建筑能耗监测系统技术方案
建筑物能耗监测系统方案PPT

建筑物能耗监测系统方案
Design of Building Energy Consumption Monitoring System Scheme
汇报人: 2023.10.12
1. 系统设计概述 2. 能耗数据采集与传输 3. 数据存储与处理 4. 用户界面设计与实现 5. 系统安全与稳定性保障
PART TWO
Energy consumption data collection and transmission
02 能耗数据采集与传输
能耗监测设备选型
能耗监测设备选型需考虑精度 根据《中国建筑能耗研究报告》显示,2019年中国建筑总能耗达到2.8亿吨标准煤,其中空调能耗占比超过50%。因此, 选择具有高精度的能耗监测设备,能够更准确地反映建筑物的能耗情况,有助于制定更有效的节能策略。 能耗监测设备选型需考虑稳定性 根据《全球建筑能源效率报告》显示,2018年全球因设备故障导致的建筑能耗损失高达30%。因此,选择稳定性高的能 耗监测设备,能够减少设备故障带来的能耗损失,提高能源利用效率。 能耗监测设备选型需考虑易用性 根据《中国城市居民生活满意度调查报告》显示,2019年中国城市居民对生活设施的满意度中,公共设施的满意度仅为 60%,其中最主要的原因是设备操作复杂。因此,选择易用性强的能耗监测设备,能够提高用户的操作体验,提升能源管 理的效率。
PART FIVE
05
System security and stability assurance
系统安全与稳定性保障
数据加密与备份策略
能源消耗数据加密 建筑物能耗监测系统采用先进的加密技术,确保能源消耗数 据的机密性和完整性。 备份策略优化 通过定期备份和容灾计划,确保在突发情况下数据安全,降 低数据丢失风险。 多层级安全防护 采用多层次的安全防护措施,包括硬件、软件和网络防护, 确保数据安全无虞。 实时监控与预警 建立实时监控机制,对异常能耗进行预警,及时发现并处理 潜在问题。
建筑能耗监测系统技术方案

建筑能耗监测系统技术方案建筑能耗监测系统是指通过使用各种传感器和监测设备,对建筑物的能源使用情况进行实时、准确的监测和分析,以便采取相应的节能措施。
本文将介绍一种建筑能耗监测系统的技术方案,包括系统结构、数据采集与传输、数据处理与分析以及节能措施等内容。
一、系统结构1.数据采集与传输系统:安装在建筑物内部和外部的传感器和监测设备,用于监测建筑物各个区域的温度、湿度、光照强度、能源消耗等参数,并通过物联网或其他通信技术将数据传输至数据处理与分析系统。
2.数据处理与分析系统:接收传感器和监测设备传来的数据,并进行数据处理和分析。
该系统可以实时监测建筑物能源的使用情况,通过数据分析找出能源的浪费和不合理使用的情况,并为建筑物的能耗优化提供依据。
3.控制与反馈系统:根据数据处理与分析系统得出的结论,采取相应的节能措施,如自动调节空调温度、灯光亮度等,以减少能源的浪费。
该系统也可以向建筑物的管理人员提供能源优化的建议,并向用户提供实时能耗数据。
二、数据采集与传输1.传感器选择:根据建筑物的特点和需要监测的参数,选择适合的传感器,如温度传感器、湿度传感器、光照传感器等。
同时,应选择具有较高灵敏度和可靠性的传感器。
2.数据传输方式:根据建筑物的网络环境和数据量,选择合适的数据传输方式。
可以采用有线或无线通信技术,如以太网、Wi-Fi、LoRa等。
数据传输应保证数据的安全性和稳定性。
三、数据处理与分析1.数据存储:将传感器采集到的数据进行实时存储,可以选择云端存储或本地存储。
同时,为了保证数据的完整性和准确性,可以设置数据备份和故障恢复措施。
2.数据分析:借助数据处理与分析软件,对存储的数据进行分析,找出能源的浪费和优化空间。
可以采用机器学习和数据挖掘等技术,建立能源消耗模型,并通过模型预测建筑物未来的能源使用情况。
四、节能措施根据数据处理与分析结果,采取相应的节能措施。
如调整空调的温度和湿度设定值、优化照明系统、采用节能设备和技术等。
能耗监测系统施工方案

能耗监测系统施工方案能耗监测系统施工方案一、项目介绍能耗监测系统是通过传感器采集能耗数据,并通过网络传输到监控中心进行实时监测和分析的系统。
的施工方案如下:二、施工流程1. 确定需求:与业主沟通,确定能耗监测系统的具体需求和功能要求。
2. 设计方案:根据需求进行系统设计,包括传感器部署、数据采集与传输、监控中心建设等。
3. 施工准备:准备所需的材料和设备,安排施工队伍,确定施工时间和工程进度计划。
4. 传感器部署:根据设计方案安装传感器设备,确保设备位置合理,能够准确测量能耗数据。
5. 数据采集与传输:安装数据采集和传输设备,确保能耗数据能够准确、稳定地传输到监控中心。
6. 监控中心建设:安装监控中心的硬件设备,配置相应的软件系统,确保能耗数据能够实时监测和分析。
7. 调试与测试:完成系统搭建后进行调试和测试,确保系统运行稳定、准确。
8. 项目验收:进行系统验收,与业主进行交付,确保系统符合设计要求和功能要求。
三、施工标准1. 设备选型:选择具有高精度、高稳定性和良好适应性的传感器设备,确保能耗数据的准确度和稳定性。
2. 安装位置:根据建筑物的结构和能耗特点,合理布置传感器设备的安装位置,确保能够准确测量能耗数据。
3. 数据传输:选择稳定可靠的网络传输设备,确保能耗数据能够及时、准确地传输到监控中心。
4. 监控中心建设:选择性能良好、易于维护的监控中心建设设备和软件系统,确保能耗数据能够实时监测和分析。
5. 调试与测试:进行充分的调试和测试工作,确保系统运行稳定、准确,能够满足业主的需求和功能要求。
四、施工安全措施1. 施工现场安全:在施工现场设置安全警示标志,确保施工人员的人身安全。
2. 设备安全:严格按照设备的安装和使用说明进行操作,确保设备的安全使用。
3. 电气安全:严格按照电气安装标准进行操作,确保电气设备的安全使用。
4. 高空作业安全:对于有高空作业的部位,确保施工人员佩戴安全帽、安全绳,并进行相应的防护措施。
能耗监测系统项目实施方案

能耗监测系统项目实施方案一、项目背景能耗监测系统是指通过对建筑物或设备中的能耗进行实时监测、分析和控制,以提高能源利用效率、降低能耗成本、减少能源浪费的一种管理系统。
目前,能耗监测系统在各个行业都有广泛的应用,特别是在大型企业及公共机构中更为普遍。
本项目旨在开发一套全面、准确、实用的能耗监测系统,为企业提供科学的能源管理手段,以实现节能减排、降低能耗成本的重要目标。
二、项目目标1.开发一套全面的能耗监测系统,实现对建筑物和设备能耗的在线监测、分析和控制。
2.提供实时数据采集和实时数据显示功能,能够直观地反映能源使用情况。
3.提供数据分析和报表功能,为企业决策提供科学依据。
4.支持用户自定义报警功能,实现能耗异常及时预警。
5.提供数据存储和数据备份功能,确保数据的安全性和可靠性。
三、项目内容1.系统设计1.1系统架构设计1.2数据采集模块设计1.3数据存储和备份模块设计1.4数据分析与报表模块设计1.5用户权限管理模块设计1.6报警功能设计2.系统开发2.1完成系统设计所述的各个模块的开发工作。
2.2开发前后端的交互接口,确保数据的有效传输和显示。
3.系统测试与优化3.1进行系统功能测试,确保各项功能的正常运行。
3.2进行性能测试和压力测试,以保证系统的稳定性和可靠性。
3.3根据测试结果进行系统优化,提高系统的运行效率。
四、实施计划1.编制项目计划并确定目标交付时间。
2.进行需求调研和需求分析,明确系统功能和性能需求。
3.进行系统设计,包括系统架构设计、数据库设计、界面设计等。
4.完成系统开发工作,包括前后端开发、数据采集和显示、报表和分析等功能的开发。
5.进行系统功能测试,确保系统能满足需求并无明显缺陷。
6.进行性能测试和压力测试,确保系统稳定运行。
7.完成系统优化工作,提高系统的性能和稳定性。
8.进行用户培训和技术支持,确保用户能正常使用系统。
9.项目验收,交付给客户,并进行后续维护和支持工作。
建筑能耗监管系统方案

建筑能耗监管系统方案建筑能耗监管系统是为了提高建筑能源利用的效率和节约能源而设计的一种系统。
随着人们对于能源的需求不断增加以及能源日益紧缺,建筑能耗监管系统的重要性也日益彰显。
本文将就建筑能耗监管系统的方案进行详细阐述。
首先,建筑能耗监管系统可以实现对建筑能源的实时监控。
通过安装传感器及仪表设备,可以实时监测建筑的能耗情况,包括电力、燃气、水等资源的使用情况。
传感器监测到的数据将通过网络传输到监控中心,通过数据分析以及综合评估,可以及时发现并解决建筑能耗问题,以实现能源的高效利用。
同时,借助于数据的分析和统计功能,可以对建筑的能耗进行长期监测和分析,找出能源的使用规律和低效能耗的原因,以便做出相应的调整和措施。
其次,建筑能耗监管系统可以实现对建筑设备的智能控制。
通过集成各类设备的数据,可以对建筑内的各类设备进行集中控制,实现设备的智能化管理。
例如,通过对空调系统进行智能控制,可以根据建筑内部的实际情况和人员的需求,自动调节室内温度和湿度,节约能源的同时提供舒适的室内环境。
另外,还可以对照明系统进行智能控制,根据建筑的实际照明需求和室内光照情况,自动调整照明设备的亮度和开启时间,以减少能耗。
再次,建筑能耗监管系统还可以实现能源的节约和利用。
一方面,通过对建筑内部各类设备的能效监测和能耗分析,可以找出能效较低的设备,并进行相应的能效改造,提高设备的能源利用效率。
另一方面,建筑能耗监管系统可以结合可再生能源的利用,如太阳能、风能等,通过监测建筑附近的自然资源,以及合理配置并利用这些资源,提高建筑的自给能力,减少对传统能源的依赖,降低能源消耗。
最后,建筑能耗监管系统还可以提供能耗数据的实时显示和可视化。
通过监管系统建立的数据仪表盘,可以直观地显示建筑的能耗情况,使建筑的能耗状况一目了然。
同时,系统还可以生成详细的数据报告和分析图表,可以为建筑能耗的管理和决策提供科学依据。
总之,建筑能耗监管系统是提高建筑能源利用效率和节约能源的一种重要工具。
公共建筑能耗监测系统技术规程

公共建筑能耗监测系统技术规程一、引言公共建筑是市政工程中不可缺少的一项基础设施,包括城市道路、公园、广场、政府大楼、学校、博物馆、图书馆、医院、体育馆、剧院等建筑文化设施。
随着城市化进程的不断加快,公共建筑数量不断增多,其能耗问题已经成为了一个不可忽视的问题。
为了控制公共建筑能耗的问题,提高能源使用效率,减少虚耗,从而实现可持续发展,公共建筑能耗监测系统应运而生。
本文首先介绍了公共建筑能耗监测系统的定义和特点,然后详细讨论了公共建筑能耗监测系统技术规程。
二、公共建筑能耗监测系统的定义和特点公共建筑能耗监测系统是指通过独立的系统或与其他系统相结合,对公共建筑的能耗进行监测和管理的一种技术手段。
其主要包括监测仪表、监测系统、数据通信、数据库和数据处理等组成部分。
公共建筑能耗监测系统的特点主要有以下几点:(1)智能化:公共建筑能耗监测系统通过采用智能化控制技术,可自动控制空调、照明、水暖等设备的使用,从而实现能源的合理使用和管理;(2)实时监测:公共建筑能耗监测系统可以实时监测能源使用情况,对节能降耗措施的实施效果进行精细化评估,有利于节能减排和精细管理;(3)集成性:公共建筑能耗监测系统可以与其他智能化控制系统相结合,形成一个完整的智能化控制系统,对公共建筑实施智能化管理;(4)数据可视化:公共建筑能耗监测系统可以将监测数据通过界面呈现出来,使数据可视化,便于管理人员对于数据的分析和辅助决策。
三、公共建筑能耗监测系统技术规程1、监测仪表技术规程(1)精度:监测仪表的精度应符合国家标准,以确保监测数据的准确性;(2)稳定性:监测仪表的稳定性应符合国家标准,以确保监测数据的稳定性;(3)适用性:监测仪表应选用适用于公共建筑的仪表进行监测,以确保监测数据的准确性和可靠性;(4)可靠性:监测仪表应选用可靠的仪表进行监测,以确保监测数据的可靠性和准确性。
2、监测系统技术规程(1)数据采集方式:监测系统应选择可靠、准确的数据采集方式进行数据采集,以确保监测数据的准确性和可靠性;(2)数据传输方式:监测系统应选择可靠、高效的数据传输方式进行数据传输,以确保监测数据的实时性和可靠性;(3)数据处理方式:监测系统应采用先进的数据处理技术进行数据处理,以确保监测数据的精准性和可视化程度;(4)监测报警功能:监测系统应具备监测报警功能,及时发现能源浪费等问题,并进行有效的警报和处置。
建筑行业建筑能耗监测系统开发方案

建筑行业建筑能耗监测系统开发方案第一章建筑能耗监测系统概述 (3)1.1 建筑能耗监测系统定义 (3)1.2 建筑能耗监测系统发展背景 (3)1.3 建筑能耗监测系统意义 (3)第二章建筑能耗监测系统需求分析 (4)2.1 建筑能耗监测系统功能需求 (4)2.1.1 数据采集与传输 (4)2.1.2 数据存储与管理 (4)2.1.3 数据分析与展示 (4)2.1.4 能耗监测与预警 (4)2.1.5 能耗优化与节能管理 (4)2.2 建筑能耗监测系统功能需求 (4)2.2.1 系统稳定性 (4)2.2.2 系统响应速度 (4)2.2.3 系统兼容性 (5)2.2.4 系统扩展性 (5)2.3 建筑能耗监测系统用户需求 (5)2.3.1 系统易用性 (5)2.3.2 系统个性化 (5)2.3.3 系统安全性 (5)2.3.4 系统售后服务 (5)第三章系统架构设计 (5)3.1 系统总体架构 (5)3.1.1 数据采集层 (5)3.1.2 数据传输层 (5)3.1.3 数据处理与分析层 (6)3.1.4 应用层 (6)3.2 系统模块划分 (6)3.2.1 数据采集模块 (6)3.2.2 数据传输模块 (6)3.2.3 数据处理与分析模块 (6)3.2.4 应用模块 (6)3.3 系统通信协议设计 (6)3.3.1 有线传输协议 (6)3.3.2 无线传输协议 (7)3.3.3 数据格式 (7)3.3.4 数据传输流程 (7)第四章数据采集与传输 (7)4.1 数据采集设备选型 (7)4.2 数据传输方式 (8)4.3 数据采集与传输的安全性 (8)第五章能耗监测与分析 (8)5.1 能耗数据存储与管理 (8)5.2 能耗数据分析方法 (9)5.3 能耗监测结果展示 (9)第六章系统集成与对接 (9)6.1 与其他建筑智能化系统的集成 (9)6.1.1 集成概述 (10)6.1.2 集成方法 (10)6.1.3 集成效果 (10)6.2 与第三方能耗监测平台的对接 (10)6.2.1 对接概述 (10)6.2.2 对接方法 (10)6.2.3 对接效果 (10)6.3 系统兼容性与扩展性 (11)6.3.1 兼容性 (11)6.3.2 扩展性 (11)第七章系统安全与稳定性 (11)7.1 系统安全策略 (11)7.2 系统稳定性保障措施 (12)7.3 系统故障处理与恢复 (12)第八章系统开发与实施 (13)8.1 系统开发流程 (13)8.1.1 需求分析 (13)8.1.2 系统设计 (13)8.1.3 编码实现 (13)8.1.4 系统测试 (13)8.1.5 系统部署与调试 (13)8.2 系统实施步骤 (14)8.2.1 硬件设备安装 (14)8.2.2 软件系统部署 (14)8.2.3 系统集成与调试 (14)8.2.4 用户培训与验收 (14)8.3 系统验收与交付 (14)8.3.1 验收标准 (14)8.3.2 验收流程 (14)8.3.3 系统交付 (15)第九章建筑能耗监测系统运营与管理 (15)9.1 系统运行维护 (15)9.1.1 运行维护目标 (15)9.1.2 运行维护内容 (15)9.1.3 运行维护制度 (15)9.2 能耗监测报告编制 (15)9.2.1 报告编制目标 (15)9.2.2 报告编制内容 (16)9.2.3 报告编制流程 (16)9.3 能耗监测数据应用 (16)9.3.1 数据挖掘与分析 (16)9.3.2 节能潜力评估 (16)9.3.3 能耗监测与预警 (16)第十章建筑能耗监测系统前景与展望 (17)10.1 建筑能耗监测系统发展趋势 (17)10.2 建筑能耗监测系统市场前景 (17)10.3 建筑能耗监测系统创新点与挑战 (17)第一章建筑能耗监测系统概述1.1 建筑能耗监测系统定义建筑能耗监测系统,是指通过一系列监测设备、传输网络和数据处理平台,对建筑物的能耗数据进行实时监测、统计分析和信息反馈的技术系统。
建筑能耗监测系统方案

建筑能耗监测系统方案建筑能耗监测系统是一种使用先进的技术手段对建筑能耗进行监测、分析和管理的系统。
它可以帮助建筑业主和管理者更好地了解建筑能耗的情况,提供科学有效的节能措施,从而降低建筑的能源消耗,减少对环境的影响。
建筑能耗监测系统的方案应具备以下几个方面的核心内容。
首先,建筑能耗监测系统应具备完善的数据采集和传输功能。
该系统应当能够实时、准确地采集建筑中各个能耗设备的数据,如空调、照明、电梯等。
采集到的数据需要通过合适的传输方式上传至中央服务器,建立可靠的数据存储和管理机制。
其次,建筑能耗监测系统应具备强大的数据分析和处理功能。
该系统应能够对采集到的数据进行及时分析、统计和处理,生成能耗报表和图表,让建筑业主和管理者能够直观地了解建筑的能源消耗情况。
同时,系统还应设有预警功能,及时发现和解决能耗异常情况,提供相应的节能建议。
第三,建筑能耗监测系统应支持远程监控和控制功能。
该系统应能够通过互联网等通信手段实现远程监控和控制建筑能耗设备。
通过远程监控,建筑管理者能够及时了解建筑能耗设备的运行情况,发现问题并采取相应的措施。
同时,系统还应支持远程控制功能,能够远程关闭或调整能耗设备的工作模式,实现智能节能。
第四,建筑能耗监测系统应具备开放性和可扩展性。
该系统应具备良好的软硬件兼容性,能够与不同类型的能耗设备进行连接和通信。
同时,系统应具备良好的可扩展性,能够随着建筑能耗监测需求的增加进行相应的扩展和升级。
最后,建筑能耗监测系统应注重隐私和安全保护。
在数据采集、传输和处理的过程中,系统应采取相应的安全措施,保护建筑业主和管理者的隐私。
同时,系统也应具备良好的安全性能,防止潜在的安全威胁。
综上所述,一个完善的建筑能耗监测系统应具备完善的数据采集和传输功能、强大的数据分析和处理功能、远程监控和控制功能、开放性和可扩展性以及注重隐私和安全保护等特点。
通过这样一个系统的全面运用,将能够帮助建筑业主和管理者更好地了解和管理建筑能耗,提供科学有效的节能措施,实现可持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑能耗监测系统技术方案
概述
为了响应国务院要求开展节能减排的号召,并完成国家“十一五”计划关于节能减排目标的要求,国家住建部下发《关于切实加强政府办公和大型公共建筑节能管理工作的通知》,通知要求深入推进建筑能耗监测体系建设和加强对空调温度控制情况的监督检查。
住建部从2007年开始在北京、天津、深圳等试点城市推行建筑能耗监测体系的建设,但在对公共建筑空调温度控制的监督管理上却比较缺乏有效的手段。
建筑能耗监测系统是本公司采用自主知识产权有线和无线传感网技术研发、生产的专业化节能系统,系统可以深入到建筑物内各区域,实现对能耗使用的全参数、全过程的管理和控制功能,是能耗监测、温度集中控制和节能运行管理的综合解决方案。
该系统不仅符合国家有关公共建筑管理节能的政策和技术要求,更是融合了能耗监测、空调温度集中控制和节能运行管理的整体解决方案,可对建筑能耗进行动态监测和分析,实现建筑的精细化管理与控制,带给用户新的价值体验,达到节能减排的效果。
系统开发及设计依据
国家机关办公建筑和大型公共建筑能耗监测系统________
《分项能耗数据传输技术导则》
《分项能耗数据采集技术导则》
《建设、验收与运行管理规范》
《楼宇分项计量设计安装技术导则》
《数据中心建设与维护技术导则》
《公共建筑室内温度控制管理办法》建科〔2008〕115号
《民用建筑节能条例》国务院令第530号
《公共机构节能条例》国务院令第531号
《国务院办公厅关于严格执行公共建筑空调温度控制标准的通知》〔2007〕42号
《国务院关于印发节能减排综合性工作方案的通知》(国发〔2007〕15号)
系统结构
建筑能耗监测系统以计算机、通讯设备、测控单元为基本工具,为大型公共建筑的实时数据采集、开关状态监测及远程管理与控制提供了基础平台,它可以和检测、控制设备构成任建筑能耗监测系统。
该系统主要采用分层分布式计算机网络结构,一般分为三层:站控管理层、网络通讯层和现场设备层。
1)站控管理层
站控管理层针对能耗监测系统的管理人员,是人机交互的直接窗口,也是系统的最上层部分。
主要由系统软件和必要的硬件设备,如工业级计算机、打印机、UPS 电源等组成。
监测系统软件具有良好的人机交互界面,对采集的现场各类数据信息计算、分析与处理,并以图形、数显、声音等方式反映现场的运行状况。
监控主机:用于数据采集、处理和数据转发。
为系统内或外部提供数据接口,进行系统管理、维护和分析工作。
打印机:系统召唤打印或自动打印图形、报表等。
UPS:保证计算机监测系统的正常供电,在整个系统发生供电问题时,保证站控管理层设备的正常运行。
2)网络通讯层
通讯层主要是由通讯管理机、以太网设备及总线网络组成。
该层是数据信息交换的桥梁,负责对现场设备回送的数据信息进行采集、分类和传送等工作的同时,转达上位机对现场设备的各种控制命令。
通讯管理机:是系统数据处理和智能通讯管理中心。
它具备了数据采集与处理、通讯控制器、前置机等功能。
以太网设备:包括工业级以太网交换机。
通讯介质:系统主要采用屏蔽双绞线、光纤以及无线通讯等。
3)现场设备层
现场设备层是数据采集终端,主要由智能仪表组成,采用具有高可靠性、带有现场总线连接的分布式I/O控制器构成数据采集终端,向数据中心上传存储的
建筑能耗数据。
测量仪表担负着最基层的数据采集任务,其监测的能耗数据必须完整、准确并实时传送至数据中心。
系统功能
1)实时采集智能电表、水表和气表数据,并传输到管理中心,管理中心对能耗数据进行统计、分析并上传到上级能耗监测中心;
2)实现了对室内温度的实时监测和网络化管理,为精确控制中央空调的开关机时间及温度提供可靠依据;
3)实时监测门窗状态,严禁开门、开窗的状态下使用空调或供暖设备;
4)有助于改善中央空调或北方供暖系统各区域温度的均衡性,提高运行效率,降低运行成本;
5)通过对建筑物能耗系统的全参数、全过程集中管理和控制,实现公共建筑的节能运行管理功能。
系统组网功能
局域网:系统在建筑物内采用有线或无线传感网方式组成局域网进行工作,所有采集到的监测数据均通过以太网或GPRS进行传输;
广域网:各个建筑物内的局域网通过internet连接到上级管理中心,实现大区域(集团)的统一管理,可远程监测和显示各个建筑物的用能信息。
系统特点
1)系统支持采用zigbee无线自组网方式,可减少额外布线和施工破坏,也使工程安装和维修简单方便;
2)系统采用模块化结构,构架简单,扩展功能强,可方便地满足用户未来需求;
3)系统功能完善:具有能耗监测管理和分析功能,同时支持空调温度集中控制和节能运行管理的功能;
4)配置灵活:用户可以自由选择适合自己需求的功能和组件,若将来需求发生变化,可方便地进行功能及组件的扩充或修改。
WSN在建筑能耗监测中的适用性
建筑能耗监测平台可采用zigbee技术组建无线传感器网络(WSN)。
整个网络由若干个终端采集器以及一个汇聚采集器构成。
通常将 WSN的终端采集器
称为采集节点,将汇聚采集器成为汇聚节点。
采集节点负责数据的采集和传送,以及根据汇聚节点的控制命令设置相应的工作模式等;汇聚节点是网络的中心,起到协调器和网关节点的作用,汇聚节点负责整个区域网络的维护与数据的汇集,再将数据通过Internet/GPRS上传到上级数据中心或中转站。
系统最大特点就是
可灵活地基于WSN技术进行信息采集,利用WSN节点与电表等与用能设备连接,通过无线自组网方式自动采集分散在各处的电、水、气、冷热量等实时数据,使用户随时监测现场耗能设备的运行数据,为今后实施节能反馈控制系统的研发提供基础,以达到优化能源供应、提高能源管理水平、提高能源利用效益、减少能源损耗、节约能源成本的目的。
基于WSN技术的建筑能耗监测系统属于WSN与节能的交叉领域,以WSN和计算机信息处理为技术核心,建设先进、功能强大的信息采集处理平台。
该系统适用于各种既有和新建建筑,系统组网方便,不占空间,减少综合布线施工,项目实施快速方便。
在各种无线传感网技术中,ZigBee的自组网能力以及高容量特性使其非常适合建筑能耗监测系统的应用,在节点分散、数量众多、低速率传输的能耗监测采集端建设中,有明显的优势,是当前最适合建筑能耗监测系统数据传输的技术。
除了组网方便、安全、可靠,ZigBee还有低传输速率、低功耗、高容量、低成本等特点,非常适合有大量终端设备的网络,如能耗监测、楼宇自动化等场合。
设备安装改造方式
如果用户已有电表、水表等,且带有485口,则可直接接入采集器,如已有仪表不支持485口,则需要改造和更换设备。
每户的总表最后统一为带485
口的多功能表,外接带无线传感模块的采集器,可以每15分钟上送一次电量、电压、电流、功率因素等数据。
数据采集频率可根据具体需要灵活设置,数据采集频率可在15分钟/次到1小时/次之间调整。
设备改造原则:在一定投资成本和不改动已有配电线路前提下,以最大程度地获得能耗公示需求数据为目标,在既有配电支路上无拆换、无干扰方式安装。
成果及应用实例
★江苏省省级机关办公楼(多栋建筑)
★南京市委大院办公楼(建筑群)
★南京市台城大厦
★济南市儿童福利院。