一元二次方程复习PPT课件

合集下载

一元二次方程复习课件

一元二次方程复习课件
32 x X 2
32 x X 2
X 32-2X
一元二次方程解法的复习
例6、有一堆砖能砌12米长的围墙,现要围一个20
平方米的鸡场,鸡场的一边靠墙(墙长7米),其余三
边用砖砌成,墙对面开一个1米宽的门,求鸡场的长
和宽各是多少米?
解:设鸡场的宽为x米,则长为(12+1-2x) =(13-2x)米,列方程得: X(13-2x)=20 解得:x1=4,x2=2.5 经检验:两根都符合题意 ∴13-2x=5或8 (舍去)
(4):主要用到的数学思想方法
分类讨论
知识聚焦
一元二次方程根的判别式
一元二次方程 ax 2
bx c 0a 0根的判式是:
b 4ac
2
一元二次方程
判别式的情况
ax bx c 0a 0
2
根的情况
定理与逆定理
b 2 4ac 0 两个不相等实根 b 2 4ac 0 两个相等实根 b 2 4ac 0 无实根(无解)
一:回顾与总结
在解答下列各小题过程中,回顾用到了哪些知识点?
① 只含有一个未知数
1:下列方程中,属于一元二次方程的是( c ) 3 (1):一元二次方程的三要素 ② 未知数的最高次数是2次 2 A : 2 x y 1 0 B : x 2x 1 0 ③ 两边是整式
1 C : x 2 x 3 0 D : 2 3x 2 0 3x
当方程中有括号时,思考方法是:
1:应先用整体思想考虑有没有简单方法; 2:若看不出合适的方法时,则把它去括号并整理 为一般形式再选取合理的方法。
变式1: 2(x-2)2+5(2-x)-3=0 2-x 变式2:

一元二次方程复习 全国优质课一等奖-课件

一元二次方程复习 全国优质课一等奖-课件

1.数字与方程
例1.一个两位数,它的十位数字比个位数字小3,而它的个 位数字的平方恰好等于这个两位数.求这个两位数.
解 :设 这 两 位 数 的 个 位 数 字 为 x,根 据 题 意 ,得
x2 10x 3 x.
整 理 得 x2 11x 30 0.
解 得 x1 5, x2 6 . x 3 5 3 2,或 x 3 6 3 3. 答 :这 个 两 位 数 为 25,或 36.
解 :设 小 路 的 宽 度 xm,根 据 题 意 ,得 20+2x
( 2 0 2 x )1 5 2 x 2 5 1 5 2 4 6 .
20
15+2x 15
整理得 :
2x2 35x 123 0,
解得 :
x1
3;
x2
41 (不 2
合 题 意,舍 去 ).
第22章复习 ┃ 考点攻略
[解析] 因为当 a≠0,b2-4ac>0 时,方程有两个不相等的实数根, 即 k+1≠0,b2-4ac=22-4(k+1)×(-1)=8+4k>0,
∴k≠-1,k>-2. ∴k 的取值范围是 k>-2 且 k≠-1.
方法技巧 根的判别式主要应用:(1)不解方程,判别一元二次方程根的情况; (2)已知一元二次方程根的情况,确定方程中某些字母的取值 (范 围).在解题时一定要注意不能忽略二次项系数不为 0.
一元二次方程根与系数的关系
设x1,x2是一元二次方程ax2+bx+c=0(a≠0)
的两个根,则有
b
c
x1+x2=
a , x1x2=
a.
回顾与复习 5
解应用题
• 列方程解应用题的一般步骤是: • 1.审:审清题意:已知什么,求什么?已,未知之间有什么关系? • 2.设:设未知数,语句要完整,有单位(同一)的要注明单位; • 3.列:列代数式,列方程; • 4.解:解所列的方程; • 5.验:是否是所列方程的根;是否符合题意; • 6.答:答案也必需是完事的语句,注明单位且要贴近生活. • 列方程解应用题的关键是: • 找出相等关系.

初三数学中考专题复习 一元二次方程 课件(共22张PPT)

初三数学中考专题复习    一元二次方程  课件(共22张PPT)
• 8、若9am2-4m+4与5a9是同类项,则m= ___
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,

一元二次方程所有知识点总结复习 ppt课件

一元二次方程所有知识点总结复习 ppt课件

2020/10/22
一元二次方程所有知识点总结复习
4
探究交流
❖ (1)判断方程X(X+10)=X2-3是否是一元 二次方程?
❖ (2)方程3 X2+2X=1的常数项是1,方程 3 X2-2X+6=0的一次项系数是2,这种说法对 吗?
答案:(1)化简后为10X+3=0,所以它是一元一次方程。
(2)要将一元二次方程化为一般形式,且系数包括它前 面的性质符号。
21 . 3
18
2x225.
解:系数化1,得 x 22 5,
2
开平方,得
x2
5.
2
x 2 10 或 x 2 10 .
2
2
解这两个一元一次方程,得
2020/10/22
x 102,x 102
2
2
一元二次方程所有知识点总结复习
20
解下列方程:
小结
(1 ) ( x 1 ) 2 4 (2) 1 (y 2)2 3 0
2020/10/22
一元二次方程所有知识点总结复习
5
练习:
(1)方程(m+2)X|m|+3mx+1=0是关于X 的一元二次方程,求m的值。 答案:m=2
(2)当m=
时,方程(m2-1)x2-(m
-1)x+1=0是关于x的一元一次方程。 答案:m=-1
(3)已知关于x的一元二次方程(m-1) x2+ 3x+㎡-1=0有一个解是0,求m的值。答案:m=-1
13
一元二次方程的解法(1) ----开平方法
2020/10/22
一元二次方程所有知识点总结复习
14
问题1:
一桶某种油漆可刷的面的为1500dm2,李林用这
桶油漆恰好刷好完10个同样的正方体形状的盒

人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)

人教版数学九年级上册22.2  二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

解一元二次方程ppt课件

解一元二次方程ppt课件

21.2 解一元二次方程

难 ■题型二 利用根的判别式判断三角形的形状
题 型
例 2 已知△ABC 中,a,b,c 分别是∠A,∠B,∠C 的对边,且关于 x
突 的一元二次方程 b(x2-1)-2ax+c(x2+1)=0 有两个相等的实数根.判断
破 △ABC 的形状.
[解析] 根据已知条件得出 Δ=0,将等式变形,利用勾股定理的逆定理
B. 只有一个实数根

C. 有两个不相等的实数根
D. 没有实数根
[解题思路]
原方程
x(x-2)=1
化为一般形式
x2-2x-1=0
确定 a,b,c 的值
a=1,b=-2,c=-1
代入判别式 Δ
b2-4ac=8>0
判断根的情况
[答案] C
有两个不相等的实数根
方法点拨 应用根的判别式时要准确确定 a,b,c 的值,代入时要注意不 要丢掉各项系数的符号.
清 单
(1)x2-4x-3=0; (2)2x2-6x=1; (3)(t+3)(t-1)=12.

[解题思路] 按照下面的顺序进行求解.

[答案] 解:(1)移项,得 x2-4x=3,配方,得 x2-4x+4=3+4,即(x-
2)2=7,开方,得 x-2=±
,所以 x1=2+
,x2=2-

(2)二次项系数化为 1,得 x2-3x= ,配方,得 x2-3x+
21.2 解一元二次方程


21.2.1 配 方 法

单 ■考点一 直接开平方法


原理 根据平方根的意义进行“降次”,转化为一元一次方程求解

一元二次方程课件ppt

一元二次方程课件ppt

• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 元
因 式 分解法 化成A B 0 A 0或B 0
当b2-4ac=0 时,方程有两个相等的实数根; 当b2-4ac<0 时,方程没有实数根.
公式法虽然是万能的,对任何一元二次方程都适用, 但不一定是最简单的,因此在解方程时我们首先考虑能否 应用“直接开平方法”、“因式分解法”等简单方法,若 不行,再考虑公式法(适当也可考虑配方法)
选择适当的方法解下列方程

1
3、x2+ =1
× 4、x2=y+1
×
x
5、x3-2x2=1 × 6、ax2 + bx + c=1 ×
一元二次方程的一般式
ax2 bx c 0 (a≠0)
一元二次方程
3x²=1
2y(y-3)= -4
一般形式 二次项 一次项 常数 系数 系数 项
3x²-1=0 3
0 -1
2y2-6y+4=0 2 -6 4
(1) 16 x2 1 25
(2) 5x2 2x (3)(x- 2)2 9x2
(4) 3x2 1 4x (5)x(2x-7)=2x (6)x²+4x=3
(7)x²-5x=-4 (8)2x²-3x-1=0 (9) (x-1 (2x+5)=2 (2x+5) (11) (2x-1)2=4(x+3)2
3 x2 4x 1 4 x2 3x 1 0
1 x2 3x 0
因式分解法:
1.用因式分解法的条件是:方程左边能 够分解为两个因式的积,而右边等于0的 方程;
2.形如:ax2+bx=o(即常数C=0).
因式分解法的一 般步骤:
一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解;
y 22 3y 12
解方程:
3xx 2 x 2
将4个数a、b、c、d排成2行2列,两边各加一条竖线记成
a b ,定义 a b ad bc,这个式子叫做2阶行列式。
cd
cd
x+1 x-1

=6则x=
1-x x+1
2
m取什么值时,方程 x2+(2m+1)x+m2-4=0有 两个相等的实数解


1、已知一元二次方程(x+1)(2x-1)=0的解是( D ) (A)-1 (B)1/2 (C)-1或-2 (D)-1或1/2
2、已知一元二次方程x2=2x 的解是( D )
(A)0 (B)2 (C)0或-2 (D)0或2
第三关
典型例题显一显
用适当的方法解下列方程
1 x2 3x 0 2(2x 1)2 9 0
12
∵m为非负数
∴m=0或m=1
说明:当二次项系数也含有待定的字母时,要注意 二次项系数不能为0,还要注意题目中待定字母的取 值范围.
你说我说大家说:
通过今天的学习你有什 么收获或感受?
方程两边都是整式
一元二次方程的定义 只含有一个未知数
ax²+bx+c=0(a0) 求知数的最高次数是2
直接开平方法 化成x2 mm 0 x m
(12) 3(x-2)2-9=0
第四关
反败为胜选一选
已知方程x2+kx = - 3 的一个根是-1,则
k= 4 , 另一根为_x_=_-__3_
若a为方程 x2 x 5 0 的解,则 a2 a 1 的值
为6
构造一个一元二次方程,要求: (1)常数项为零(2)有一根为2。
解方程:
2(2x 1)2 9 0
直接开平方法:
1.用开平方法的条件是:缺少一次项的 一元二次方程,用开平方法比较方便; 2.形如:ax2+c=o (即没有一次项).
a(x+m)2=k
3 x2 4x 1
配方法的一般步 骤:
配方法:
用配方法的条件是:适应于任何一个
一元二次方程,但是在没有特别要求的 情况下,除了形如x2+2kx+c=0 用配方
法外,一般不用;(即二次项系数为1, 一次项系数是偶数。)
一除----把二次项系数化为1(方程的两边同
时除以二次项系数a)
二移----把常数项移到方程的右边; 三配----把方程的左边配成一个完全平方式; 四开----利用开平方法求出原方程的两个解.
★一除、二移、三配、四开、五解.
4 x2 3x 1 0
x b b2 4ac 2a
公式法:
用公式法的条件是:适应于任何一个
一元二次方程,先将方程化为一般形式, 再求出b2-4ac的值, b2-4ac≥0则方程有
实数根, b2-4ac<0则方程无实数根;
当b2-4ac>0 时,方程有两个不相等的实数根;
方程根的情况与b2-4ac
的值的关系:
已知m为非负整数,且关于x的一元二次方程 :
(m 2)x2 (2m 3)x m 2 0
有两个实数根,求m的值。
解:∵方程有两个实数根
∴ [(2m 3)]2 4(m 2)(m 2) 0
m 2
解得: m 2
01
且m为非负整数
且m 2
1、若 m 2x2 m 2x 2 0 是关于x的一元二次
方程则m ≠- 2 。
2、若方程 (m 2)xm22 (m 1)x 2 0
是关于x的一元二次方程,则m的值为 2 。
3.若x=2是方程x2+ax-8=0的解,则a= 2 ;
4、写出一个根为2,另一个根为5的一元二次方
一元二次方程 复习
第一关
知识要点说一说
方程两边都是整式
一元二次方程的定义 只含有一个未知数
ax²+bx+c=0(a0) 求知数的最高次数是2
直接开平方法 化成x2 mm 0 x m
一 元
因 式 分解法 化成A B 0 A 0或B 0

次 一元二次方程的解法 配 方 法 二次项系数为1,而一次项系数为偶数


求 根 公式法
化成一般形式ax2 bx c 0 a 0
当b2 4ac 0时,x b b2 4ac
一元二次方程的应用
2a
第二关
基础题目轮一轮
明辨是非
判断下列方程是不是一元二次方程,若不是一元二 次方程,请说明理由?
1、(x-1)2=4
√ 2、x2-2x=8
相关文档
最新文档