计算化学
计算化学发展史

计算化学发展史
计算化学是一门研究化学问题的计算方法和技术的学科,它的发展历史可以追溯到20世纪初。
随着计算机技术的不断发展,计算化学在化学研究中的应用越来越广泛,成为了现代化学研究的重要组成部分。
20世纪初,化学家们开始使用计算方法来解决化学问题。
最早的计算方法是手工计算,这种方法非常耗时耗力,而且容易出错。
随着计算机技术的发展,计算化学开始进入了一个新的阶段。
20世纪50年代,第一台数字计算机问世,这为计算化学的发展提供了强有力的支持。
在20世纪60年代,计算化学开始成为一个独立的学科。
当时,计算化学主要应用于分子结构的计算和分析。
随着计算机技术的不断发展,计算化学的应用范围也不断扩大。
在20世纪70年代,计算化学开始应用于化学反应的研究,这为化学反应机理的研究提供了新的方法和手段。
在20世纪80年代,计算化学开始应用于材料科学的研究。
计算化学可以帮助科学家们预测材料的性质和行为,这对于材料科学的发展具有重要的意义。
在20世纪90年代,计算化学开始应用于生物化学的研究。
计算化学可以帮助科学家们研究生物分子的结构和功能,这对于生物化学的发展具有重要的意义。
随着计算机技术的不断发展,计算化学的应用范围也不断扩大。
现在,计算化学已经成为了化学研究中不可或缺的一部分。
计算化学可以帮助科学家们预测化学反应的机理和产物,研究分子的结构和性质,预测材料的性质和行为,研究生物分子的结构和功能等等。
计算化学的发展为化学研究提供了新的方法和手段,也为人类社会的发展做出了重要的贡献。
计算化学概述

设计
量子化学的研究对象
• 主要:分子、团簇等孤立体系 • 常规处理的体系规模:几个至几百个原子(半经验房卡可到上万) • 能解决的问题:计算反应的快慢和难易、计算各类化学过程的能
量变化、探究反应的机理、预测和解释各类光谱、预测分子结构、 预测分子各种性质(如稳定性、极化率、反应活性、芳香性反应 位点、结合位点)、探究成键与电荷分布等 • 第一性原理研究领域侧重于固体与表面问题,和材料关系密切。 如计算不同晶型的稳定性、声子谱、晶格常数、掺杂和缺陷的影 响、固体表面吸附和催化、材料的导电性、温度和压力的影响。
计算化学解决问题的思想:模型化
➢建立合理的假想模型,或将复杂的实际问题忽略掉次要因素后 简化成有限计算能力下易于求解的简单模型。栗:固体性质计 算简化成单个晶胞、溶液的光谱计算简化为单个分子+溶剂环 境、酶催化计算只考虑活性位点及其附近原子。
➢在有限的计算能力下,针对体系规模和具体问题,采取最合 适的计算方法去研究,eg
• 微观性质、特征、结构
• 原子的空间分布、运动轨迹 • 构象、构型分布(玻尔兹曼分布) • 体系柔性、结构波动程度 • 氢键、盐键、水桥、π-π堆积等 • 非平衡过程中结构变化过程、扩散/吸附等
过程 • 。。。。
• 热容
• pKa
• 。。。。
研究体系可自由搭建,环境模拟(温度、压力、外场
等)可自由设定,体系中的一切信息尽在掌握
蒙特卡罗模拟:。。。。。
可视化、建模程序
• GaussView、Chem3D、Multiwfn、VMD、Avogadro、ChemCraft、 Gabedit、Molekel、Chimera、Molden、很多很 多、、、、、、、、、、、、、、、、、、、、、、、、、、、 、、、、、、、、、、、、、、、、、、、、、、、、、、、、 、、、、、、、、、、、、、
常见的化学计算方法介绍

常见的化学计算方法介绍化学计算方法是化学实验中常用的一种分析方法,它主要用于计算物质的化学量和化学反应的反应过程。
常见的化学计算方法包括差量法、关系式法和极值法。
差量法是一种通过测量实验前后物质的质量差异来计算化学量的方法。
在实验中,可以通过称量容器和称重物质的质量差,推断出其他物质的质量。
例如,可以通过测量溶液的质量差异来计算溶质的质量,或通过称量容器和辅助物质的质量差异来计算所需物质的质量。
这种方法适用于实验条件相对简单的情况下,例如溶液配制、物质纯度测定等。
关系式法是一种通过已知化学量间的数学关系来计算未知化学量的方法。
在化学反应中,不同物质的质量或体积之间存在着一定的摩尔比例关系,可以通过这些关系来推断出未知物质的质量或体积。
例如,在酸碱滴定实验中,可以根据酸、碱的摩尔比例关系,通过已知酸或碱的体积和浓度来计算未知酸或碱的浓度。
这种方法适用于化学反应中已知物质之间存在明确的数学关系的情况。
极值法是一种通过分析反应体系中的极值点来计算化学量的方法。
在化学反应过程中,随着其中一物质的增加或减少,反应体系的其中一物理性质(例如颜色、电势、PH值等)会发生突变,形成极值点。
通过观察和测量这一极值点,可以推断出反应体系中其中一物质的化学量。
例如,在滴定实验中,可以通过观察溶液颜色的变化来判断滴定终点,从而计算出待测物质的化学量。
这种方法适用于反应体系中其中一物质在滴定终点附近产生明显变化的情况。
总之,差量法、关系式法和极值法是化学实验中常见的化学计算方法。
它们在不同情况下具有各自的优势和适用范围,可以根据实验目的和条件选择合适的方法进行化学计算,提高实验的准确性和可靠性。
化学中的计算化学理论

化学中的计算化学理论化学是自然科学中的一门重要学科,它研究的是物质的组成、结构、性质以及它们之间的相互转化关系。
在化学的实验过程中,化学计算是一种非常重要的理论工具。
计算化学是指利用计算机模拟、计算等手段研究分子结构、性质和反应规律的一门学科。
它是化学科学的一种广泛应用领域,已经成为化学研究的重要组成部分。
本文将具体介绍化学中的计算化学理论,包括分子轨道理论、密度泛函理论和量子化学。
一、分子轨道理论分子轨道理论是化学中的计算化学理论中较为经典的理论之一,它的核心思想是运用量子力学的原理,通过计算得到分子中的分子轨道及其能级分布,从而揭示分子的电子结构、性质等信息。
分子轨道理论是通过计算得到分子中的分子轨道及其能级分布来揭示分子电子结构、性质等信息。
分子轨道方程式基本是由原子轨道线性组合而成。
该理论的发展过程经历了三个阶段:第一阶段是从分子解离中根据实验结果发展而来的。
在该阶段,计算化学主要关注的是分子中的所有电子都规律地存在于其能量最低的情况,即氢分子。
第二阶段是对自洽场方法的发明和出现。
该方法允许考虑原子与相互作用的大小,给出了更准确地分子轨道能。
第三阶段是利用了更多现代计算机方法和程序的方法。
其中,Hartree-Fock (HF) 理论作为一种较为流行的描述分子能量和轨道的方法,目前已经广泛应用于计算文献中。
泛函密度理论 (DFT) 是将电子电荷密度作为变量的理论。
这个方法的主要优点是计算周期性体系的电子构型和能量,它能够准确地描述分子的电子结构和量子化学反应。
我们将在后面继续说明这个方法。
二、密度泛函理论密度泛函理论是计算化学领域中最为发达的理论之一,它利用微观分子结构某些点土上密度函数 (电子密度函数) 的性质,建立分子和原子间相互作用的模型,从而对各种物质性质进行计算。
密度泛函理论是一种基于电荷密度分布的方法,不考虑每个电子的行为。
其关键在于,通过对电子密度作用能的近似处理,得到了微观物理系统的描述。
化学计算公式大全

化学计算公式大全
1.摩尔质量计算公式:用于计算化合物的摩尔质量,即分子量或原子
量的总和。
M=m/n
其中,M表示摩尔质量,m表示化合物的质量,n表示摩尔数。
2.摩尔浓度计算公式:用于计算溶液中溶质的摩尔浓度。
C=n/V
其中,C表示摩尔浓度,n表示溶质的摩尔数,V表示溶液的体积。
3.溶解度计算公式:用于计算固体在一定温度下溶解于水中的最大量。
S=m/V
其中,S表示溶解度,m表示固体的质量,V表示水的体积。
4.离子积计算公式:用于判断弱电解质的离解程度。
Kw=[H+][OH-]
其中,Kw表示水的离子积,H+表示氢离子浓度,OH-表示氢氧根离子
浓度。
5.酸碱滴定计算公式:用于计算酸或碱的浓度。
Ma某Va=Mb某Vb
其中,Ma表示酸的浓度,Va表示酸的体积,Mb表示碱的浓度,Vb表
示碱的体积。
6.摩尔反应比计算公式:用于计算化学反应中不同物质的摩尔比。
aA+bB→cC+dD
其中,a、b、c、d表示化学计量数。
7.计算氧化还原反应的氧化态变化:用于计算氧化还原反应中氧化态的变化。
O某idation number (ON) = 元素的原子数 + 元素的电荷数
其中,原子数指元素在分子中的数量,如O在H2O中有2个原子,电荷数指元素的形成原子离子时的电荷数,如O2-的电荷数为-2。
8.燃烧反应的化学计量数计算公式:用于计算燃烧反应中产生的CO2和H2O的化学计量数。
CaHb+(a+b/4)O2→aCO2+b/2H2O
其中,a、b为化学计量数。
计算化学论文

计算化学论文一、引言计算化学是一门应用计算机来解决化学问题的学科,它通过构建和模拟分子的模型,预测化学物质的性质和反应机理。
计算化学在现代化学研究中起着至关重要的作用,可以加速实验设计和减少实验成本,为化学研究提供重要的理论指导。
本文综述了计算化学的发展历程、常用的计算方法和应用在各个领域的案例研究,以期为读者提供对计算化学的全面了解和深入认识。
二、发展历程2.1 早期计算化学方法最早的计算化学方法可以追溯到20世纪40年代,当时由于计算机技术的限制,研究人员主要使用经验方法,如半经验力场和经验量子化学方法。
这些方法能够对分子进行简单的近似计算,但在描述分子复杂性和准确性方面存在局限性。
2.2 理论计算方法的发展随着计算机技术的进步,理论计算方法开始得到广泛应用。
量子化学方法成为计算化学的核心。
量子化学方法基于量子力学原理,通过求解薛定谔方程来计算分子的能量、结构和其他性质。
常用的量子化学方法包括密度泛函理论(DFT)、Hartree-Fock方法和多体微扰理论等。
2.3 分子模拟和机器学习方法的兴起随着计算机技术的不断发展,分子模拟和机器学习方法在计算化学中起到越来越重要的作用。
分子模拟方法通过模拟分子运动,预测分子的结构、动力学和热力学性质。
机器学习方法则通过建立分子性质和结构的定量模型,通过学习和推断来预测未知分子的性质。
三、常用的计算方法3.1 密度泛函理论密度泛函理论是计算化学中最常用的方法之一,它基于电子密度来描述分子的性质。
密度泛函理论的优势在于具有较高的计算效率和较好的精度,在计算电子结构、化学反应和材料性质等方面有广泛应用。
3.2 分子力场方法分子力场方法是一类经验力场方法,通过定义原子之间的势能函数来描述分子的力学性质。
分子力场方法主要用于分子模拟和分子动力学研究,可以预测分子的构象变化、能量变化和动力学行为。
3.3 量子化学方法量子化学方法基于量子力学原理,通过求解薛定谔方程来计算分子的能量、结构和其他性质。
化学中的计算化学

化学中的计算化学计算化学是一种利用计算机、数学和化学理论模型,进行化学研究的交叉学科。
在此过程中,我们可以使用数学算法来解决化学模型中的各种化学问题。
这个过程是很重要的,因为它通过使用计算机来协助实验化学家在研究中发现规律、预测结果、优化实验条件等等方面提供了无限的可能性。
在计算化学中,我们可以运用许多方法来解决化学问题,其中最常见的包括量子化学、分子动力学模拟和分子排列方案等。
这些方法各自有自己独特的用处和优势,让我们一一探讨。
量子化学是计算化学领域中最常用的方法之一。
具体来说,它是通过考虑原子和分子内的电子云的波动特性和量子力学计算的基础上,对分子光谱、反应机理、电子物性和溶解性等问题进行研究。
这种方法的应用范围非常广泛,从普通无机化学到有机化学、生物化学和材料科学都可以用到。
有了它,我们可以更加准确地描述分子中的基本物理及化学现象。
分子动力学模拟也是计算化学中一个重要的方法。
在研究中,我们需要将分子运动使用计算机进行模拟。
这个过程不仅可以帮助我们了解分子的结构和化学性质,同时还可以为分子设计和构建提供重要信息。
这种方法主要应用于材料科学和有机化学领域,例如蛋白质折叠、纳米材料计算和捕捉燃料电池等方面都有着广泛的应用。
再看分子排列方案这个方法,它是通过计算所有可能的分子结构,在最优方案之中寻找一个特定的分子排列模型。
这个方法在药物设计中非常有用,因为药物的效果与它们的分子结构有着密切的关系。
借助这种方法,我们可以预测化合物的生物活性和药物稳定性等特性,为新药的开发提供重要指导意义。
除上述方法外,计算化学中还有许多其他工具和技术,例如,分子轨道理论、本质缺陷计算和量子点计算等。
借助这些手段,我们可以全面解析、优化和理解分子和物质的性质和结构,为进一步深入研究和开发中提供重要的基础。
总之,化学中的计算化学是一种极为重要的工具和研究方向。
通过数学算法和计算机,我们可以快速地模拟、预测和优化实验结果,为实验研究提供重要的基础和指导。
化学计算的基本方法

化学计算的基本方法(一)差值法将差值应用于化学计算的方法叫做差值法,又叫差量法.用差值法进行化学计算的优点是化难为易,化繁为简.差值法包括:质量差、体积差、物质的量差、压强差、溶解度差等.1.利用质量差计算例1将碳酸钠和碳酸氢钠的混合物21.0g,加热至质量不再变化时,称得固体质量为12.5g。
求混合物中碳酸钠的质量分数。
解析混合物质量减轻是由于碳酸氢钠分解所致,固体质量差21.0g-14.8g=6.2g,也就是生成的CO2和H2O的质量,混合物中m(NaHCO3)=168×6.2g÷62=16.8g,m(Na2CO3)=21.0g-16.8g=4.2g,所以混合物中碳酸钠的质量分数为20%。
例1:把1g含有脉石(Si02)的黄铁矿样品,在氧气中灼烧,之后得残渣0.80g,此黄铁矿中硫的质量分数为 ( )A.9.5%B.19%C.32%D.35.6%[解析] 设黄铁矿中硫的质量分数为x2FeS2—Fe2O3 △W32×4(S) 80128:x=80:0.2,x=0.32,即32%4.0克+2价金属的氧化物与足量的稀盐酸反应后,完全转化为氯化物,测得氯化物的质量为9.5克,通过计算指出该金属的名称。
解析:反应后物质质量增加是由于参加反应氧化物的质量小于生成氯化物的质量。
设金属氧化物化学式为RO,式量为m,则RO → RCl2质量增加m 554.0克(9.5-4.0)克m=40。
故金属的相对原子质量为40-16=24,属于镁元素。
[例18] 某有机化合物含有碳、氢、氧三种元素,其相对分子质量为32。
取该有机物6.4克,将其充分燃烧后的产物通入足量的石灰水被完全吸收,经过滤,得到20克沉淀物,滤液的质量比原石灰水减少了4克。
求:(1)原6.4克有机物中所含氧元素的质量为多少?(2)通过计算确定该有机物的化学式。
解析:根据燃烧后的产物通入足量的石灰水被完全吸收,经过滤,得到20克沉淀物可计算出燃烧后生成的CO 2的质量,也就可知其中碳元素的质量,即为原有机物中所含碳元素的质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算化学和计算机化学的区别在于计算化学是基于第一原理(first principle)为基本方法,通过计算来解决化学问题的一门学科。
这里第一原理包括:量子力学,经典力学,统计力学等。
瑞典皇家科学院将1998年度诺贝尔化学奖予英国科学家波普尔(John A Pople)和美国科学家科恩(Walter Kohn)。
其中John A Pople发展了量子化学计算方法,其中最著名的就是高斯(Gaussian)软件;Walter Kohn建立密度泛函理论。
从头算的三个基本近似是:非相对论近似、波恩-奥本海默(Born-Oppenheimer)近似、单电子近似或轨道近似。
非相对论近似和单电子近似使得计算出的能量比体系的真实能量偏高,而波恩-奥本海默近似则使得计算出的能量比体系的真实能量偏低。
随着原子序数增大,非相对论效应在总能量中占的比重上升,而相关效应(由单电子近似产生)的比例则相对下降。
计算方法:半经验方法am1,pm3;从头算方法HF;密度泛函方法DFT,包括b3lyp方法等;微扰方法mp2、mp3、mp4等;组态相关方法cis,cisd,casscf,fci。
在Hartree-Fock计算中,随着基组的增大最后计算的能量趋向一个极限值,该极限值称作Hatree-Fock极限或H-F极限。
密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
在Kohn-Sham DFT的框架中,最难处理的多体问题被简化成了一个没有相互作用的电子在有效势场中运动的问题。
目前并没有精确求解混合交换-相关泛函(E XC)的方法。
最简单的近似求解方法为局域密度近似(LDA)。
LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。
相关能:微观粒子分为费米子和玻色子,其中费米子的波函数服从反对称条件,玻色子的波函数不服从反对称条件,电子属于费米子。
在Hartree-Fock方程中,受保里原理限制,自旋相同电子不可能在空间的同一点出现,反映出每个电子周围有一个费米孔,但没有考虑到独立运动的两个自旋相反的电子也不可能在空间的同一点出现,这称作库仑孔,电子间的这种相互关系称为电子运动的瞬时相关性或动态相关作用。
MP一级微扰能对应Hartree-Fock能。
因此,采用MP法校正相关能时,相关能校正起码应从MP2做起,而MP1不能修正相关能。
在HF模型下,通过组态相关(CI)的方法计算相关能。
CIS仅包括单激发态的CI,CISD包含单激发和双激发的CI,FCI指全CI,包含全部激发。
计算量按HF<CIS<CISD< FCI顺序增大。
CIS仅考虑全部单电子激发组态的CI处理,对基态能量无修正作用,即等效于HF方法。
在对分子结构进行优化时,可以采用的一阶导数法有最陡下降法和共轭梯度法,其中前者收敛速度较快。
但是每种算法均有其长处和局限性,需要根据分子的大小和计算机内存的条件适当选择。
通过计算振动频率,我们可知道所计算的分子是稳定构型还是过渡态。
如果Hessian矩阵的有一个负本征值,则该结构是过渡态;如果Hessian矩阵的没有负本征值,则该结构是稳定构型。
通过计算振动频率,可以得到振动频率、振动强度、Raman光谱、零点能和热力学数据。
对于多原子分子的振动频率计算,通常采用的是简正坐标,在该坐标下,动能和势能之间无偶合(没有交叉项)。
并且,求解出的振动是简谐振动。
在Gaussian软件中,关键词opt对分子进行结构优化;关键词freq对分子进行振动频率分析;关键词scan进行键参数扫描。
对于HF、DFT、MP2方法,有闭壳层和开壳层之分,其中每个轨道上必须填充两个电子的是闭壳层方法,容易发生自旋污染的是开壳层方法。
已知甲酸分子的结构如下:
根据上述输出结果,回答下列问题:
(1).写出甲酸分子的Z-矩阵,并指出它所属的点群。
(2).根据上述输出结果(a),说明该分子的电子态是什么?指出哪个是HOMO,其能量是多少?哪个是LUMO,其能量又是多少?
(3).根据上述输出结果(b),说明该计算采用的算法和基组;
(4).计算H、C、O和HCOOH的基函数(STO和GTO)的数目(必须写出详细的计算过程)。
(5).分别说明该分子的多重度和电子态,由该计算能否得到分子的振动频率?
(1) 甲酸分子的Z-矩阵:
C1
O2 C1 r1
O3 C1 r2 O2 a1
H4 O3 r3 C1 a2 O2 d1
H5 C1 r4 O3 a3 H4 d2
r1=1.920
r2=1.353
r3=0.966
r4=1.105
a1=122.5
a2=110.0
a3=113.5
d1=180.0
d2=0.0
甲酸属于C s点群
(2) 该分子的电子态是1A’。
A'是HOMO,其能量是-0.30649;A"是LUMO,其能量是-0.03040。
(3) 该计算采用的算法是B3LYP,基组是6-311G。
(4)由于C和O原子有1s,2s,2p x,2p y和2p z共5个占据轨道,其中1s为
内层轨道,其它轨道为价层轨道。
所以对于6-311G基组,C和O的STO基
函数的数目分别为:
1+4⨯3=13
GTO基函数的数目分别为:
6+4⨯(3+1+1)=26
由于H原子只有一个占据轨道1s,所以对于6-311G基组,H的STO基函数
的数目为3,
GTO基函数的数目为:
3+1+1=5
所以对于6-311G基组,HCOOH的STO基函数的数目为:
13⨯2+13+3⨯2=45
GTO基函数的数目为:
26⨯2+26+5⨯2=88
(5) 甲酸的电荷和多重度分别为0和1。
由该计算可以得到分子的振动频率。
已知某单分子反应,反应物的计算结果如下:
1、请指出反应物的零点振动能、焓和吉布斯自由能。
2、计算反应的吉布斯自由能能垒。
(1a.u.=627.51 kcal/mol= 2625.5 kJ/mol)
3、按照经典的Eyring 公式,估算298.15K 下的反应速度。
(k B = 1.381*10-23; h=6.626*10-34; R=8.314; e=2.718)
1、反应物零点振动能是0.140142 a.u.; 焓等于-251.075254a.u.;吉布斯自由能等于-251.116628 a.u.。
2、吉布斯自由能能垒ΔG=(-251.101842)-( -251.116628)= 0.014786 a.u.= 9.28 kcal/mol= 38.8 kJ/mol 。
3、exp()B k T
G
k h RT ∆=-
反应速度-23
5-341.381*10*298.1538.8*1000exp()9.9*106.626*108.314*298.15k =
-=s -1。