用下以大小为2v 的恒定速度通过磁场区域,下列说法正确的是( )A .在导体棒第一次通过磁场区域的过程中,通过电阻的电荷量为1212BL L R R +B .在导体棒第二次通过磁场区域的过程中,通过电阻的电荷量为12122BL L R R +C .在导体棒第一次通过磁场区域的过程中,电阻上消耗的电能为22121212()B L L vR R R + D .在导体棒第二次通过磁场区域的过程中,导体棒上消耗的电能为22212212()B L L vR R R + 5.如图所示,左端接有阻值为R 的足够长的平行光滑导轨CE 、DF 的间距为L ,导轨固定在水平面上,且处在磁感应强度为B 、竖直向下的匀强磁场中,一质量为m 、电阻为r 的金属棒ab垂直导轨放置在导轨上静止,导轨的电阻不计。
高中物理电磁感应综合问题

电磁感应综合问题电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下两个方面:(1)受力情况、运动情况的动态分析。
思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。
要画好受力图,抓住 a =0时,速度v 达最大值的特点。
(2)功能分析,电磁感应过程往往涉及多种能量形势的转化。
例如:如图所示中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径.【例1】 如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l xB B 20π=。
一光滑导体棒AB 与短边平行且与长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求:(1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律;(2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。
答案:(1))()(sin vl t R l vtv l B F 203222220≤≤=π (2)Rv l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。
高中物理模块复习典型题分类-电磁感应(含详细答案)

高中物理模块复习典型题分类-电磁感应(含详细答案)一、单选题1.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)()A.2.5 m/s 1 WB.5 m/s 1 WC.7.5 m/s 9 WD.15 m/s 9 W2.如图所示,水平桌面上放一闭合铝环,在铝环轴线上方有一条形磁铁.当条形磁铁沿轴线竖直向下迅速移动时,下列判断中正确的是()A.铝环有收缩趋势,对桌面压力减小B.铝环有收缩趋势,对桌面压力增大C.铝环有扩张趋势,对桌面压力减小D.铝环有扩张趋势,对桌面压力增大3.如图所示,A为水平放置的胶木圆盘,在其侧面带有负电荷,在A的正上方用丝线悬挂一个金属圆环B,使B的环面在水平面上且与圆盘面平行,其轴线与胶木盘A的轴线重合。
现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大4.如图所示,AB、CD是一个圆的两条直径且AB、CD夹角为60°,该圆处于匀强电场中,电场强度方向平行该圆所在平面.其中φB=φC=φ,U BA=φ,保持该电场的场强大小和方向不变,让电场以B点为轴在其所在平面内逆时针转过60°.则下列判断中不正确的是()A.转动前U BD=φB.转动后U BD=C.转动后D.转动后5.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。
高中物理电磁感应练习题及答案

高中物理电磁感应练习题及答案一、选择题1、在电磁感应现象中,下列说法正确的是:A.感应电流的磁场总是阻碍原磁通量的变化B.感应电流的磁场方向总是与原磁场的方向相反C.感应电流的磁场方向总是与原磁场的方向相同D.感应电流的磁场方向与原磁场方向无关答案:A.感应电流的磁场总是阻碍原磁通量的变化。
2、一导体在匀强磁场中匀速切割磁感线运动,产生感应电流。
下列哪个选项中的物理量与感应电流大小无关?A.磁感应强度B.导体切割磁感线的速度C.导体切割磁感线的长度D.导体切割磁感线的角度答案:D.导体切割磁感线的角度。
二、填空题3、在电磁感应现象中,当磁通量增大时,感应电流的磁场方向与原磁场方向_ _ _ _ ;当磁通量减小时,感应电流的磁场方向与原磁场方向 _ _ _ _。
答案:相反;相同。
31、一根导体在匀强磁场中以速度v运动,切割磁感线,产生感应电动势。
如果只增大速度v,其他条件不变,则产生的感应电动势将_ _ _ _ ;如果保持速度v不变,只减小磁感应强度B,其他条件不变,则产生的感应电动势将 _ _ _ _。
答案:增大;减小。
三、解答题5、在电磁感应现象中,有一闭合电路,置于匀强磁场中,接上电源后有电流通过,现将回路断开,换用另一电源重新接上,欲使产生的感应电动势增大一倍,应采取的措施是()A.将回路绕原路转过90°B.使回路长度变为原来的2倍C.使原电源的电动势增大一倍D.使原电源的电动势和回路长度都增大一倍。
答案:A.将回路绕原路转过90°。
法拉第电磁感应定律是电磁学中的重要规律之一,它描述了变化的磁场产生电场,或者变化的电场产生磁场的现象。
这个定律是法拉第在1831年发现的,它为我们打开了一个全新的领域——电磁学,也为我们的科技发展提供了强大的理论支持。
在高中物理中,法拉第电磁感应定律主要通过实验和理论推导来展示,让学生们能够更直观地理解这个重要的规律。
高中的学生们已经对电场和磁场的基本概念有了一定的了解,他们已经掌握了电场线和磁场线的概念,以及安培定则等基本知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题四 电磁感应综合问题电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下两个方面:(1)受力情况、运动情况的动态分析。
思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。
要画好受力图,抓住 a =0时,速度v 达最大值的特点。
(2)功能分析,电磁感应过程往往涉及多种能量形势的转化。
例如:如图所示中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径.【例1】 如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l xB B 20π=。
一光滑导体棒AB 与短边平行且与长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求:(1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律;(2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。
答案:(1))()(sin vl t R l vtv l B F 203222220≤≤=π (2)Rv l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。
一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向与初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。
求:(1)电流为零时金属杆所处的位置;(2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向;(3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系。
答案:(1)m av x 1220== (2)向运动时=0.18N 向左运动时=0.22N (3)当;x 010220轴相反方向与时,,/>=<F s m lB maR v 当;x 010220轴相同方向与时,,/<=>F s m l B maR v 【例3】 如图5所示,在水平面上有一个固定的两根光滑金属杆制成的37°角的导轨AO 和BO ,在导轨上放置一根和OB 垂直的金属杆CD ,导轨和金属杆是用同种材料制成的,单位长度的电阻值均为0.1Ω/m ,整个装置位于垂直红面向里的匀强磁场中,匀强磁场的磁感应强度随时间的变化关系为B=0.2tT ,现给棒CD 一个水平向右的外力,使CD棒从t=0时刻从O 点处开始向右做匀加速直线运动,运动中CD 棒始终垂直于OB ,加速度大小为0.1m/s 2,求(1)t=4s 时,回路中的电流大小;(2)t=4s 时,CD 棒上安培力的功率是多少?答案:(1)1A (2)0.192W 。
【例4】如图6所示,光滑且足够长的平行金属导轨MN 、PQ 电阻不计,固定在同一水平面上,两导轨相距m 40.=l ,导轨的两个端M 与P 处用导线连接一个R=0.4Ω的电阻。
理想电压表并联在R 两端,导轨上停放一质量m=01kg 、电阻r=0.1Ω的金属杆,整个装置处于磁感应强度B=0.5T 的匀强磁场中,磁场方向垂直导轨平面向下,现用一水平向右的恒定外力F=1.0N 拉杆,使之由静止开始运动,由电压表读数U 随时间t 变化关系的图象可能的是:【例5】如图8所示,两根相距为d 的足够长的光滑平行金属导轨位于竖直的xOy 平面内,导轨与竖直轴yO 平行,其一端接有阻值为R 的电阻。
在y>0的一侧整个平面内存在着与xOy 平面垂直的非均匀磁场,磁感应强度B 随y 的增大而增大,B=ky ,式中的k 是一常量。
一质量为m 的金属直杆MN 与金属导轨垂直,可在导轨上滑动,当t=0时金属杆MN 位于y=0处,速度为v 0,方向沿y 轴的正方向。
在MN 向上运动的过程中,有一平行于y 轴的拉力F 人选用于金属杆MN 上,以保持其加速度方向竖直向下,大小为重力加速度g 。
设除电阻R 外,所有其他电阻都可以忽略。
问:(1)当金属杆的速度大小为20v 时,回路中的感应电动势多大? (2)金属杆在向上运动的过程中拉力F 与时间t 的关系如何?答案:(1)g d kv E 163301= (2))()(gv R gt t v k F 02202t 21≤-=式中 【例6】(2004北京理综)如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻。
一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b 向a 方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值。
解析:(18分)(1)如图所示:重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上(2)当ab 杆速度为v 时,感应电动势E =BLv ,此时电路电流 RBLv R E I ==ab 杆受到安培力Rv L B BIL F 22== 根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ 解得 mR v L B g a 22sin -=θ (3)当θsin 22m g Rv L B =时,ab 杆达到最大速度v m 22sin L B mgR v m θ= 【例7】(2004上海)水平面上两根足够长的金属导轨平行固定放置,问距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下。
用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动。
当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图。
(取重力加速度g =10m/s 2)(1)金属杆在匀速运动之前做什么运动?(2)若m =0.5kg ,L =0.5m ,R =0.5Ω;磁感应强度B 为多大?(3)由v —F 图线的截距可求得什么物理量?其值为多少?解析:(1)变速运动(或变加速运动、加速度减小的加速运动,加速运动)。
(2)感应电动势vBL =ε ① 感应电流R I ε= ② 安培力RL vB IBL F M 22== ③ 由图线可知金属杆受拉力、安增力和阻力作用,匀速时合力为零。
f RL vB F +=22 ④ )(22f F L B R v -=∴⑤由图线可以得到直线的斜率k=2,12==∴kL R B (T ) ⑥ (3)由直线的截距可以求得金属杆受到的阻力f ,f =2(N ) ⑦若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数4.0=μ ⑧【例8】如图所示,两根相距为L 的足够长的平行金属导轨,位于水平的xy 平面内,一端接有阻值为R 的电阻。
在0>x 的一侧存在沿竖直方向的均匀磁场,磁感应强度B 随x 的增大而增大,B=kx ,式中的k 是一常量。
一金属杆与金属导轨垂直,可在导轨上滑动。
当t=0时金属杆位于x =0处,速度为0v ,方向沿x 轴的正方向。
在运动过程中,有一大小可调节的外力F 作用于金属杆以保持金属杆的加速度恒定,大小为a ,方向沿x 轴正方向。
除电阻R 以外其余电阻都可以忽略不计。
求:(1)当金属杆的速度大小为v 时,回路中的感应电动势有多大?(2)若金属杆的质量为m ,施加于金属杆上的外力与时间的关系如何?解析: (1)根据速度和位移的关系式ax v v 2202=- α2202v v x -=由题意可知,磁感应强度为 α2)(202v v k kx B -== 感应电动势为 α2)(202L v v v B L v E -==(2)金属杆在运动过程中,安培力方向向左,因此,外力方向向右。
由牛顿第二定律得 F -BIL=maR所以ma RF +=200 【例9】如图所示,abcd 为质量M=2kg 的导轨,放在光滑绝缘的水平面上,另有一根质量m=0.6kg 的金属棒PQ 平行bc 放在水平导轨上,PQ 棒左边靠着绝缘固定的竖直立柱e 、f ,导轨处于匀强磁场中,磁场以OO ′为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度均为B=0.8T.导轨的bc 段长m l 5.0=,其电阻Ω=4.0r ,金属棒的电阻R=0.2Ω,其余电阻均可不计,金属棒与导轨间的动摩擦因数.2.0=μ 若在导轨上作用一个方向向左、大小为F=2N 的水平拉力,设导轨足够长,g 取10m/s 2,试求:(1)导轨运动的最大加速度;(2)流过导轨的最大电流;(3)拉力F 的最大功率.解析:(1)导轨向左运动时,导轨受到向左的拉力F ,向右的安培力F 1和向右的摩擦力f 。
根据牛顿第二定律:Ma f F F =--1F 1=BI l (1分)f =μ(mg —BI l )M BIl mg F a )1(:μμ---=整理得 当I=0时,即刚拉动时,a 最大. 2max /4.0s m M mg F a =-=μ (2)随着导轨速度增大,感应电流增大,加速度减小.当a =0时,I 最大 即0)1(max =---l BI mg F μμA Blmg F I 5.2)1(max =--=μμ (3)当a =0时,I 最大,导轨速度最大.r R Blv I +=max max s m Blr R I v /75.3)(max max =+=W v F P 5.7m a x m a x =⋅=∴ O`【例10】相距为L 的足够长光滑平行金属导轨水平放置,处于磁感应强度为B ,方向竖直向上的匀强磁场中。