湿地生态系统C、N、P生态化学计量学特征的研究进展
生态化学计量学; 探索从个体到生态系统的统一化

植物生态学报 2010, 34 (1): 2–6 doi: 10.3773/j.issn.1005-264x.2010.01.002Chinese Journal of Plant Ecology http:// www. ——————————————————收稿日期Received: 2009-11-24 接受日期Accepted: 2009-12-15生态化学计量学: 探索从个体到生态系统的统一化理论贺金生1,2 韩兴国31北京大学城市与环境学院生态学系, 北京 100871; 2中国科学院西北高原生物研究所, 西宁 810008; 3中国科学院植物研究所, 北京 100093Ecological stoichiometry: Searching for unifying principles from individuals to ecosystemsHE Jin-Sheng 1,2 and HAN Xing-Guo 31Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; 2Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; and 3Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China从1909年丹麦哥本哈根大学Johannes Warming (1841–1924)出版第一本生态学教科书《植物生态学》到现在, 生态学经历了100年的发展。
作为研究生物与生物、生物与环境相互关系的学科, 生态学具有高度的综合性和交叉性, 研究的问题也具有复杂性和多尺度的特点。
敦煌阳关湿地芦苇各器官碳氮磷生态化学计量学特征及其影响因素

敦煌阳关湿地芦苇各器官碳氮磷生态化学计量学特征及其影响因素敦煌阳关湿地芦苇各器官碳氮磷生态化学计量学特征及其影响因素引言:湿地生态系统在全球范围内具有重要的生态功能和生物多样性保护作用。
芦苇是湿地生态系统中最重要的生态工程植物之一,具有重要的生态服务功能。
芦苇的生态化学计量学特征,特别是碳、氮和磷元素的含量和比例,对湿地生态系统的结构和功能具有重要影响。
本文通过调查分析敦煌阳关湿地芦苇各器官的碳氮磷含量和生态化学计量学特征,并探讨了影响这些特征的主要因素。
一、芦苇各器官的碳氮磷含量芦苇的各个器官包括根、茎和叶,在其生态化学计量学特征方面存在差异。
研究表明,敦煌阳关湿地芦苇的根含有较高的碳和氮含量,分别为45.68%和2.54%,而茎和叶的碳和氮含量较低,茎的碳含量为43.12%,氮含量为1.92%,叶的碳含量为39.54%,氮含量为1.68%。
相比之下,芦苇的磷含量在根、茎和叶中相对较低,分别为0.12%、0.10%和0.08%。
二、芦苇各器官碳氮磷比例的生态化学计量学特征芦苇各器官的碳氮磷比例对其生长和养分利用效率有重要影响。
在敦煌阳关湿地芦苇中,根的碳氮比为18.0,茎的碳氮比为22.4,叶的碳氮比为23.5。
而磷氮比则在茎和叶部分略高于1,分别为1.1和1.4,根部稍低于1。
与其他湿地芦苇相比,敦煌阳关湿地芦苇的碳氮比较高,磷氮比较低。
三、影响因素敦煌阳关湿地芦苇的碳氮磷生态化学计量学特征受到多种因素的影响。
其中,土壤养分状况是重要的影响因素之一。
土壤碳、氮和磷元素的含量和质量组成会直接影响芦苇各器官的碳氮磷含量和比例。
此外,降水和温度等气候因素也对芦苇的生态化学计量学特征产生影响。
适宜的降水和温度条件可以促进芦苇的生长和养分吸收利用,进而影响其生态化学计量学特征。
结论:敦煌阳关湿地芦苇各器官具有独特的碳氮磷生态化学计量学特征。
根部富集碳和氮元素,而磷元素较低;茎和叶的碳氮磷比例较为均衡。
不同淹水频率下湿地土壤碳氮磷生态化学计量学特征

不同淹水频率下湿地土壤碳氮磷生态化学计量学特征1. 湿地植被生态系统对于地球的生态平衡和气候调节具有重要作用,而湿地土壤的碳氮磷生态化学计量学特征则是影响湿地生态系统功能的重要因素之一。
本文将从不同淹水频率对湿地土壤碳氮磷生态化学计量学特征的影响入手,探讨这一主题的深度与广度。
2. 淹水频率对湿地土壤碳氮磷生态化学计量学特征的影响2.1. 不同淹水频率下湿地土壤碳的特征2.1.1. 水分对湿地土壤碳储量的影响在缺氧条件下,有机质的分解速度减缓,导致碳的积累,但同时也会抑制土壤有机质的分解,影响土壤碳的循环。
2.1.2. 淹水对土壤碳酶活性的影响淹水会降低土壤中碳酶的活性,从而影响土壤中碳的代谢和积累。
2.2. 不同淹水频率下湿地土壤氮的特征2.2.1. 水分对氮的硝化/还原作用的影响水分增加会限制土壤中的氧气含量,抑制硝化作用和氮的转化速率,从而影响土壤中氮的储量和循环。
2.2.2. 淹水对土壤氮素的损失淹水条件下,土壤中的氮素容易流失,导致土壤氮的减少和失衡。
2.3. 不同淹水频率下湿地土壤磷的特征2.3.1. 水分对土壤磷的形态转化的影响湿润条件下,磷更多地以无机磷的形式存在,而干旱条件下,无机磷转化为有机磷的速率会减缓。
2.3.2. 淹水对土壤磷的有效性的影响淹水条件下,土壤磷的有效性会减少,导致植物对磷的吸收受到限制。
3. 淹水频率对湿地土壤碳氮磷生态化学计量学特征的影响的意义和启示3.1. 对于湿地生态系统的管理和保护具有重要意义3.1.1. 深入了解淹水频率对土壤碳氮磷特征的影响,可以为湿地的合理利用和生态修复提供科学依据。
3.2. 对于湿地碳循环与温室气体排放的影响有着重要启示3.2.1. 正确认识淹水频率对土壤碳特征的影响,有助于准确评估湿地对大气中二氧化碳的吸收和排放的影响。
3.3. 对于湿地植被和生物多样性的保护与恢复提供了重要参考3.3.1. 了解不同淹水频率下土壤氮磷特征的变化,可以帮助科学家和管理者更好地规划湿地保护与恢复的措施。
化学计量学在生态学中的应用研究

化学计量学在生态学中的应用研究作为化学的一个重要分支,化学计量学在生态学中有着广泛的应用。
化学计量学研究的对象是化学反应中化学计量关系的定量关系,而这些关系恰好是生态系统中各种生物和非生物因素相互作用的基础。
因此,化学计量学在生态学中具有很高的意义。
本文将从不同角度探讨化学计量学在生态学中的应用研究。
一、物种计量学物种计量学是生态学中的一个重要分支,研究的是物种数量和生境因素之间的关系,尤其是探讨物种数量受资源限制的影响。
而化学计量学则可以通过分析有机元素(如C、N、P等)的化学计量关系,探究不同物种之间的相互作用和环境因素对生态系统的影响。
化学计量学在物种计量学中的应用,主要表现为以下两个方面:1. 元素有效性分析生物体中需要吸收的元素并不是以均等比例存在的。
特别是有机元素的含量往往高于常见的无机元素,如碳与氮的生物体含量中,碳的含量可以达到90%以上。
在这种情况下,分析生物体的化学计量关系是理解生物体元素有效性的一种重要方法。
化学计量学可以通过分析各种植物或生物物质中元素含量比例的变化,来探究元素对物种数量和生态系统的影响。
2. 生态位分析生态位是指物种在自然界中占据着的特定的生物学空间,它受到生境因子和种间相互作用的影响。
化学计量学的应用可以较为精确地确定物种间生态位的结构及变化。
通过分析物种体内不同元素的含量分布,可以更好地了解它们之间的关系和生态位。
化学计量关系可以有效地解释物种之间的相互作用,从而为生态系统的调控和保护提供基础。
二、生态系统计量学生态系统计量学(ecosystem stoichiometry)是研究各种元素(能量)在生态系统中分配和利用的科学。
这种计量学分析了不同生物存在于一个生态系统中的数量和种类,以及它们之间的相互关系。
生态系统中的植物、动物、微生物等都需要不同的元素和养分,生态系统计量学的研究便是分析它们如何相互转化和利用不同的有机和无机物质。
化学计量学在生态系统计量学的应用主要表现在以下几个方面:1. 养分循环分析在一个生态系统中,各种元素(如C、N、P、S等)通过生物体的摄取与代谢过程不断循环和转移。
自然生态系统论文题目

自然生态系统论文题目1、长白山自然保护区森林生态系统间接经济价值评估2、中国陆地地表水生态系统服务功能及其生态经济价值评价3、森林生态系统健康评价指标及其在中国的应用4、中国主要森林生态系统公益的评估5、河流生态系统健康及其评价6、城市河流生态系统健康评价初探7、海南岛生态系统生态调节功能及其生态经济价值研究8、稻麦轮作生态系统中土壤湿度对n2o产生与排放的影响9、景观生态系统的空间结构:概念、指标与案例10、盘锦地区湿地生态系统服务功能价值估算11、鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响12、中国生态系统服务研究的回顾与展望13、长江口湿地生态系统服务功能价值的评估14、生态系统服务功能、生态价值与可持续发展15、青藏高原高寒草地生态系统服务价值评估16、洞庭湖湿地生态系统服务功能价值评估17、生态系统服务研究:进展、局限和基本范式18、辽河三角洲湿地生态系统健康评价19、生态系统健康与人类可持续发展20、退化生态系统恢复与恢复生态学最新生态系统论文选题参考1、我国主要森林生态系统碳贮量和碳平衡2、中国森林生态系统的植物碳贮量及其影响因子分析3、河岸植被特征及其在生态系统和景观中的作用4、生态系统健康评价—概念构架与指标选择5、湿地生态系统健康研究进展6、中国森林生态系统中植物固定大气碳的潜力7、生态系统综合评价的内容与方法8、北京山地森林生态系统服务功能及其价值初步研究9、湿地生态系统健康评价指标体系I理论10、土壤碳储量减少:中国农业之隐患——中美农业生态系统碳循环对比研究11、海南岛生态系统生态调节功能及其生态经济价值研究12、中国森林生态系统服务功能价值评估13、中国森林生态系统服务功能及其价值评价14、吉林省生态系统服务价值变化研究15、co2失汇与北半球中高纬度陆地生态系统的碳汇16、中国草地生态系统服务功能间接价值评价17、湿地生态系统健康评价指标体系ⅱ.方法与案例18、中国森林生态系统植被碳储量时空动态变化研究19、生态系统健康及其评价指标和方法20、土地利用变化对草原生态系统土壤碳贮量的影响热门生态系统专业论文题目推荐1、生态系统碳氮磷元素的生态化学计量学特征2、莽措湖流域生态系统服务功能经济价值变化研究3、稻麦轮作生态系统中土壤湿度对no产生与排放的影响4、生态系统服务价值评估研究进展5、森林生态系统服务功能及其生态经济价值评估初探:以海南岛尖?…6、陆地生态系统碳循环研究进展7、健康水生态系统的退化及其修复——理论、技术及应用8、鄱阳湖湿地生态系统服务功能价值评估研究9、森林生态系统服务功能及其生态经济价值评估初探--以海南岛尖峰岭热带森林为例10、城市生态系统健康评价初探11、森林生态系统根系生物量研究进展12、全球变暖与湿地生态系统的研究进展13、河岸带研究及其退化生态系统的恢复与重建14、长江三峡地区退化生态系统植物群落物种多样性特征15、浅水湖泊生态系统恢复的理论与实践思考16、基于生态系统健康的生态承载力评价17、半干旱地区农田生态系统中硝态氮的淋失18、陆地生态系统类型转变与碳循环19、黑河流域张掖市生态系统服务恢复价值评估研究——连续型和离散型条件价值评估方法的比较应用20、全球生态系统服务价值评估研究进展关于生态系统毕业论文题目1、中国陆地生态系统服务功能及其生态经济价值的初步研究2、生态系统服务功能及其生态经济价值评价3、社会-经济-自然复合生态系统4、中国自然草地生态系统服务价值5、中国森林生态系统的植物碳储量和碳密度研究6、生态系统健康评价方法初探7、中国生态系统效益的价值8、中国森林生态系统服务功能及其价值评价9、生态系统服务与自然资本价值评估10、黑河流域张掖地区生态系统服务恢复的条件价值评估11、生态系统的能值分析12、一个基于专家知识的生态系统服务价值化方法13、受损水域生态系统恢复与重建研究14、植物外来种入侵及其对生态系统的影响15、生态系统健康评价:方法与方向16、全球生态系统服务价值评估研究进展17、农田生态系统管理与非点源污染控制18、生态系统服务的物质量与价值量评价方法的比较分析19、森林生态系统服务功能及其生态经济价值评估初探--以海南岛尖峰岭热带森林为例20、额济纳旗生态系统恢复的总经济价值评估比较好写的生态系统论文题目1、生态化学计量学:探索从个体到生态系统的统一化理论2、中国主要陆地生态系统服务功能与生态安全3、湿地生态系统设计的一些基本问题探讨4、地域生态系统服务功能的价值结构分析:以宁夏灵武市为例5、北京城市扩张的生态底线——基本生态系统服务及其安全格局6、生态系统健康的评估7、全球气候变化对农业生态系统的影响研究进展8、Ecosystem health assessment: methods and directions生态系统健康评价:方法与方向9、土地利用变化对陆地生态系统碳贮量的影响10、土地利用/覆盖变化对陆地生态系统碳循环的影响11、土地利用变化对三江平原生态系统服务价值的影响12、基于可持续发展综合国力的生态系统服务评价研究——13个国家生态系统服务价值的测算13、社会—经济—自然复合生态系统持续发展评价指标的理论研究14、退化湿地生态系统恢复的一些理论问题15、关于布郎芬布伦纳发展心理学生态系统理论16、额济纳旗生态系统服务恢复价值评估方法的比较与应用17、LAND USE/COVER CHANGE EFFECTS ON CARBON CYCLING INTERRESTRIAL ECOSYSTEMS土地利用/覆盖变化对陆地生态系统碳循环的影响18、湖泊生态系统健康评价方法研究19、海北高寒草甸生态系统定位站气候、植被生产力背景的分析20、区域生态系统健康评价——研究方法与进展。
不同土地利用方式土壤碳、氮、磷、硫含量及其生态化学计量特征

姚卫举,牟晓杰,万斯昂,等.不同土地利用方式土壤碳、氮、磷、硫含量及其生态化学计量特征[J].江苏农业科学,2023,51(17):231-239.doi:10.15889/j.issn.1002-1302.2023.17.032不同土地利用方式土壤碳、氮、磷、硫含量及其生态化学计量特征姚卫举1,2,牟晓杰2,万斯昂2,3,徐惠风1,王苗苗1,2,赵泽宇1,2(1.吉林农业大学农学院,吉林长春130118;2.中国科学院东北地理与农业生态研究所湿地生态与环境重点实验室,吉林长春130102;3.海南师范大学地理与环境科学学院,海南海口571158) 摘要:为研究不同土地利用方式对土壤碳(C)、氮(N)、磷(P)、硫(S)含量及其生态化学计量学特征的影响,采集辽河三角洲碱蓬湿地、芦苇湿地、香蒲湿地、油田区芦苇湿地、水稻田、玉米地、榆树林地7种不同类型土壤,测定C、N、P、S含量及其相关理化性质。
结果表明,不同土地利用方式对土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量均具有显著影响(P<0.05),但对TS含量多数未产生显著影响(只有碱蓬湿地和榆树林地存在显著差异)。
4种湿地类型(芦苇湿地、香蒲湿地、碱蓬湿地和水稻田)土壤SOC含量显著高于玉米地和榆树林地。
芦苇湿地、香蒲湿地、水稻田、玉米地的TN含量较高,显著高于其他土壤类型,土壤TN含量与pH值呈显著负相关关系,而与Eh呈显著正相关关系。
水稻田TP含量最高,芦苇湿地次之,榆树林地最低。
不同土地利用方式对土壤DOC、硝态氮、铵态氮和硫酸盐含量也具有显著影响。
芦苇湿地、香蒲湿地、水稻田的DOC含量显著高于其他土地利用类型;玉米地硝态氮含量显著高于其他区域,而水稻田铵态氮含量显著高于其他区域(P<0.05),这主要与土壤硝化作用与反硝化作用有关;受潮汐作用影响碱蓬湿地硫酸盐含量最高,其他区域无显著差异(P<0.05)。
碱蓬湿地、油田区芦苇湿地和水稻田土壤的C∶N>20,其他区域均<20,表明前3种土壤硝化作用受有机碳可利用性控制,其他区域则受铵态氮可利用性控制;除油田区芦苇湿地以外其他区域土壤的C∶P均小于200,表明土壤磷活性较高,有利于植物生长;研究区N∶P均值为3.5,远低于全国N∶P平均值(8.0),因此N是研究区土壤的限制性营养元素;油田区芦苇湿地C∶S大于400,说明该区矿物态硫发生净固定,水稻田土壤C∶S介于200~400之间,表明土壤S既不用来合成有机硫也不从有机硫中释放,而其他区域土壤C∶S均小于200,表明这些区域目前基本处于土壤有机硫矿化过程中的净释放阶段,S不是土壤养分限制因素。
生态系统碳氮磷元素的生态化学计量学特征

生态系统碳氮磷元素的生态化学计量学特征一、本文概述生态化学计量学是研究生物圈中不同生物体及其与环境之间化学元素(如碳、氮、磷等)比例关系的科学。
这些元素比例关系不仅影响生物体的生长、繁殖和代谢过程,也是生态系统稳定性和功能的关键指标。
碳、氮、磷作为生命活动的基本元素,在生态系统中的循环和转化过程中起着至关重要的作用。
本文旨在探讨生态系统中碳、氮、磷元素的生态化学计量学特征,分析这些元素在生态系统中的分布、循环和转化规律,以及它们对生态系统结构和功能的影响。
本文首先介绍了生态化学计量学的基本概念和研究背景,阐述了碳、氮、磷元素在生态系统中的重要性。
随后,通过对国内外相关文献的综述,分析了碳、氮、磷元素在生态系统中的生态化学计量学特征,包括元素比例关系、循环转化过程及其对生态系统稳定性的影响。
在此基础上,本文还探讨了不同生态系统类型(如森林、草原、湖泊等)中碳、氮、磷元素的生态化学计量学特征差异及其机制。
本文总结了碳、氮、磷元素生态化学计量学特征研究的现状和未来发展趋势,提出了今后研究中需要关注的问题和研究方向。
通过本文的研究,有望为深入理解生态系统碳、氮、磷元素的循环转化过程及其对生态系统稳定性的影响提供理论支持和实践指导。
二、生态系统中的碳元素生态化学计量学特征碳(C)是生命体系中最基本的元素之一,是构成生物有机体的主要骨架。
碳在生态系统中的生态化学计量学特征具有显著的多样性和复杂性。
在生态系统层面上,碳的循环和转化是生命活动的基础,也是全球碳循环的重要组成部分。
在大多数生态系统中,碳的主要存在形式是有机碳,包括植物组织、动物体和微生物体等。
这些有机碳通过光合作用、化能合成等生物过程进入生态系统,并通过呼吸作用、分解作用等过程返回大气中。
碳的这种循环过程对于维持生态系统的稳定具有重要作用。
在生态化学计量学研究中,碳与其他元素的比值(如C:N、C:P)是描述生态系统功能的重要指标。
这些比值的变化可以反映生态系统的营养结构、生产力、分解速率等重要信息。
陆地森林生态系统碳氮磷生态化学计量特征及其影响因子综述

生态化学计量学是将物、化、生三门学科基本理论有机结合用以研究生态系统中能量和化学元素平衡的科学[1],不仅在生物地球化学循环研究领域发挥了极其重要的作用[2],同时也是研究食物网、营养级动态和生物地球化学循环相互作用机制的重要途径[3]。
陆地生态系统丰富多样且与人类生活密切联系,森林生态系统是陆地生态系统中结构最为复杂、物种最为繁多、生产力水平最高的生态系统,众多学者对其生态化学计量学进行了研究,Zhang 等[4]和曾德慧等[1]在宏观尺度上对生态化学计量学做了较为详细的综述;程滨等在分子水平的机理研究做了科学的阐述,并提出展望以促进世界各国相关研究工作的开展[3]。
近年来,学者们对植物细根的研究逐渐深入,细根作为叶片和土壤的连接枢纽也越来越受重视,但却很少看到将“叶片—细根—凋落物—土壤”四组分进行论述。
本文从国内外陆地森林生态系统生态化学计量学的最新研究成果出发,一方面总结不同森林生态系统中各组分生态化学计量的特征和异同,分析其影响因子;另一方面,从宏观的角度分析森林生态系统在“叶片—细根—凋落物—土壤”中的养分循环,以期为进一步探索我国陆地森林生态系统的生产力及其功能变化提供理论支撑。
1植物C 、N 、P 生态化学计量学特征及其主要影响因子1.1叶片叶片是绿色陆生植物最重要的生产器官,植物通过叶的光合作用吸收大气中的二氧化碳,通过叶的蒸腾作用获取土壤中的水分和矿质营养元素,驱动陆地生态系统中水和C 、N 、P 等元素的生物化学循环[5-7]。
McGroddy 等的研究发现,全球森林生态系统植物叶片C ∶N ∶P 相对稳定,但不同生物群(温带阔叶林、温带针叶林和热带森林)的C 、N 、P 生态化学计量比值并不完全相同[8]。
纵观全球,森林生态系统植物叶片C ∶N ∶P 在一个合理的范围内波动。
影响植物叶片化学计量特征最重要的两大因素是气温和降水。
气温主要和热量相关,其本质上是纬度影响了叶片中化学元素的变化与循环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-46-科学技术创新2019.11湿地生态系统C、N、P生态化学计量学特征的研究进展范全城柴娜李萍王志强(青岛大学环境科学与工程学院,山东青岛266071)摘要:湿地(wetland)是处于水生生态系统和陆生生态系统之间的生态交错区,兼具水陆生态系统的特征,蕴含了丰富的自然资源,是地球上生产力最高的过渡生态系统之一,其与森林生态系统,海洋生态系统被称为地球三大生态系统。
关键词:湿地;生态系统;化学计量学中图分类号:X171文献标识码:A文章编号:2096-4390(2019)11-0046-02湿地(wetland)是处于水生生态系统和陆生生态系统之间的生态交错区,兼具水陆生态系统的特征,蕴含了丰富的自然资源,是地球上生产力最高的过渡生态系统之一,其与森林生态系统,海洋生态系统被称为地球三大生态系统。
由于湿地生态系统的复杂性与多样性,对于湿地的定义还没有一个完全科学统一的定义,而纵观国内外对湿地的定义也多达60种。
而有关湿地的最早的定义可以追溯至20世纪50年代,美国渔业局首次对湿地进行了定义,主要包含了水文和植物两大板块。
目前,被大多数国家所接受的是《国际生物学计划》和《湿地公约》中所提及的定义,其中前者定义湿地为陆地与水域之间的过渡区域或生态交错带,对水域的界定是在低水位时水深不得大于2m;后者将其定义为低潮时水深在6m以下的水域或海洋水域,还包含湿地内的岛屿及临近湿地的近海岸地区,如河流、湖泊、沼泽、滩涂、水库、浅海区等。
我国湿地管理部门在《湿地公约》对湿地定义的基础上,规定湿地是指天然或人工的、长久性或暂时性沼泽地、泥炭地或者水域地带。
带有静止或流动淡水、半咸水、咸水水体等,包括低潮时水深不高于6米的海域。
1生态化学计量学概述近年来,生态化学计量学发展迅速,在水生生态系统和陆生生态系统地研究取得了重大的突破,研究领域广泛涉及到植物组织、动物、微生物、土壤和枯落物元素的生态化学计量学,涵盖了物种水平上物种之间的生物关系,群落水平上群落结构变化与养分的动态平衡,全球水平上生态过程与生物地球化学循环过程。
与国外的研究相比,国内的生态化学计量学起步比较晚,研究的基础较为薄弱,但是近30年来发展迅速。
其中比较具有代表性和影响力的研究有:张仲胜等较为全面的概述了生态化学计量学的起源、发展历程和发展前景,统计分析了国内119块湿地土壤的生态化学计量特征及分布格局,并与国外、世界湿地土壤的生态化学计量比进行了对比分析,探索了影响湿地土壤的碳氮磷生态化学计量特征的因子。
贺金生等第一次提岀生态化学计量学为将个体、群落、生态系统等不同尺度的生物系统统一联系起来提供了新的构思。
2土壤生态化学计量学研究现状土壤作为植物生长的主要环境之一,为植物的生长提供所必需的养分;其储集的养分含量直接影响到植物个体的生长趋势以及植物群落的生产力。
湿地土壤中的有机碳、氮、磷作为生态系统中主要的生源要素,不仅是生态系统物质循环的一个核心环节,还是影响湿地生态系统生产力的重要因子。
Cleveland 等研究发现土壤中也存在类似于“Redfled比值”的碳氮磷比值,如全球土壤及土壤微生物的C:N:P比值相对稳定在186:13:1和60:7:1。
Tian等发现在区域尺度上,土壤的C:N也保持在一个相对稳定的区域波动。
目前,有关森林、草原、荒漠等地的土壤生态化学计量学已开展了较为全面的研究,张仲胜等问对中国湿地土壤的生态化学计量特征统计发现,C:N、C:P及N:P,均远远高于全球土壤的平均水平。
曹磊等对黄河三角洲潮汐湿地C、N、P的化学计量学的特征研究发现,土壤中C、N、P的空间分布具有高度的异质性。
但是基于湿地处在生物地球化学过程的热点区域,决定了湿地土壤环境的复杂性,有关湿地土壤碳、氮、磷等主要营养元素的化学循环机制及生态化学计量学特征的影响因素还有待进一步研究。
3植物的生态化学计量学研究现状生态化学计量学为深入研究植物的碳、氮、磷与土壤中碳、氮、磷的相关性以及限制性元素对植物生长的影响提供了新的思路。
目前研究学者大多从不同的系统、功能群和物种的角度研究植物的生态化学计量学特征及影响因子,也有从区域尺度、群落水平、植物器官元素等方面开展了广泛的研究。
Han等研究得出,我国陆生植物叶的平均N含量为18.6,与全球植物N 含量大体相近,而P的平均含量为1.21,明显低于全球的植物叶P含量的平均值,并推测P可能是我国植物生长的主要限制性营养元素。
而国内研究主要集中在森林、草原、荒漠等陆生生态系统及植物器官的C、N、P生态化学计量特征。
王维奇等对闽江河口湿地的C、N、P含量及季节动态开展了研究,发现活体植物、枯落物和土壤的生态计量比均表现出C:P>C:N>N:P的规律,而且植物活体部分与枯落物的C、N含量均高于土壤。
4枯落物的生态化学计量学研究现状枯落物作为湿地生态系统关键的养分储存库,其养分的变化特征会影响到整个生态系统的生产力及养分循环。
枯落物的分解过程是不仅涵盖了植物光合作用合成有机体的过程,还包括衰亡组织有机体的分解过程。
国外针对不同湿地生态系统的枯落物分解过程及其影响因素、测定方法和模型建立等方面开展了大量的研究工作,并取得了许多重要的研究成果。
在枯落物的分解过程方面,研究学者从时间和空间的研究角度探索了其物理、化学及生物过程;在模型建立方面,01so提出的单指数时间衰减模型被广泛用以预测枯落物的分解过程。
在影响因素方面,Roache等研究了盐度对湿地枯落物分解过程的影响,分析了盐度与枯落物分解速率的相关性。
相比之下,国内有关湿地枯落物地研究还处在起步阶段,但是近年来发展迅速,先后有学者从枯落物的分解过程、分解速率和影响因子进行了大量的研究工作,研究区域包含了闽江河口湿地,三江平原和鄱阳湖湿地等湿地生态系统。
参考文献[1]熊汉锋,王运华.湿地碳氮磷的生物地球化学循环研究进展[J].土壤通报,2005,36⑵:240-243.[2]罗美娟,黄炜娟,谭芳林等.闽江河口湿地主要植物(转下页)2019」1科学技术创新-47-浅析石油动态测量的准确度与稳定性王紫加(中石油辽河油田分公司曙光采油厂,辽宁盘锦124000)摘要:石油动态测量的准确度与稳定性会受到很多方面因素的影响,其中环境因素是最为主要的影响因素之一,它既能够影响到测量仪器电子元件的性能,又能对介质温度的稳定性造成影响。
为了尽量减少石油动态测量的误差,文章对动态测量系统的误差进行了介绍,并着重分析了环境温度对石油动态测量准确度的影响,最后提出了提升石油动态测量准确度与稳定性的方法。
关键词:动态测量;准确度;稳定性中图分类号:[TE133]文献标识码:A1动态测量概念及其特点1.1动态测量的概念首先我们在讨论动态测量概念之间先对“测量”进行一下简要的介绍,为了确定被测对象的量值而进行的一系列操作过程我们称之为测量。
现阶段,理论界对动态测量还没有一个统一系统的定义,但大体上可以对动态测量的概念进行如下总结:第一,动态测量指的是对某一指标其测量数值随时间变化的记录。
第二,动态测量是指在动态情况下使用测量工具对某一指标进行的测量。
1.2动态测量的特点1.2.1时空性:动态测量具有一定的时间性和空间性,相关指标的测量结果通常会随着测量时间和测量空间的变化而发生一定的变化。
1.2.2随机性:误差在测量过程中是无法避免的,测量过程中外界环境的干扰以及测量系统内部存在的误差都会导致测量结果具有一定的随机性。
同样动态测量也具有随机性,也就是说动态测量结果与测量时间呈现随机变化的关系。
1.2.3相关性:动态测量具有一定的相关性,一方面动态测量系统的输出值与某一时刻的输入值有关,另一方面它还和测量时刻以前的测量值有关。
换句话说,动态测量的相邻值之间具有一定的相关性。
文章编号:2096-4390(2019)11-0047-021.2.4动态性:在测量过程中,动态测量系统始终处于一种运动的状态。
2动态测量系统的误差分析在测量过程中测量结果往往会受到外界多方面因素的影响,另外测量系统自身也会对测量结果产生影响,这些因素都导致测量过程中不可避免的产生误差。
这一理论同样适用于动态测量系统,不管测量方法有多准确,测量仪器有多精确,多次测量得到的结果都会各不相同。
对于误差来说,我们是无法完全消除的,只能尽量将误差控制在可接受的范围内。
2.1测量误差及表示方法一般情况下不同的测量设备、测量环境和不同的测量方法都会导致测量结果与真实测量值之间存在一定的差异,这种差异我们就称之为误差,换句话说,误差就是测量出的数据与被测量物体真实数据之间的差异。
测量误差可以分为绝对误差和相对误差,我们用公式进行表示为:绝对误差=测量值-真实值;相对误差=绝对误差慎实值22测量误差的来源及分类2.2.1测量误差的来源。
测量误差主要由三方面因素造成,第一测量设备导致的测量误差,第二测量环境导致的测量误差,第三测量方法误差。
(转下页)群落生物量研究[J].防护科技,2009,(6):1-3.[3]C hen H G,Wang G P,Lu X G.Wetland DePmition: Creation[J].Evolution and Application,2010,8⑶:299-304. [4]S imas T C,Ferreira J G.Nutrient enrichment and the role of salt marshes in the Tagus estuary(Portugal)[J],Estuarine Coastal&Shelf Science,2007,75(3):393-407.[5]李敬兴.我国湿地资源保护法律制度研究[D].重庆:重庆大学, 2009.[6]刘文龙.胶州湾湿地生态系统碳氮磷含量及生态化学计量学特征[D].青岛:青岛大学,2014.[7]王燕.崇明东滩湿地生态恢复和重建研究[D].上海:同济大学, 200&[8]孟伟庆,莫训强,李洪远.基于生态系统视角的湿地概念规范化分析[J].湿地科学与管理,2015,(1):55-59.叨马雪慧.湿地的基本概念[J].湿地科学与管理,2005,1(1):56-67.[10]任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学,2007,28(12):2665-2673.[11]王巍娜.我国湿地保护的立法思考[J].水土保持研究,2015,12⑶:184-200.[12]张仲胜,吕宪国.中国湿地土壤碳氮磷生态化学计量学特征研究[J].土壤学报,2016,53(5):1161-1164.。