数字频率计课程设计
单片机数字频率计课程设计

单片机数字频率计课程设计一、课程目标知识目标:1. 让学生掌握单片机的基本原理,理解数字频率计的工作机制。
2. 使学生能够运用单片机编程实现数字频率计的功能,包括计时、计数和显示。
3. 让学生了解数字频率计在实际应用中的重要性,如信号处理、电子测量等领域。
技能目标:1. 培养学生运用单片机进行数字频率计设计和编程的能力。
2. 培养学生运用相关软件(如Keil、Proteus等)进行电路仿真和调试的能力。
3. 提高学生的动手实践能力,学会在实际操作中发现问题、解决问题。
情感态度价值观目标:1. 激发学生对电子技术和单片机编程的兴趣,培养其创新精神和实践能力。
2. 培养学生严谨的科学态度,注重实验数据的准确性和可靠性。
3. 增强学生的团队协作意识,学会在项目合作中相互支持、共同进步。
课程性质:本课程为实践性较强的课程,要求学生在掌握理论知识的基础上,进行实际操作和项目实践。
学生特点:学生具备一定的单片机基础知识,对编程和电路设计有一定了解,但实际操作能力有待提高。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,以项目为导向,培养学生的动手实践能力和创新能力。
通过课程学习,使学生能够独立完成单片机数字频率计的设计和编程任务,达到课程目标所要求的具体学习成果。
二、教学内容1. 理论知识:- 单片机原理和结构:介绍单片机的内部组成、工作原理及性能特点。
- 数字频率计原理:讲解频率的概念、测量原理及其在电子测量中的应用。
- 编程语言:回顾C语言基础知识,重点掌握单片机编程相关语法。
2. 实践操作:- 电路设计:学习使用Proteus软件设计数字频率计电路,包括单片机、计数器、显示模块等。
- 程序编写:运用Keil软件编写数字频率计程序,实现计数、计时和显示功能。
- 仿真调试:在Proteus环境下进行电路仿真,调试程序,确保其正常运行。
3. 教学大纲:- 第一周:回顾单片机原理和结构,学习数字频率计原理。
课程设计数字频率计

课程设计数字频率计一、课程目标知识目标:1. 理解并掌握数字频率计的基本原理与功能,了解其在实际生活中的应用。
2. 学会使用特定软件或工具进行数字频率计的设计与仿真。
3. 掌握基本的计数、计时方法,并将其应用于数字频率计的搭建。
技能目标:1. 能够运用已学知识,设计并搭建一个简单的数字频率计,培养动手操作能力和问题解决能力。
2. 能够运用逻辑思维,分析并优化数字频率计的设计方案,提高创新意识和团队协作能力。
3. 能够熟练运用相关软件或工具进行数字频率计的仿真实验,提高计算机操作技能。
情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发学习热情,形成积极的学习态度。
2. 培养学生的团队合作精神,学会倾听、交流、分享,增强集体荣誉感。
3. 使学生认识到科技对社会发展的作用,提高社会责任感和使命感。
本课程针对初中年级学生,结合电子技术课程内容,以数字频率计为主题,旨在培养学生的动手操作能力、问题解决能力和创新意识。
在教学过程中,注重理论与实践相结合,让学生在实际操作中掌握知识,提高技能,同时注重情感态度价值观的培养,使学生在学习过程中形成积极向上的人生态度。
通过本课程的学习,学生能够达到上述课程目标,为后续相关知识的学习奠定基础。
二、教学内容1. 理论知识:- 数字频率计的基本原理与功能- 频率的定义及测量方法- 计数器、定时器的工作原理2. 实践操作:- 数字频率计的硬件组成与电路设计- 软件仿真工具的使用方法- 设计并搭建数字频率计的实验步骤3. 教学大纲:- 第一阶段:数字频率计基本原理学习(1课时)- 理解频率概念,掌握频率测量方法- 了解数字频率计的基本原理与功能- 第二阶段:硬件组成与电路设计(2课时)- 学习数字频率计的硬件组成- 掌握计数器、定时器的工作原理- 分析并设计数字频率计电路- 第三阶段:软件仿真与实验操作(2课时)- 学习并掌握软件仿真工具的使用方法- 设计实验方案,搭建数字频率计- 进行仿真实验,验证设计效果4. 教材关联:- 本教学内容与教材中“电子技术基础”、“数字电路设计与应用”等章节相关。
eda课程设计数字频率计

eda课程设计 数字频率计一、课程目标知识目标:1. 学生能够理解并掌握数字频率计的基本原理,包括频率的概念、测量方法及其在电子工程中的应用。
2. 学生能够运用所学知识,分析并识别EDA(电子设计自动化)软件中与数字频率计相关的元件和模块。
3. 学生能够运用电子元件搭建简单的数字频率计电路,并描述其工作过程。
技能目标:1. 学生能够运用EDA软件进行数字频率计电路的设计、仿真和调试,具备实际操作能力。
2. 学生能够通过小组合作,解决在数字频率计设计过程中遇到的技术问题,提高团队协作和问题解决能力。
情感态度价值观目标:1. 学生能够认识到数字频率计在电子工程领域的重要性和实际应用价值,激发对电子工程的兴趣和热情。
2. 学生在课程学习中,培养严谨的科学态度,注重实验数据的真实性和准确性。
3. 学生通过小组合作,学会尊重他人意见,培养良好的沟通能力和团队精神。
本课程针对高中年级学生,结合电子工程学科特点,强调理论与实践相结合,注重培养学生的动手操作能力和实际应用能力。
课程目标具体、可衡量,旨在帮助学生和教师在课程结束后,能够清晰地了解学生在知识、技能和情感态度价值观方面的预期成果。
同时,将课程目标分解为具体的学习成果,便于后续的教学设计和评估。
二、教学内容本章节教学内容依据课程目标,紧密围绕数字频率计的设计与实现,确保内容的科学性和系统性。
具体教学内容如下:1. 理论知识学习:- 频率概念及其测量方法- 数字频率计的原理与分类- EDA软件的基本操作与使用方法2. 实践操作环节:- 数字频率计电路设计原理- EDA软件中数字频率计电路搭建与仿真- 实际电路搭建与调试3. 教学大纲安排:- 第一课时:介绍频率概念、测量方法及数字频率计的原理与分类,让学生了解课程背景和目标。
- 第二课时:讲解EDA软件的基本操作与使用方法,引导学生学习并掌握软件应用。
- 第三课时:分析数字频率计电路设计原理,指导学生进行电路设计和仿真。
eda数字频率计课程设计

eda数字频率计课程设计一、课程目标知识目标:1. 让学生理解数字频率计的基本原理,掌握EDA工具的使用方法;2. 使学生掌握数字频率计的电路设计,包括计数器、时钟分频器等关键部分;3. 让学生掌握数字频率计的仿真与调试方法,了解其在实际应用中的限制和改进措施。
技能目标:1. 培养学生运用EDA工具进行数字电路设计和仿真的能力;2. 培养学生独立分析问题、解决问题的能力,能够根据实际需求调整和优化数字频率计的设计;3. 培养学生团队合作意识,提高沟通与协作能力。
情感态度价值观目标:1. 激发学生对电子设计的兴趣,培养创新意识和探索精神;2. 培养学生严谨的科学态度,注重实验数据的真实性,遵循实验操作规范;3. 引导学生关注我国电子产业的发展,增强民族自豪感和使命感。
课程性质:本课程为实践性较强的电子设计课程,旨在通过数字频率计的设计与实现,让学生掌握电子设计的基本方法和技能。
学生特点:学生已具备一定的电子基础知识,具有较强的学习能力和动手能力,但对EDA工具的使用和数字电路设计尚较陌生。
教学要求:教师需结合学生特点,注重理论与实践相结合,引导学生主动参与课堂讨论和实践活动,培养其独立思考和解决问题的能力。
通过课程学习,使学生能够达到预定的学习成果,为后续相关课程的学习打下坚实基础。
二、教学内容根据课程目标,本章节教学内容主要包括以下几部分:1. 数字频率计原理介绍:使学生了解数字频率计的工作原理,掌握频率测量的基本方法。
- 相关教材章节:第五章“数字频率计”- 内容列举:频率计的基本原理、计数器原理、时钟分频器原理等。
2. EDA工具使用:培养学生运用EDA工具进行电路设计与仿真的能力。
- 相关教材章节:第三章“EDA工具的使用”- 内容列举:EDA工具的基本操作、原理图绘制、电路仿真等。
3. 数字频率计电路设计:使学生掌握数字频率计的电路设计方法,包括计数器、时钟分频器等关键部分。
- 相关教材章节:第四章“数字电路设计”- 内容列举:计数器设计、时钟分频器设计、数字频率计整体电路设计等。
数字频率计课程设计

数字频率计课程设计引言数字频率计是一种用来测量波形信号频率的仪器。
在本次课程设计中,我们将设计并实现一个基于微控制器的数字频率计。
在设计过程中,我们将使用Arduino开发板以及相应的传感器和电路组件。
本文档将介绍该课程设计的目标、设计思路、实现步骤以及预期的结果。
目标本次课程设计的目标是通过设计一个数字频率计来实现以下功能: 1. 测量输入的波形信号的频率。
2. 将测量结果以数字形式在液晶显示屏上显示。
设计思路1.硬件设计:•使用Arduino开发板作为主控制器。
•使用一个脉冲传感器作为输入信号源。
•使用一个液晶显示屏来显示测量结果。
2.软件设计:•使用Arduino编程语言编写程序。
•通过读取脉冲传感器的信号来计算输入信号的频率。
•将计算得到的频率值通过串口传输给液晶显示屏。
实现步骤1.硬件连接:•将脉冲传感器的输出引脚连接到Arduino开发板的数字输入引脚。
•将液晶显示屏的控制引脚连接到Arduino开发板的对应输出引脚。
2.软件编程: ```c // 引入LiquidCrystal库 #include<LiquidCrystal.h>// 定义液晶显示屏的引脚 LiquidCrystal lcd(12, 11, 5, 4, 3, 2);// 定义脉冲传感器的引脚 int pulsePin = 7;// 定义变量存储频率值 float frequency = 0;void setup() { // 初始化液晶显示屏 lcd.begin(16, 2);// 设置脉冲传感器引脚为输入状态 pinMode(pulsePin, INPUT);// 设置波特率为9600 Serial.begin(9600); }void loop() { // 定义变量存储脉冲计数值 int pulseCount = 0;// 计算脉冲计数值 while (pulseCount < 1000) { if (digitalRead(pulsePin) == HIGH) { pulseCount++; delayMicroseconds(100); } }// 计算频率值 frequency = pulseCount / 1000.0;// 在串口上发送频率值 Serial.println(frequency);// 清除液晶屏内容 lcd.clear();// 在液晶屏上显示频率值 lcd.setCursor(0, 0); lcd.print(。
数字频率计课程设计

课程设计任务书一、设计题目数字频率计设计二、设计任务频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。
其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。
用中小规模数字集成电路和半导体显示器件实现以下技术指标:频率测量范围:10~9999Hz输入电压幅度:300mV~3V输入信号波形:任意周期信号显示位数: 4位电源: 220V50Hz三、设计计划电子技术课程设计共1周:第1天:针对选题查阅资料,确定设计方案;第2天:电路原理设计,进行元器件及参数选择;第3~4天:电路仿真,画电路原理图;第5天:编写整理设计说明书。
四、设计要求1. 系统工作原理说明;2. 画出系统电路原理图;3. 对所设计的电路全部或部分进行仿真,使之达到设计任务要求;4. 写出设计说明书。
指导教师:时间:年月日目录0综述 (1)1 方案论证 (5)2 原理及技术指标 (6)3 单元电路设计及参数计算 (8)3.1时基电路 (8)3.2放大整形电路 (9)3.3逻辑控制电路 (9)3.4计数器 (10)3.5锁存器 (12)3.6译码电路 (13)4 仿真 (13)5 设计小结 (14)5.1 设计任务完成情况 (14)5.2 问题及改进 (15)5.3 心得体会 (15)6 参考书目 (15)摘要数字频率计是一种用十进制数字,显示被测信号频率的数字测量仪器。
它的基本功能是测量正弦信号,方波信号以及其他各种单位时间内变化的物理量。
在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,显示直观,所以经常要用到数字频率计。
频率测量中直接测量的数字频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。
在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成方波信号,加到与非门的另一个输入端上.该与非门起到主阀门的作用,在与非门第二个人输入端上加阀门控制信号,控制信号为低电平时阀门关闭,无信号进入计数器;控制信号为高电频时,阀门开启整形后的信号进入计数器,若阀门控制信号取1s,则在阀门时间1s内计数器得到的脉冲数N就是被测信号的频率.在普通的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。
数字频率计课程设计报告

数字频率计课程设计报告一、课程目标知识目标:1. 让学生理解数字频率计的基本原理,掌握频率、周期等基本概念;2. 使学生掌握数字频率计的使用方法,能够正确操作仪器进行频率测量;3. 引导学生运用已学的数学知识,对测量数据进行处理,得出正确结论。
技能目标:1. 培养学生动手操作仪器的技能,提高实验操作能力;2. 培养学生运用数学知识解决实际问题的能力,提高数据分析处理技能;3. 培养学生团队协作能力,提高实验过程中的沟通与交流技巧。
情感态度价值观目标:1. 培养学生对物理实验的兴趣,激发学习热情;2. 培养学生严谨的科学态度,养成实验过程中认真观察、准确记录的好习惯;3. 引导学生认识到物理知识在实际应用中的价值,提高学以致用的意识。
课程性质:本课程为物理实验课,结合数字频率计的原理与应用,培养学生的实践操作能力和数据分析能力。
学生特点:六年级学生具备一定的物理知识和数学基础,对实验操作充满好奇,具备初步的团队合作能力。
教学要求:结合学生特点,注重理论与实践相结合,以学生为主体,引导学生主动参与实验过程,培养其动手能力和解决问题的能力。
通过课程目标的分解,使学生在实验过程中达到预期的学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 数字频率计基本原理:- 频率、周期的定义与关系;- 数字频率计的工作原理;- 数字频率计的测量方法。
2. 实验操作技能:- 数字频率计的操作步骤;- 实验过程中的注意事项;- 数据记录与处理方法。
3. 教学大纲:- 第一课时:介绍数字频率计的基本原理,让学生了解频率、周期的概念及其关系;- 第二课时:讲解数字频率计的工作原理,引导学生掌握其操作方法;- 第三课时:分组进行实验操作,让学生动手测量不同频率的信号;- 第四课时:对测量数据进行处理与分析,培养学生数据分析能力;- 第五课时:总结实验结果,讨论实验过程中遇到的问题及解决办法。
4. 教材章节:- 《物理》六年级下册:第六章《频率与波长》;- 《物理实验》六年级下册:实验八《数字频率计的使用》。
数字频率计课程设计

数字频率计课程设计
一、课程背景
数字频率计,又称计数频率,是一种统计运算工具,能根据数据中某一个特定值的出现频率来进行统计分析。
它能够快速分析出现在数据集中的相同值的出现次数,以及每种值的贡献出现的百分比。
数字频率计应用广泛,如在统计数据分析、市场营销中用于调研数据等,但由于它需要相当复杂的数学计算,它是一种极具挑战性的课题。
二、课程内容
1. 数字频率计的统计理论:介绍数字频率计学领域的基本概念、计算公式及可能出现的误差,以及假设检验等内容;
2. 数字频率计的应用举例:讨论典型场景下的应用实例,如抽市场调研抽样的计算方法以及相关的统计推导等;
3. 数字频率计的实战操作:掌握如何使用计算机处理数据,并实现数字频率计的计算;
4. 数字频率计的数学证明:引用数学原理及推导数学证明,以便深入理解数字频率计的原理。
三、教学与考核
1. 教学模式:以讲授、展示、实验、课堂练习等多种形式进行授课,以及通过学习资料、习题、在线课程等形式进行辅助教学;
2. 考试形式:结合课堂教学及辅助教学材料,在授课结束后举行考试,综合考查学生掌握的理论知识点和实际应用能力;
3. 教学评价:参与课堂的讨论及作业的提交,是对学生学习情况的重要指标。
良好考试成绩及活跃参与讨论的同学将获得较高分数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。
其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。
频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。
在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成特定周期的窄脉冲,送到主门的一个输入端。
主门的另外一个输入端为时基电路产生电路产生的闸门脉冲。
在闸门脉冲开启主门的期间,特定周期的窄脉冲才能通过主门,从而进入计数器进行计数,计数器的显示电路则用来显示被测信号的频率值,内部控制电路则用来完成各种测量功能之间的切换并实现测量设置。
在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。
频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。
正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。
在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。
频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。
在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。
在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。
关键词:周期;频率;数码管,锁存器,计数器,中规模电路,定时器目录1.课程设计目的 (1)2.课程设计频率技术要求 (1)3.课程设计报告内容 (2)3.1 设计方案的选定与说明 (2)3.1.1方案设计与论证 (2)3.2论述方案的各部分工作原理 (4)3.2.1时基电路 (4)3.2.3逻辑控制电路 (5)3.2.4计数器 (6)3.2.5锁存器 (7)3.3设计方案的图表 (8)3.3.1设计原理图 (8)3.3.2元件清单 (11)3.4编写设计说明书 (12)3.4.1 设计说明 (12)3.4.2 性能技术指标与分析 (12)4、总结 (15)5、参考书目: (16)1.课程设计目的(1)会运用电子技术课程所学到的理论知识,独立完成设计课题。
(2)学会将单元电路组成系统电路的方法。
(3)熟悉中规模集成电路和半导体显示器件的使用方法。
(4)通过查阅手册和文献资料,培养独立分析和解决实际问题的能力。
培养严肃认真工作作风和严谨的科学发展。
2.课程设计频率技术要求频率计技术指标:频率测量范围:10~9999Hz输入电压幅度:300mV~3V输入信号波形:任意周期信号显示位数: 4位电源: 220V50Hz3.课程设计报告内容3.1 设计方案的选定与说明数字频率计是一种用数字显示的频率测量仪表,它不仅可以测量正弦信号、方波信号和尖脉冲信号的频率,而且还能对其他多种物理量的变化频率进行测量,诸如机械振动次数,物体转动速度,明暗变化的闪光次数,单位时间里经过传送带的产品数量等等,这些物理量的变化情况可以有关传感器先转变成周期变化的信号,然后用数字频率计测量单位时间内变化次数,再用数码显示出来。
3.1.1方案设计与论证交流电信号或脉冲信号的频率是指单位时间内产生的电振动的次数或脉冲个数。
用数学模型可表示为:Nf=t式中f——频率。
N——电振动次数或脉冲数。
t——产生N次电振动或脉冲所需要的时间。
首先必须把各种被测信号通过放大整形电路,使其成为规矩的数字信号,以便于计数器计数。
实现频率测量的另一必备环节是时基电路。
所谓时基电路,就是产生时间标准信号的电路装置。
通常要求精确稳定,所以采用1MHz或5MHz 石英晶体振荡器做成标准时间信号发生器。
一般计数器则采用十位计数器,N 进制的计数器也就是N分频器,其N进位信号也可作为N分频信号。
如图3.1.a所示为数字频率计系统原理总框图,被测量信号经过放大与整形电路传入十进制计数器,变成其所要求的信号,此时数字频率计与被测信号的频率相同,时基电路提供标准时间基准信号,此时利用所获得的基准信号来触发控制电路,进而得到一定宽度的闸门信号,当1s信号传入时,闸门开通,被测量的脉冲信号通过闸门,其计数器开始计数,当1s信号结束时闸门关闭,停止计数。
根据公式得被测信号的频率f=NHz。
图3.1.a 数字频率计系统原理方框图逻辑控制电路的一个重要的作用是在每次采样后还要封锁主控门和时基信号输入,使计数器显示的数字停留一段时间,以便观测和读取数据。
简而言之,控制电路的任务就是打开主控门计数,关上主控门显示,然后清零,这个过程不断重复进行。
控制电路如图3.1.b 所示:图3.1.b 逻辑控制电路逻辑控制电路 数码显示器译码器锁存器计数器闸门电路 放大与整形电路 时基电路 V X3.2论述方案的各部分工作原理3.2.1时基电路为了获得较为稳定的时间基准信号,以便准确的控制主控门的开启时间,其电路见图3.2.1所示:V CCO v图3.2.1 时基电路本设计采取用555定时器组成的多谐振荡器如图3.2.1所示。
接通电源后,电容被充电,当C v 上升到32CC V 时,使O v 为低电平,同时放电三极管T 导通,此时电容C 通过2R 和T 放电,C v 下降。
当C v 下降到3CC V 时,O v 翻转为高电平。
电容器C 放电所需的时间为C R C R t pL 227.02ln ≈=当放电结束时,T 截止,CC V 将通过1R 、2R 向电容C 充电,C v 由3CC V 上升到32CC V 所需的时间为C R R C R R t pH )(7.02ln )(2121+≈+=当C v 上升到32CC V 时,电路又翻转为低电平。
如此周而复始,于是在电路的输出端就得到一个周期性的矩形波。
其振荡频率为CR R t t f pH pL )2(43.1121+≈+= 3.2.2放大整形电路为保证测量精度,在整形电路的输入端加一前置放大器。
对幅值较低的被测信号经放大后再送入整形器整形。
如图3.2.2为放大整形电路原理图。
此电路采用晶体管3DG100与74LS00等组成,其中3DG100为放大器,可对周期信号进行放大再传入整形器中对信号进行整形。
3.2.3逻辑控制电路逻辑控制电路的作用主要是控制主控门的开启和关闭,同时也控制整机逻辑关系。
本设计采用74LS123组成逻辑控制电路,先启动脉冲置成1,其余触发器置成0,然后时基电路传入脉冲,控制电路开始工作。
被测信号通过闸门进入计数电路,于是计数器译码器同时工作,从而记下所测信号频率值。
当控制电路转为其他状态时,闸门关闭,计数器停止工作,数码管继续显示所测频率值。
直到有一次循环,计数器清零,数码管显示消失,到此为止,频率计完成一次测量。
脉冲信号可由两个单稳态触发器74LS123产生,它们的脉冲宽度由电路的、触发脉冲从1A端输时间常数决定。
由74LS123的功能得出,当111=R=BD入时,在触发脉冲的负跳变作用下,输出端Q1可获得一负脉冲,其波形关系正好满足图3.1.b所示的波形Ⅳ和Ⅴ的要求,手动复位开关S按下时,计数器清零。
逻辑控制电路如图3.2.3所示:3 逻辑控制电路图3.2.3.2.4计数器为了提高计数速度,可采用同步计数器。
其特点是计数脉冲作为时钟信号同时接于各位触发器的时钟脉冲输入端,在每次时钟脉冲沿到来之前,根据当前计数器状态,利用逻辑控制电路,准备好适当的条件。
当计数脉冲沿到来时,所有应翻转的触发器同时翻转,同时也使用所有应保持原状的触发器不该变状态。
由于频率计的测量范围10~9999Hz,因此采用十进制计数器74LS90,它不仅可用于对脉冲进行计数,还可用于分频;此电路则需分频,N位进制计数器就是N分频器。
被测信号由闸门开通送入计数器,记录所测信号频率值传入译码显示电路中,显示器显示测得频率值;待闸门关闭,计数器停止工作;电路则继续工作进行下次循环,计数器清零,显示器数值消失,频率计完成一次测量。
数字频率计测周期基本原理如图3.2.4所示图3.2.4 数字频率计测周期基本原理图当被测信号的频率较低时,采用直接测频方法由量程误差一起的测量误差太大,为了提高测低频时的准确度,应先测周期X T ,然后计算Xx T f 1=。
被测信号经过放大整形电路变成方波,加到门控电路产生闸门信号,如ms T X 10=,则闸门打开的时间也为10ms ,在此期间内,周期为S T 的标准脉冲通过闸门进入计数器计数。
若s T X μ1=。
则计数器记得的脉冲数SX T T N ==10000个。
若以毫秒为单位,则显示器上的读数为10.000。
以上分析可见,频率计测周期的基本原理正好与测频相反,即被测信号用来控制闸门电路的开通与关闭,标准时基信号作为计数脉冲。
3.2.5锁存器锁存器是构成各种时序电路的存储单元电路,其具有0和1两种稳定状态,一旦状态被确定,就能自行保持,锁存器是一种脉冲电平敏感的存储单元电路,它们可以在特定输入脉冲电平作用下改变状态。
在确定的时间内计数器的技术结果必须经锁定后才能获得稳定的显示值。
锁存器的作用是通过触发脉冲控制,将测量的数据寄存起来,送入译码显示器。
锁存器可以采用一般的8位并行输入寄存器。
此电路采用74LS273锁存器,其作用是将计数器在1s结束时锁记得的数进行锁存,使显示器上能稳定地显示此时计数器的值。
当1s计数结束时,通过逻辑电路产生信号送入锁存器,将此时计数的值送入译码显示器。
选用两个8位锁存器74LS273可以完成上计数功能。
当时钟脉冲CP的正跳变来到时,锁存器的输入等于输入,即Q=D,从而将计数器的输出值送到锁存器的输出端正脉冲结束后,无论D为何值,输出端Q的状态仍保持原来的状态的Q不变。
所以在计数期间内,计数器的输出不会送到译码显示器。
图3.2.5 锁存器芯片3.3设计方案的图表3.3.1设计原理图根据系统框图,方案论证,设计数字频率计系统原理图如下图3.3.1所示。
在多谐振荡器中,电路从暂稳态过渡带另一个状态,其“触发”信号是由电路内部电容充(放)电提供的,因此无需外部触发脉冲。
暂稳态持续的时间是脉冲电路的主要参数,它与电路的阻容原件取值有关。
电路中RC电路充、放电过程对相应门输入电平的影响是分析电路的关键。
图中根据课题要求,电路采用555定时器组成的多谐振荡器,为获得较为稳定的时间基准信号,用来准确的控制主控门的开启时间。
被测信号首先通过放大整形电路进行整形,使其得到所需的整形信号,晶体振荡器的输出信号经整形和分频器逐级分频后,可获得各种事件基准。
计数器是最常用的时序电路之一,计数器的种类不胜枚举,按触发器动作分类,可分为同步计数器和异步计数器;按计数数值增减分类,可分为加计数器、减计数器和可逆计数器;按编码分类,又可分为二进制码计数器、BCD码技术区、循环码计数器。