线性电阻电路的一般分析方法

合集下载

电路分析基础第3章

电路分析基础第3章

R11im1+ R12 im2 = us11
R21im1 + R22im2 = uS22
R11=R1+R2 R22=R2+R3 R12=R21=R2 自阻
YANGTZE NORMAL UNIVERSITY 自阻总是正
R1 i1
a
R3
网孔1所有电阻之和
网孔2所有电阻之和
互阻 网孔1、2的公共电阻
i2 R2 + im1 + uS 1 uS2 – – b
us + 2
YANGTZE NORMAL UNIVERSITY
R1
L1
L2
R2
us -
+
L
1
i2
4 3
i4
R2
5
2
i5
C
1 3
4
5
R1
i2 i4 i5
有向图
返回
YANGTZE NORMAL UNIVERSITY
§3-2 KCL和KVL的独立方程数
1、KCL的独立方程数
2
1 1 4 3 5 2 3
YANGTZE NORMAL UNIVERSITY
电路分析基础
1
YANGTZE NORMAL UNIVERSITY
第三章 电阻电路的一般分析
重点:
支路电流法
网孔电流法 回路电流法 节点电压法
YANGTZE NORMAL UNIVERSITY
目的:找出求解线性电路的一般分析方法 。 对象:含独立源、受控源的电阻网络的直流稳态解。 (可推广应用于其他类型电路的稳态分析中) 应用:主要用于复杂的线性电路的求解。 基础: 电路的连接关系—KCL,KVL定律 元件特性(约束)(对电阻电路,即欧姆定律) 相互独 立

第3章 电阻电路的一般分析

第3章 电阻电路的一般分析
2 3
解2. I1 7 + 70V –
a
增补方程:I2=6A 11 由于I2已知,故只列写两个方程。 a:–I1+I3=6 7
I2
1 6A b
I3
避开电流源支路取回路: 1: 7I1+7I3=70
返 回 上 页 下 页
例6.
I1 7
+ 70V –
列写支路电流方程(电路中含有受控源)。 a
I2 1 + 5U _ b 11 2 I3 + 7 U _ 解
返 回
支路、结点、路径、回路和网孔的概念。 (1)连通图 图G的任意两结点间至少有一条路径 时,称图G为连通图。非连通图至少 存在两个分离部分。
(2) 子图
若图G1中所有支路和结点都是图G中 的支路和结点,则称G1是G的子图。
返 回
上 页
下 页
(3)树 (Tree)
T是连通图G的一个子图, 并满足条件:
依据:
KCL、KVL以及元件的VCR。
方法: 根据列方程时所选变量不同,可分为支路电流法、
网孔电流法、回路电流法和结点电压法。
返 回 上 页 下 页
对于线性电阻电路,电路方程是一组线性代数方程。
例1
3
I1 R1 uS1 + –
a I2 I3
R2 + – b 2 独立? R3 求I1、I2和I3?
1 uS2
独立回路=2,选为网孔。
+ –
R3
i1 il 1 i3 il 2 i2 il 2 il 1
uS2
b
回路1:R1 il1-R2(il2- il1) +uS2-uS1=0 回路2:R2(il2- il1)+ R3 il2 -uS2=0 自电阻 (R1+ R2) il1 -R2 il2 = uS1-uS2

清华考研 电路原理课件 第3章 线性电阻电路的一般分析方法

清华考研 电路原理课件 第3章  线性电阻电路的一般分析方法

返回目录
3.2 回路电流法(Loop Current Method)
基本思想 以假想的回路电流为未知量列写回路的KVL方程。 若回路电流已求得,则各支路电流可用回路电流线性组合表 示。 a 选图示的两个独立回路, 设回路电流分别为il1、 il2。 支路电流可由回路电流表出
I1 R1 US1
+ –
+ : 流过互阻的两个回路电流方向相同 - : 流过互阻的两个回路电流方向相反 0 : 无关
uSlk: 第k个回路中所有电压源电压升的代数和。
回路法的一般步骤: (1) 选定l=b-(n-1)个独立回路,标明回路电流及方向; (2) 对l个独立回路,以回路电流为未知量,列写 其 KVL方程; (3) 求解上述方程,得到l个回路电流; (4) 求各支路电流(用回路电流表示); 网孔电流法(mesh-current method) 对平面电路( planar circuit ),若以网孔为独立回 路,此时回路电流也称为网孔电流,对应的分析方法称 为网孔电流法。
本章重点 本章重点 3. 3. 1 1 支路电流法 支路电流法 3. 3. 2 2 回路电流法 回路电流法 3. 3. 3 3 节点电压法 节点电压法
重点 本章重点 � 本章
• 熟练掌握电路方程的列写方法 � 支路电流法 � 回路电流法 � 节点电压法
返回目录
3.1 支路电流法 (Branch Current Method)
支路电流法: 以各支路电流为未知量列写电路方程分析电路的方法。 举例说明 2
支路数 b=6
R4
节点数 n=4
i2
1
R2 i3 R3 R1 i1 R6
+ 4
(1) 取支路电流 i1~ i6为独立变

线性电路的分析方法解析

线性电路的分析方法解析

线性电路的分析方法解析线性电路是由被动元件(如电阻、电容、电感等)和有源元件(如电源、放大器等)组成的一种电路。

线性电路主要通过应用基本电路定律和电路分析方法来分析和解决电路问题。

以下是常见的线性电路分析方法:1.基本电路定律:线性电路分析的基础是基本电路定律,包括欧姆定律(电流与电压成正比关系)、基尔霍夫电压定律(环路电压之和为0)和基尔霍夫电流定律(节点电流之和为0)。

通过这些定律可以建立电路的等式,进一步解决电路问题。

2.等效电路:将复杂的线性电路简化为等效电路是简化分析的常见方法。

等效电路可以用简单的电路元件(如电阻、电流源等)来代替原始电路,但仍然保持电路特性不变。

常见的等效电路包括电阻串联、并联、电流源串联和电压源并联等。

3.节点电压法:节点电压法是一种常用的线性电路分析方法。

它通过将电路中的节点连接到地(或任意选定基准点)上,使用基尔霍夫电流定律分析各节点的电压。

通过列写节点电压方程,可以解得节点的电压值,进而计算电路中的电流和功率等参数。

4.微分方程法:微分方程法是分析线性电路的另一种常见方法。

通过对电路中的元件进行建模,可以得到元件之间的基本关系式,进而得到描述电路行为的微分方程。

通过求解微分方程可以得到电路中的电流和电压等参数。

5.模拟计算:模拟计算是一种常用的线性电路分析方法。

通过使用模拟计算软件,将电路图输入并设置元件参数和初始条件,软件可以自动计算电路中的电流、电压和功率等参数,并绘制相应的波形图。

模拟计算可以方便地分析复杂的线性电路,并可以进行参数的优化和灵敏度分析。

6.相量法:对于交流电路,相量法是一种便捷的分析方法。

相量法将交流电压和电流看作有大小和相位的量,通过将它们用复数表示来进行分析。

通过相量法可以方便地计算交流电路中的电路参数,如电流、电压、功率等。

7.频域分析:频域分析是分析交流电路的另一种常用方法。

频域分析通过将电路中的电压和电流信号进行傅里叶变换,将它们从时域转换为频域。

第二章 线性电阻电路分析

第二章  线性电阻电路分析

第二章线性电阻电路分析2—1 图示电路,求i、u ab和R。

解:(a)经等效变换后,可得到右示(a’)电路。

(b)经等效变换后,可得到右示(b’)电路。

2—2 图示电路,求i。

解:电路(a)经等效变换后,可得到(b)图电路。

2-3 图示电路,求i、u s。

解:原电路经等效变换后,可得到下图电路。

2-4 图示电路,求输入电阻R O。

解:原电路经△—Υ等效变换可得到所示对应电路,其中:(a)(b)R(电路中的电阻单位均为欧姆)。

2-5试求图示各电路的等效电阻abΩ=+++⨯+=14108)53(8)53(abR 3A 136V 50V +-+-+-U o 8Ω10Ω2Ω40Ωi m1i m2i m3 (a) (b) (c) 解:(a )(b )等效电路如图:(c )等效电路如图:2-6用网孔电流法求图示电路的各支路电流。

2-7 用网孔电流法求解下图所示电路中的电压Uo 。

解: 对网孔1:i m1=3A1ΩΩ-223u u n n -521u u n n -9331+-u u n n 对网孔2:-8i m1+(2+8+40)i m2+40i m3=136对网孔3:+10i m1+40i m2+(40+10)i m3=50 由上三式联立解得i m1=3A i m2=8A i m3=-6A 所以 Uo=40(i m2+ i m3)=40(8-6)=80V2-8 用节点电压法求解下图所示电路中的电压u ab解: (与15A 串联的1Ω电阻去掉),以C 为参考节点对节点a :(1+1+1)u a -u b =10 (1) 对节点b :-u a +(1+1)u b =15 (2) 由(1)(2)联立解得u a =7V u b =11V 所以 u ab =u a -u b =7-11=-4V2-9 用节点电压法求解下图所示电路中电流的Is 和Io 。

1Ω1Ω 解:以④为参考节点对节点①:un 1=48V 对节点②:021)216151(51321=-+++-u u u n n n对节点③:0)2112121(21121321=+++--u u u n n n由上三式联立解得 u n 1=48Vu n 2=18V u n 3=12V 节点①由kcl : Is= + =9A Io= =-3A2-10求解图2-11所示电路中各电源提供的功率+-27V 6A 5Ω4Ω1Ωi m1i m2i m3+-27V 6A 5Ω4Ω1Ω①解法一:节点电压法以③为参考节点 对节点①:27201)201411(21=-++u u n n对节点②:6)51201(20121-=++-u u n n 上两式联立解得u n 1=20Vu n 2=-20V I=1271-u n =-7A所以电压源对应P 1=UI=27*(-7)=-189 发出189W 功率 电流源对应P 2=UI=u n 2*6=-20*6=-120W 发出120W 功率 解法二:用网孔法 网孔1:(1+4)i m1+4i m2=-27 网孔2:4 i m1+(4+20+5)i m2-5 i m3=0 网孔3:i m3=6A 上三式联立解得 i m1=-7A i m2=2A 所以电压源对P 1=27 i m1=27*(-7)=-189W电流源对应P 2=UI (i m2-i m3)*5*6=-120W 2-11 图示电路,求u 3。

线性电阻电路的一般分析方法-A

线性电阻电路的一般分析方法-A

受控源是电路中一种特殊的元件,其电压或电流受其他元件的控制。通
过应用叠加定理,可以将受控源转化为独立源,从而简化电路分析和计
算。
THANKS.
叠加定理的步骤
1. 将复杂电路分解为若干个独 立源和电阻元件的简单电路。
2. 分别计算各个独立源单独作 用于电路时产生的电流或电压

3. 将各个电流或电压值进行代 数相加,得到总电流或电压。
4. 根据总电流或电压和电阻值 ,计算出任意支路的电流或电 压。
叠加定理的应用实例
01
1. 计算复杂电路的总电阻
网孔分析法的步骤
确定网孔
根据电路图,将电路分解 为若干个网孔,每个网孔 由一个或多个支路组成。
设定电流变量
在每个网孔中设定一个 电流变量,并标明电流
的方向。
列写方程
解方程
根据基尔霍夫定律(KCL) 和欧姆定律,列出每个网孔
的电压和电流方程。
求解列出的方程组,得 到各网孔的电流和电压。
网孔分析法的应用实例
线性电阻电路的分析
05
方法-叠加定理
叠加定理的原理
叠加定理是线性电路的基本性质,它表明在多个独立源共同作用的线性电阻电路 中,任一支路的电流或电压等于各个独立源单独作用于电路时在该支路产生的电 流或电压的代数和。
叠加定理只适用于线性电阻电路,对于非线性元件或含有非线性元件的电路,叠 加定理不成立。
线性电阻电路的一般分 析方法-a
目录
• 线性电阻电路的基本概念 • 欧姆定律与基尔霍夫定律 • 线性电阻电路的分析方法-节点分析法 • 线性电阻电路的分析方法-网孔分析法 • 线性电阻电路的分析方法-叠加定理
线性电阻电路的基本
01

第三章--电阻电路的一般分析

第三章--电阻电路的一般分析
所以网孔法只需按 KVL列电路方程。 1. 分析步骤:
i1 R1 ① R3 i3
i2
us+1
-
imu1sR2+2
im2
+ us3
-
-
(1)标出网孔电流的参考方向;

(2)以各自的网孔电流方向为绕行方向,
列KVL方程; 注意:im1和im2都流过R2!
孔1: R1 im1+R2 im1-R2im2 = us1 -us2 孔2:-R2 im1+R2 im2 +R3 im2 = us2-us3
3

4
5
④6
4个方程相加结果为0,不是相互独立的。
把任意3个方程相加起来,必得另一个方程。
相差一个符号,原因是各电流在结点① ② ③若
是流入(出),则在结点④就是流出(入) 。
2019年9月13日星期
9

上述4个方程中,任意3个是独立的。
对具有n个结点的电路,独立的KCL方程为任意 的(n-1)个 。 与独立方程对应的结点叫做独立结点。
现在介绍有关 “图论”的初步知识, 目的是研究电路的连 接性质,并讨论电路 方程的独立性问题。
因为KCL和KVL与元件的性质无关, 所以讨论电路方程的独立性问题时,可以用一
个简单的线段来表示电路元件。
2019年9月13日星期
3

用线段代替元件,称支路。 线段的端点称结点 。
这样得到的几何结构图称为 图形,或“图(Graph)”。
二、 KVL的独立方程数 与KVL的独立方程对应的回路称独立回路。
因此,要列出KVL的独立方程组,首先要找出与之 对应的独立回路组。
有时,寻找独立回路组不是一件容易的事。利用 “树”的概念会有助于寻找一个图的独立回路组。

电阻电路的一般分析法

电阻电路的一般分析法
如有限元法、有限差分法等。
高阶电路的分析涉及到多个动态 元件之间的相互作用,需要综合
考虑电路的时域和频域特性。
05
非线性电阻电路的分析
非线性电阻元件的特性
1 2 3
电压-电流特性
非线性电阻元件的电压和电流之间的关系是非线 性的,线性电阻元件的电阻值随温度变化而变化,通 常表现出正温度系数(PTC)或负温度系数 (NTC)特性。
04
线性电阻电路的分析
一阶线性电阻电路
一阶线性电阻电路是指电路中 只包含一个动态元件(如电阻
、电容或电感)的电路。
一阶线性电阻电路的分析方法 主要包括时域分析和频域分析

时域分析是通过建立和求解一 阶常微分方程来研究电路的瞬 态响应。
频域分析是通过傅里叶变换将 时域函数转换为频域函数,从 而分析电路的频率响应。
时间特性
某些非线性电阻元件的电阻值会随着时间的推移 而发生变化,例如由于化学反应或机械变形引起 的电阻变化。
非线性电阻电路的分析方法
解析法
通过数学公式推导电路元件的电压、电流和功率等参数,适用于 简单电路。
图解法
通过绘制电路图并使用欧姆定律、基尔霍夫定律等基本电路定理 进行分析,适用于复杂电路。
计算机辅助分析法
局限性
计算机辅助分析依赖于精确的模型和参数,对于复杂电路或非线性元件的分析可能存在误差;对于实 际电路的布局和布线等因素,计算机辅助分析可能无法完全模拟;对于一些特定应用领域,如生物医 学工程或量子计算等,现有的计算机辅助分析工具可能不适用。
THANKS FOR WATCHING
感谢您的观看
电阻元件的种类
01
02
03
固定电阻器
阻值固定的电阻器,常用 的有碳膜电阻、金属膜电 阻等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(R1+R2) il1 -R2 il2 = US1- US2
-R2 il1 + (R2+R3) il2 - R3 il3 = US2 -R3 il2 + (R3+R4) il3= -US4
(3) 求解回路电流方程,得 il1 , il2 , il3 (4) 求各支路电流: I1= il1 , I2= il2 – il1 , I3= il3- il2 ,I4=- il3

有6个支路电流,需列写6个方程。
2
KCL方程:
i2 R2 i3
1
1
R4
2 i4
R3
3
1 i1 i2 i6 0
2 i2 i3 i4 0
3 i4 i5 i6 0
R1 i1
3 4 R5 i5
取网孔为基本回路,沿顺时 针方向绕行列KVL写方程:
i6 回路1 u2 u3 u1 0
I3 由于I2已知,故只列写两个方程
7 节点a:–I1+I3=6
避开电流源支路取回路:
b
7I1+7I3=70
3. 2 回路电流法 (loop current method)
基本思想: 以假想的独立回路电流为独立变量。各支路电 流可用回路电流线性组合表示。
a
i1
i2
i3
R1
R2
+ il1 + il2
** 增加回路电流和电流源电流的关系方程
IS= il1- il3
方法2:选取独立回路时,使理想电流源支路仅仅 属于一个回路, 该回路电流即 IS 。
R3
_ Ui + il3
R4
+ US1_
R1
IS R_2 il1 US2
+
il2
R5
il1 =IS -R2 il1+(R2+R4+R5) il2 +R5 il3=-US2 R1 il1+R5 il2 +(R1+R3+R5) il3=US1
n个结点的电路, 独立的KCL方程为n-1个。
2.KVL的独立方程数
KVL的独立方程数=基本回路数=b-(n-1)
结 n个结点、b条支路的电路, 独立的 论 KCL和KVL方程数为:
(n 1) b (n 1) b
3.1 支路电流法 (branch current method )
支路电流法:以各支路电流为未知量列写电路方程。
R2 i R4 i4
i5 R5
02
标准形式的节点电压方程
1111
11
( R1
R2
R3
R4 ) un1
( R3
R4 )un2
iS1
iS2
iS3
11
111
( R3
R4 )un1
( R3
R4
R5 ) un2
i S3
G11=G1+G2+G3+G4 节点1的自电导,等于接在节点1上 所有支路的电导之和
推广到 l 个回路 其中
R11il1+R12il2+ …+R1l ill=uSl1
R21il1+R22il2+ …+R2l ill=uSl2 …
Rl1il1+Rl2il2+ …+Rll ill=uSll
Rkk: 自电阻(为正) ,k =1 , 2 , , l
+ : 流过互阻两个回路电流方向相同 Rjk: 互电阻 - : 流过互阻两个回路电流方向相反
② 找出控制量和回路电流关系。
U2=3(il2 – il1) ②
解得
il1=1.19A
il2 =0.92A 各支路电流为:il3=-0.51A
I1= il1 =1.19A , I2= il1- il2 =0.27A , I3= il2 =0.92A
I4= il2 –il3=1.43A , I5= il3 =-0.52A
a

I1
I2
I3 b=3 , n=2 , l=3
R1
R2
E1
E2
R3
变量:I1 , I2 , I3
KCL KVL
a:
-I1-I2+I3=b 0 一个独立方程
b: I1+I2-I3= 0
I1R1-I2R2=E1-E2 I2R2+I3R3= E2 I1R1+I3R3= E1
二个独立方程
规律 KCL: n - 1 KVL: b - (n - 1)
第2章 线性电阻电路的一般分析方法
重点:
1. 熟练掌握电路方程的列写方法: 支路电流法 回路电流法 节点电压法
2. 掌握含运算放大器的电路的分析方法。
线性电路的一般分析方法
(1) 普遍性:对任何线性电路都适用。 (2) 系统性:计算方法有规律可循。 方法的基础
(1)电路的连接关系—KCL,KVL定律。 (2)元件的电压、电流关系特性。
iR出= iS入 i1+i2+i3+i4=iS1-iS2+iS3
0 -i3-i4+i5=-iS3

iS3 un1 1 i3
un2 R3 2
iS1
i1 R1 iS2
R2 i4 R4 i2
i5 R5
0
i1+i2+i3+i4=iS1-iS2+iS3 -i3-i4+i5=-iS3
i1
un1 R1
i2
un1 R2
例2.
I1 7
+ 70V

解2.
I1 7
+ 70V

列写支路电流方程.(电路中含有理想电流源)
a
I2
1
11 +
6A
U
_
2
b
a I2
11 1
6A
解1. I3
(1) n–1=1个KCL方程:
节点a:–I1–I2+I3=0
7
(2) b–( n–1)=2个KVL方程:
7I1–11I2=70-U
11I2+7I3= U 增补方程:I2=6A
6
4
5
2
1
3
5 2
1
3
6
2 13
结论
支路数=树枝数+连支数 =结点数-1+基本回路数
割集Q (Cut set )
Q是连通图G中支路的集合,具有下述性质: (1)把Q中全部支路移去,图分成二个分离部分。 (2)任意放回Q 中一条支路,仍构成连通图。
6
1 9
43Leabharlann 728 56
1 9
4
3
7
28 5
割集:(1 9 6)(2 8 9)(3 6 8)(4 6 7)(5 7 8) (3 6 5 8 7)(3 6 2 8)是割集吗?
R6 + uS –
回路2 回路3
u4 u5 u3 0
结合元件特性消去支路电压得: u1 u5 u6 uS
R2i2 R3i3 R1i1 0 R4i4 R5i5 R3i3 0
R1i1 R5i5 R6i6 uS
支路电流法的一般步骤:
(1) 标定各支路电流(电压)的参考方向;
基本割集
只含有一个树枝的割集。割集数=n-1
连支集合不能构成割集
3.2 KCL和KVL的独立方程数
1.KCL的独立方程数
2
1
2
1 43
3
6
5
4
结论
1 i1 i4 i6 0 2 i1 i2 i3 0 3 i2 i5 i6 0 4 i3 i4 i5 0
1 + 2 + 3 + 4 =0
R5
元件的串联及并联 组合作为一条支路
n4 b6
抛开元 件性质
n5
1 2
b8
8 3 5 4
1
3
5
2
4
6
7
6
一个元件作 为一条支路
有向图
(1)连通图
图G的任意两节点间至少有一条路经 时称为连通图,非连通图至少存在两 个分离部分。
(2) 子图
若图G1中所有支路和结点都是图G中 的支路和结点,则称G1是G的子图。
i3
un1 un2 R3
i4
un1 un2 R4
i5
un2 R5
un1 R1
un2 R2
un1 un2 R3
un1 un2 R4
iS1
iS2
iS3
un1 un2 R3
un1 un2 R4
un2 R5
iS3
整理,得
1111
11
( R1
R2
R3
R4 ) un1
( R3
R4 )un2
令 R11=R1+R2 代表回路1的总电阻(自电阻) R22=R2+R3 代表回路2总电阻(自电阻) R12=-R2 , R21=-R2 代表回路1和回路2的公共电阻(互电阻)
i1 R1
+ uS1

a
i2 R2
uil1S2 +
il2

b
i3
(R1+ R2) il1-R2il2=uS1-uS2 - R2il1+ (R2 +R3) il2 =uS2
iS1
iS2
iS3
11
111
( R3
R4 )un1
( R3
R4
R5 ) un2
i S3
令 Gk=1/Rk,k=1, 2, 3, 4, 5
上式简记为 iS
G11un1+G12un2 = isn1
相关文档
最新文档