《等腰三角形的性质》优秀课件

合集下载

等腰三角形的性质(八下优质课件)

等腰三角形的性质(八下优质课件)

等边对等角 三线合一
注意是指同一个三角形中
注意是指顶角的平分线,底 边上的高和中线才有这一性 质.而腰上高和中线与底角 的平分线不具有这一性质.
∵AB=AC, ∠1=∠2(已知),
12
∴BD=CD,AD⊥BC(等腰三角形三线合一). B D C
∵AB=AC, BD=CD (已知),
∴∠1=∠2,AD⊥BC(等腰三角形三线合一).
∵AB=AC, AD⊥BC(已知), ∴BD=CD, ∠1=∠2(等腰三角形三线合一).
典例精析
例1 如图,在△ABC中 ,AB=AC,点D在AC上, 且BD=BC=AD,求△ABC各角的度数.
角∠BAC的角平分线、底边BC上的高线 .
总结归纳
定理:等腰三角形的两个底角相等(等边对等角).
如图,在△ABC中, ∵AB=AC(已知), ∴∠B=∠C(等边对等角).
A
B
C
推论:等腰三角形顶角的平分线、底边上的中线及 底边上的高线互相重合(三线合一).
证明后的结论,以后可以直接运用.
A 综上可得:如图,在△ABC中,
(1)若AD=AE,求证:BD=CE;
(2)若BD=CE,F为DE的中点,如图②,求证:
AF⊥BC.
A
A
B
D GE
B C
DF E
C
图①
图②
解析:(1)过A作AG⊥BC于G,根据等腰三角形的性质
得出BG=CG,DG=EG即可证明;(2)先证BF=CF,
再根据等腰三角形的性质证明.
A
A
B
D GE
B C
1.两点确定一条直线;
2.两点之间线段最短; 3.同一平面内,过一点有且只有一条直线与已知直线

《等腰三角形的性质》ppt课件

《等腰三角形的性质》ppt课件

C ∵ ∠A= ∠ B= ∠ C ∴△ABC是等边三角形
3 . 有一个角是60°的等腰 三角形是等边三角形.
∵ ∠B=600 , AB=BC ∴△ABC是等边三角 形
怎样判断三角形ABC是等边三角形?
1.三边都相等的三角形是等边三角形.(定义)
A ∵AB=BC=AC
∴△ABC是等边三角形 一般三角形 B
B
D
C

A
归纳:等腰三角形的性质
从边看:等腰三角形的两腰相等 AB=AC
B
从角看: 等腰三角形的两底角相等 ∠B=∠C
D
C
从重要线段看: 等腰三角形顶角的平分线、底边上 的中线和底边上的高线互相重合
从对称性看:
等腰三角形是轴对称图形
等腰三角形性质: (简写成“等边对等角”); 性质1 等腰三角形的两个底角相等。
与底边上的高互相重合). ∴∠BAD=∠CAD=50°
A
三边都相等的三角形叫等边三角形。
AB=BC=CA
等边三角形是特殊的等腰三 角形也叫正三角形。
B
C
提出问题:等边三角形有哪些性质呢?
根据等腰三角形的性质去探讨等边三角形的性质:
①从边看 ③从对称性看
②从角看
④从重要线段看
等边三角形的性质
1 .三条边相等。 2.等边三角形的内角都相等,且等于60 °
等腰三角形的定义
有两条边相等的三角形叫做等腰三角形。
相等的两条边叫做腰 另一条边叫做底边
两腰所夹的角叫做顶角
腰与底边的夹角叫底角
注:等腰三角形中顶角可以是锐角、 直角、钝角;但底角只能是锐角
等腰三角形是轴对称图形,顶角平 分线(底边上的高、底边上的中线) 所在的直线是它的对称轴

《等腰三角形的性质》ppt课件

《等腰三角形的性质》ppt课件
若只知道一个角为60°,但无法确定该角是顶角还是底角,则不能判定为等边三角形 。
在处理与等腰三角形有关的问题时,常常需要分类讨论,并考虑各种特殊情况。
04
等腰三角形面积计算与应用
面积计算公式推导
1 2
等腰三角形面积公式
S = 1/2 × b × h,其中b为底边长度,h为高。
通过已知两边和夹角求面积
特点
等腰三角形是轴对称图形,有一条对称轴,即底边的垂直平 分线;等腰三角形的两底角相等;等腰三角形底边上的垂直 平分线、底边上的中线、顶角平分线和底边上的高互相重合 ,简称“三线合一”。
与等边三角形关系
区别
等边三角形的三边都相等,而等腰三 角形只有两边相等;等边三角形的三 个内角都是60度,而等腰三角形的 两个底角相等,但不一定都是60度 。
应用举例
利用两边相等定理解决与等腰 三角形相关的问题,如角度计
算、边长求解等。
两角相等定理
两角相等定理内容
等腰三角形的两个底角相 等。
定理证明方法
通过构造高线或利用相似 三角形进行证明。
应用举例
利用两角相等定理解决与 等腰三角形相关的问题, 如角度计算、相似三角形 判定等。
对称性及其推论
对称性
等腰三角形是轴对称图形,其 对称轴是底边的垂直平分线。
若已知等腰三角形的两边a和夹角θ,则面积S = 1/2 × a^2 × sinθ。
3
通过已知三边求面积
应用海伦公式,先求出半周长p = (a + b + c) / 2,再代入公式S = sqrt[p(p - a)(p - b)(p - c)] 。
典型例题解析
例题1
例题3
已知等腰三角形的底边长为10cm, 腰长为8cm,求其面积。

《等腰三角形的性质》优秀课件

《等腰三角形的性质》优秀课件

全等识别
若两个三角形三边及三角分别相等,则这两个三角形全等。在等腰三角形中, 若两个等腰三角形的底边和腰长分别相等,则这两个等腰三角形全等。
2024/1/26
21
对后续知识点(如圆、三角函数)的铺垫作用
对圆的知识点铺垫
等腰三角形的性质与圆的性质有密切联系。例如,在等腰三角形中,底边上的中垂线同时也是底边所 在圆的直径;此外,在等腰三角形中引入外接圆和内切圆的概念,可以进一步探讨三角形的性质。
SAS全等判定
若两个三角形两边和夹角分别相等,则这两个三 角形全等。
3
HL全等判定(直角三角形)
在直角三角形中,若斜边和一条直角边分别相等 ,则这两个三角形全等。
2024/1/26
5
与其他特殊三角形关系
与等边三角形的关系
等边三角形是特殊的等腰三角形,三 边都相等。
与相似三角形的关系
若两个等腰三角形的顶角和底角分别 相等,则这两个三角形相似。
8
边角关系
等腰三角形中,两个等腰边所 对的两个底角相等,即等边对 等角。
2024/1/26
等腰三角形的顶角平分线、底 边上的中线、底边上的高相互 重合,即“三线合一”。
等腰三角形中,若有一个角是 60度,则这个三角形是等边三 角形。
9
面积计算公式
等腰三角形的面积可以通过以下公式计算
面积 = (底边长度 × 高) / 2。其中,底边长度是两个等腰边所夹的底边的长度, 高是从顶点到底边的垂直距离。
《等腰三角形的性质》 优秀课件
2024/1/26
1
目录
2024/1/26
• 等腰三角形基本概念 • 等腰三角形性质探究 • 等腰三角形在生活中的应用 • 等腰三角形相关定理证明 • 等腰三角形在几何变换中的地位和作用 • 典型例题解析与课堂互动环节

等腰三角形性质公开课课件

等腰三角形性质公开课课件

等腰三角形性质公开课课件一、等腰三角形的定义•等腰三角形是指两条边的长度相等的三角形。

•等腰三角形的两个底角(底边的两个对角)也是相等的。

二、等腰三角形的性质1.等腰三角形的底边中点与顶点连线的垂直平分线重合。

2.等腰三角形的高也是中线、角平分线和垂直平分线。

3.等腰三角形的高也是底边的中线。

4.等腰三角形的对角也是顶角的平分线。

三、等腰三角形的性质证明1. 等腰三角形的底边中点与顶点连线的垂直平分线重合证明:设等腰三角形 ABC 的底边为 AC,顶点为 B,底边中点为 M,顶点到底边的垂直平分线为 BM。

因为 AM = CM(等腰三角形的性质),且 BM 也是 AM 的垂直平分线,所以BM = AM = CM。

又因为 BM 的定义是顶点到底边的垂直平分线,所以 BM 也是 AC 的垂直平分线。

所以,等腰三角形的底边中点与顶点连线的垂直平分线重合。

2. 等腰三角形的高也是中线、角平分线和垂直平分线证明:设等腰三角形 ABC 的底边为 AC,顶点为 B,高为 BH,中点为 M,角平分线为BK。

由于等腰三角形的底边中点与顶点连线的垂直平分线重合(性质1),所以BH 是 AC 的垂直平分线。

又因为 BM 是 AC 的中线(三角形中线的性质),所以 BH 也是 BM 的垂直平分线。

又因为 BK 是角 B 的平分线,所以 BH 也是 BK 的垂直平分线。

综上所述,等腰三角形的高 BH 同时是 AC 的中线、角平分线和垂直平分线。

3. 等腰三角形的高也是底边的中线证明:设等腰三角形 ABC 的底边为 AC,顶点为 B,高为 BH,底边的中点为 M。

由等腰三角形的性质可知,等腰三角形的底边中点与顶点连线的垂直平分线重合。

所以,BH 是 AC 的垂直平分线,而 M 是 AC 的中点,所以 BH 也是 AM 的垂直平分线。

所以,BH 也是所有从顶点到底边的线段的垂直平分线。

又因为 BH 与 AC 重合(等腰三角形的性质),所以 BH 也是 AC 的中线。

等腰三角形的判定课件(共21张PPT)

等腰三角形的判定课件(共21张PPT)
复习回顾
等腰三角形的性质定理
1、从边看:等腰三角形的两腰相等。 (定义)
2、从角看:等腰三角形的两底角相等。 (性质定理1)
3、从重要线段看:等腰三角形的顶角平分线、 底边上的中线和底边上的高三线合一。 (性质定理2)
如何判定一个三角形是等腰三角形?
定义:有两边相等的三角形是等腰三角形。
还有其他方法吗?
A
B
D C
例2:已知:AD交BC于点O,AB∥CD,OA=OB
求证:OC=OD
问题:
1、若已知AB∥ CD,OC=OD,能
A
否证明OA=OB?
2、若已知OA=OB,OC=OD,能否
证明AB ∥ CD?
C
B O
D
规律:
AB ∥ CD,OA=OB,OC=OD中已知任两 个可推出第三个。
例3、如图,在Rt△ABC和Rt△A’B’C’中,
已知:△ABC中,∠B=∠CBAC的平分线AD
A
在△ BAD和△ CAD中, 1 2
∠B=∠C,
∠1=∠2,
B
AD=AD
C
D
∴ △ BAD≌ △ CAD(AAS)
∴AB=AC(全等三角形的对应边相等)
思考:作底边上的高可以吗?作底边中线呢?
等腰三角形的判定定理:
如果一个三角形有两个角相等,那么这两个 角所对的边也相等(简写成“等角对等边”)
∠ABC= ∠A’B’C’=90°,
AB=A’B’,AC=A’C’,
区别:条件和结论互换。
3、已知:ED ∥ OB,EO=ED
求证:Rt△ABC≌Rt△A’B’C’ 求证:OD平分 AOB。
例1 :已知:如图,∠CAE是△ABC的外角∠1=∠2,

等腰三角形的性质定理公开课获奖课件省赛课一等奖课件

等腰三角形的性质定理公开课获奖课件省赛课一等奖课件
做一做
目前请同学们把手中旳等腰三角形对折,使两腰 AB、AC重叠在一起,折痕为AD,你还能能找出那些线段相等?哪些角相等?
等腰三角形旳性质定理2 等腰三角形旳顶角平分线、底边上旳中线和高线相互重叠,简称等腰三角形三线合一
(1)假如AD是等腰三角形顶角旳平分线,那么AD也是 、 。
G
已知:如图,在D,E在BC上,AB=AC,AD=AE,则BD与CE相等吗?
E
A
B
C
D
H
练习5:
已知:在△ABC中,AB=AC, AD是BC边上旳中线, ∠ABC旳平分线BG交AD于点E,EF⊥AB,垂足为F.求证:EF=ED
A
E
F
G
D
C
B
练习6:
(2)假如AD是等腰三角形底边上旳中线,那么AD也是 、 。
(3)假如AD是等腰三角形底边上旳高线,那么AD也是 、 。
底边上旳高线
底边上旳中线
顶角旳平分线
底边上旳高线
底边上旳中线
顶角旳平分线
例1已知:如图,AD平分∠BAC,∠ADB=∠ADC 求证:AD⊥BC
等腰三角形旳性质
文字论述
几何语言
等腰三角形旳两底角相等(同一种三角形中,等边对等角)
∵AB=AC∴∠B=∠C
等腰三角形顶角旳平分线、底边上旳中线、高线相互重叠(简称等腰三角形三线合一)
∵AB=AC,∠1=∠2 ∴AD⊥BC,BD=CD
对称轴顶角平分线底边高线底边中线所在直线
轴对称
练习4:已知:在△ABC中,AB=AC,D为CA延长线上一点,DF⊥BC,交AB于点E,求证:∠D=∠AED
E
1、已知:在 △ ABC中AB=AC,OB=OC, AO旳延长线交BC于点D,求证:AD⊥BC.

等腰三角形的性质课件

等腰三角形的性质课件

A 12
B
D
C
证法2) 作△ ABC底边BC上的高AD ∠ ADB= ∠ ADC=90 ° AB=AC AD=AD △ ABD≌Rt△ ACD Rt ∠B=∠C 证法3) 作△ ABC的中线AD BD=CD AB=AC AD=AD ABD≌ △ ACD △ ∠B=∠C
A 12
1
B
D
C
课堂练习:
3 口答:
(1) 已知等腰三角形的一 个底角为70 °,那么此 等 腰三角形各内角的度数分 别是 ( ). (2) 已知等腰三角 形的顶角为70° ,那么 此 等腰三角形各内角的 度数分别是( )。
A
70 °
B
A 70 ° B
C
C
(3) 已知等腰三角形的一个内角为70°,那 么此 等腰三角形各内角的度数分别是( )。
剪一剪 想一想
• (1)、上面剪出的等腰三角形是轴对称 图形吗? • (2)、把剪出的等腰三角形ABC沿折痕 对折,找出其中重合的线段和角. • (3)由这些重合的线段和角,你能发现 等腰三角形的哪些性质呢
证法一:
作△ABC顶角的平分线AD
∠1= ∠ 2 AB=AC AD=AD △ ABD≌△ ACD ∠B= ∠C
有两边相等的三角形叫做等腰三角形。
三角形的三边有什么关系?
A
顶角 腰 腰
底角
底角
B
底边
C
试一试
• (1)等腰三角形一腰为3cm,底为4cm,则 它的周长是 ; • (2)等腰三角形的一边长为3cm,另一 边长为4cm,则它的周长是 ; • (3)等腰三角形的一边长为3cm,另一 边长为8cm,则它的周长是 。
(4) 已知等腰三角形的一个内角为120 °, 那么此 等腰三角形各内角的度数分别是( )。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提出一个猜想
△ABC是等腰三角形
AB=AC
轴对称图形
折痕AD所在直线 A
重合的边,重合的角
找一找
12
相等的边,相等的角
∠B=∠C
B
D
C
猜想:等腰三角形的两个底角相等。
验证猜想
命题:等腰三角形的两个底角相等。
ቤተ መጻሕፍቲ ባይዱ
已知:△ABC 中,AB=AC。
求证:∠B=∠C .
A
∠B=∠C
两个三角形全等 构造两个三角形
作辅助线
B
D
C
折痕AD
折痕AD是等腰△ABC的什么线?
A
A
A
12

B
D
CB
D
CB
D
C
如图,作△ABC 底边的中线AD
如图,作△ABC 底边的高AD
如图,作△ABC 顶角的平分线AD.
验证猜想
命题:等腰三角形的两个底角相等。
已知:△ABC 中,AB=AC,
求证:∠B=∠C .
A
B
D
C
证法一
证明:过A点作底边BC边上的中线AD.
A

x
2x B
D
2x 2x
C
谢谢观赏
AD=AD(公共边),
B
D
C
∴ Rt△ABD ≌ Rt△ACD(HL),
∴ ∠B=∠C.
证法三
证明:作顶角∠BAC的平分线AD,交BC于点D.
∵AD平分∠BAC ,
A
∴∠1=∠2.
在△ABD与△ACD中,
12
AB=AC(已知),
∠1=∠2(已证), AD=AD(公共边),
B
D
C
∴ △ABD ≌ △ACD(SAS),
∠B=∠C = 30°
2.(1)等腰三角形一个底角为75°,它的另外两个角为 _7_5_°_, 30°__;
(2)等腰三角形一个角为36°,它的另外两个角为 _7_2_°__,7_2_°_或__3_6_°__,1_0_8_°___;
(3)等腰三角形一个角为120°,它的另外两个角为_ _3_0_°,3_0_°.
等腰三角形性质
八年级上册(人教版)
温故知新
A
1.什么是等腰三角形?
顶 角


2.什么是它的腰和底?
3.什么是它的顶角? 4.什么是它的底角?
底 B角
底 角 底边
C
第一课时
目标呈现
壹 经历等腰三角形性质一的探究过程 难点
贰 理解掌握等腰三角形的性质一 , 并能初步运用性质解决有关问题 重点
实验探究
∴ ∠B=∠C.
性质总结
性质1 等腰三角形的两个底角相等(等边对等角).
A
已知:△ABC 中,AB=AC, 求证:∠B=∠C .
几何语言: ∵ AB=AC(已知) ∴ ∠B=∠C(等边对等角)
B
D
C
牛刀小试
1.如图,分别求出下列两个等腰三角形底角的度数.
A
A
36°
120°
B
C
B
C
∠B=∠C = 72°
在△ABD与△ACD中:
A
AB=AC(已知),
BD=DC(作图),
AD=AD(公共边),
∴ △ABD ≌ △ACD(SSS), ∴ ∠B=∠C.
B
D
C
证法二
证明:作底边BC的高AD,交BC于点D.
∵AD⊥BC,
A
∴ ∠ADB =∠ADC=90°.
在Rt△ABD与Rt△ACD中,
AB=AC(已知),
剪一剪 把一张长方形的纸按图中的 红线对折,并剪去阴影部分(一个直角 三角形),再把得到的直角三角形展开, 得到的△ABC有什么特点?
B
A
D
C
得出一个结论
A
A
展开
B
D
C
翻折
B
D
C
剪△出A的BC等是腰等三腰角三形角是形轴吗对?称为图什形么吗??
它对称轴是什么? 折痕AD所在的直线
结论:等腰三角形是轴对称图形.
课堂小结
等腰三角形是 轴对称图形
等腰三角 形的性质
等边对等角
注意是指同一个三角形中
发散思维
例1 如图,在△ABC中 ,AB=AC,点D在AC上,且
BD=BC=AD,求△ABC各角的度数.
解:∵AB=AC,BD=BC=AD, ∴∠ABC=∠C=∠BDC, ∠A=∠ABD. 设∠A=x,则∠BDC= ∠A+ ∠ABD=2x, 从而∠ABC= ∠C= ∠BDC=2x, 于是在△ABC中,有 ∠A+∠ABC+∠C=x+2x+2x=180 ° , 解得x=36 ° ,在△ABC中, ∠A=36°, ∠ABC=∠C=72°.
相关文档
最新文档