短时傅里叶变换matlab程序

合集下载

matlab如何做傅里叶变换

matlab如何做傅里叶变换

matlab如何做傅里叶变换MATLAB(Matrix Laboratory)拥有强大的数学计算能力,可以发挥傅里叶变换(Fourier Transform)的优势。

傅里叶变换是将一个时域信号转换成频域信号的过程,它已被广泛用于信号分析,数据压缩,图像处理,超声成像,通信等应用。

MATLAB具有三种不同的傅里叶变换工具,分别是fft(快速傅里叶变换),dft(离散傅里叶变换)和idft(逆离散傅里叶变换)。

下面介绍一下如何使用MATLAB做傅里叶变换:首先,确定待处理的信号,然后打开MATLAB编辑器,进入MATLAB命令模式,输入相应的程序,比如:x=1:15;这表示x取值范围从1到15,每一步都是1,也就是创建了一个时域信号。

接下来,就可以运行MATLAB中的傅立叶变换函数了。

如果要使用fft,可以使用fft(x);如果要使用dft,可以使用dft(x);如果要使用idft,可以使用idft(x)。

在运行完上述命令之后,MATLAB会返回一个结果,它代表了频域信号在每个频率周期下所对应的幅值,以及这些幅值对应的相位信息。

例如,如果运行fft(x),MATLAB会返回一个大小为15的频域信号,15个数字分别代表信号在每个频率周期下的幅值,并附带一个相位信息。

最后完成傅里叶变换后,可以使用MATLAB命令绘制一个傅里叶频谱图,大体上表示傅里叶变换的结果,它将提供有关信号的更多信息。

例如,可以根据傅里叶频谱图对比几个信号的频谱特性,并确定频率域中的各种特征等。

总的来说,使用MATLAB做傅里叶变换很容易,只需要几行MATLAB程序即可完成。

MATLAB提供了3种傅里叶变换工具,可以快速有效地完成傅里叶变换。

使用MATLAB还可以绘制出频谱图,提供有关信号的更多信息。

短时傅里叶变换matlab程序

短时傅里叶变换matlab程序

function [Spec,Freq]=STFT(Sig,nLevel,WinLen,SampFreq) %计算离散信号的短时傅里叶变换;% Sig 待分析信号;% nLevel 频率轴长度划分(默认值512);% WinLen 汉宁窗长度(默认值 64);% SampFreq 信号的采样频率(默认值1);if (nargin <1),error('At least one parameter required!');end;Sig=real(Sig);SigLen=length(Sig);if (nargin <4),SampFreq=1;endif (nargin <3),WinLen=64;endif (nargin <2),nLevel=513;endnLevel=ceil(nLevel/2)*2+1;WinLen=ceil(WinLen/2)*2+1;WinFun=exp(-6*linspace(-1,1,WinLen).^2);WinFun=WinFun/norm(WinFun);Lh=(WinLen-1)/2;Ln=(nLevel-1)/2;Spec=zeros(nLevel,SigLen);wait=waitbar(0,'Under calculation,please wait...');for iLoop=1:SigLen,waitbar(iLoop/SigLen,wait);iLeft=min([iLoop-1,Lh,Ln]);iRight=min([SigLen-iLoop,Lh,Ln]);iIndex=-iLeft:iRight;iIndex1=iIndex+iLoop;iIndex2=iIndex+Lh+1;Index=iIndex+Ln+1;Spec(Index,iLoop)=Sig(iIndex1).*conj(WinFun(iIndex2)); end;close(wait);Spec=fft(Spec);Spec=abs(Spec(1:(end-1)/2,:));Freq=linspace(0,,(nLevel-1)/2)*SampFreq;t=(0:(SigLen-1))/SampFreq;clfset(gcf,'Position',[20 100 500 430]);set(gcf,'Color','w');axes('Position',[ ]);mesh(t,Freq,Spec);axis([min(t) max(t) 0 max(Freq)]);colorbarxlabel('t/s');ylabel('f/Hz');title('STFT时频谱图');axes('Position',[ ]);plot(t,Sig);axis tightylabel('x(t)');title('时域波形');axes('Position',[ ]);PSP=abs(fft(Sig));Freq=linspace(0,1,SigLen)*SampFreq; plot(PSP(1:end/2),Freq(1:end/2)); title('频谱');。

matlab自行编写fft傅里叶变换

matlab自行编写fft傅里叶变换

傅里叶变换(Fourier Transform)是信号处理中的重要数学工具,它可以将一个信号从时域转换到频域。

在数字信号处理领域中,傅里叶变换被广泛应用于频谱分析、滤波、频谱估计等方面。

MATLAB作为一个功能强大的数学软件,自带了丰富的信号处理工具箱,可以用于实现傅里叶变换。

在MATLAB中,自行编写FFT(Fast Fourier Transform)的过程需要以下几个步骤:1. 确定输入信号我们首先需要确定输入信号,可以是任意时间序列数据,例如声音信号、振动信号、光学信号等。

假设我们有一个长度为N的信号x,即x = [x[0], x[1], ..., x[N-1]]。

2. 生成频率向量在进行傅里叶变换之前,我们需要生成一个频率向量f,用于表示频域中的频率范围。

频率向量的长度为N,且频率范围为[0, Fs),其中Fs 为输入信号的采样频率。

3. 实现FFT算法FFT算法是一种高效的离散傅里叶变换算法,它可以快速计算出输入信号的频域表示。

在MATLAB中,我们可以使用fft函数来实现FFT 算法,其调用方式为X = fft(x)。

其中X为输入信号x的频域表示。

4. 计算频谱通过FFT算法得到的频域表示X是一个复数数组,我们可以计算其幅度谱和相位谱。

幅度谱表示频率成分的强弱,可以通过abs(X)得到;相位谱表示不同频率成分之间的相位差,可以通过angle(X)得到。

5. 绘制结果我们可以将输入信号的时域波形和频域表示进行可视化。

在MATLAB 中,我们可以使用plot函数来绘制时域波形或频谱图。

通过以上几个步骤,我们就可以在MATLAB中自行编写FFT傅里叶变换的算法。

通过对信号的时域和频域表示进行分析,我们可以更好地理解信号的特性,从而在实际应用中进行更精确的信号处理和分析。

6. 频谱分析借助自行编写的FFT傅里叶变换算法,我们可以对信号进行频谱分析。

频谱分析是一种非常重要的信号处理技术,可以帮助我们了解信号中所包含的各种频率成分以及它们在信号中的能量分布情况。

matlab如何做傅里叶变换

matlab如何做傅里叶变换

matlab如何做傅里叶变换
MATLAB 提供了多种函数来完成傅里叶变换,其中 fft 函数是最
常用的一种。

fft 函数是通用快速傅里叶变换函数,它可以将任意时
域信号变换成频域信号,并得到该信号的功率谱和相位角信息。

fft 操作可以用下面六步完成:
(1)准备时域信号,得到 N 个样本数据;
(2)实施 N 点 DFT,得到 N 个复数的频域输出 X[k];
(3)将 X[k] 用数组形式表述出来,得到频域数组;
(4)计算频域功率信号,使用 P=|X[k]|^2 求出功率,形成功率.数组;
(5)计算频域信号的相位角,使用 C=arg(X[k]) 求出相位角,
形成相位角数组;
(6)根据产生的功率数组和相位角数组,绘制出功率谱和相位角图像。

如果想要改变深度,可以使用混合的方法,即使用 fft 将时域信号转换为频域信号,再用离散傅里叶变换(DFT)或者离散余弦变换(DCT)来改变深度。

使用 MATLAB 编写的 fft 程序可以发现,fft 函数是一种快速方法,可以大大减少处理时间。

因此,通过使用 MATLAB fft 函数,相
比传统的 DFT 和 DCT,利用 MATLAB 来完成傅里叶变换显得更为简便快捷。

matlab怎么做傅里叶变换

matlab怎么做傅里叶变换

matlab怎么做傅里叶变换在信号处理中,傅里叶变换是一种基本的数学工具,它将时域信号转化为频域信号,以便进一步分析和处理。

MATLAB是一种功能强大的软件工具,通常被用来进行复杂的信号处理和分析。

这里将为您介绍如何在MATLAB中进行傅里叶变换。

第一步:导入信号数据首先,我们需要将信号数据加载到MATLAB中进行后续处理。

可以通过多种方式将信号数据导入MATLAB。

我们可以手动输入数据,将数据从文件中读入,或者从其他支持文件格式的工具中导入数据。

以下是一个读取音频信号数据的例子:[y, Fs] = audioread('myaudiofile.wav');其中,y是信号数据,Fs是采样率。

可以根据需要修改文件名和文件路径。

第二步:执行傅里叶变换现在我们将信号数据导入到MATLAB中后,可以通过内置函数fft()进行傅里叶变换。

该函数返回一个复值数组,包含该信号在频域上的幅度和相位信息。

以下是一个傅里叶变换的示例:Y = fft(y);这里,Y是频域信号数据。

为了清晰起见,可以对Y进行幅度谱操作,以便可视化表示。

幅度谱意味着我们只考虑频率分量的幅值,而忽略相位信息。

可以使用MATLAB内置函数abs()来计算幅度谱。

以下是一个展示如何计算幅度谱的例子:P2 = abs(Y/length(y));P1 = P2(1:length(y)/2+1);P1(2:end-1) = 2*P1(2:end-1);在上述代码中,P1包含Y的前一半,由于我们对称,可以完全表示频域的信息。

第三步:绘制信号波形和频域谱图绘制信号波形和频域谱图将有助于了解信号的特性。

MATLAB提供了多种可视化工具来展示信号和信号变换后的频谱图。

以下是一个展示如何绘制信号波形和幅度谱的例子:% 暂时将时间设为文本标签x轴t = (0:length(y)-1)/Fs;plot(t,y)title('Original Signal')xlabel('Time (s)')ylabel('Amplitude')% 设置频域坐标轴,计算频谱图f = Fs*(0:(length(y)/2))/length(y);plot(f,P1)title('Single-Sided Amplitude Spectrum of Original Signal') xlabel('f (Hz)')ylabel('|P1(f)|')这些代码将生成在同一窗口中生成时间域波形和频域幅度谱。

matlab如何做傅里叶变换

matlab如何做傅里叶变换

matlab如何做傅里叶变换# MATLAB中的傅里叶变换详解## 引言傅里叶变换是一种在信号处理和频谱分析中广泛应用的数学工具。

在MATLAB中,通过简单的命令就可以进行傅里叶变换,这使得信号处理变得更加便捷。

本文将详细介绍MATLAB中如何进行傅里叶变换,包括基本概念、函数调用和实际案例。

## 傅里叶变换的基本概念傅里叶变换是一种将信号从时域转换到频域的方法,它将信号表示为不同频率的正弦和余弦函数的组合。

在MATLAB中,我们可以使用傅里叶变换来分析信号的频谱特性,了解信号中包含的不同频率分量。

## MATLAB中的傅里叶变换函数在MATLAB中,执行傅里叶变换的主要函数是`fft`(快速傅里叶变换)。

以下是基本的语法格式:```matlabY = fft(X)```其中,X是输入信号,Y是傅里叶变换后得到的频谱。

这是最简单的用法,但在实际应用中,我们通常需要更多的控制和信息。

## 单边和双边频谱傅里叶变换得到的频谱通常是双边频谱,即包含正频率和负频率。

在实际应用中,我们更关心的可能是单边频谱,只包含正频率部分。

在MATLAB中,可以使用`fftshift`函数和`ifftshift`函数来实现频谱的移动。

```matlabY_shifted = fftshift(Y);```上述代码将得到的频谱Y进行频谱移动,使得正频率部分位于中心。

如果需要还原为原始频谱,可以使用`ifftshift`函数。

## 频谱可视化为了更直观地了解信号的频谱特性,我们通常使用图形来展示。

在MATLAB中,可以使用`plot`函数来绘制频谱图,同时配合使用`fftshift`等函数来处理频谱数据。

```matlabFs = 1000; % 采样频率T = 1/Fs; % 采样间隔L = 1000; % 信号长度t = (0:L-1)*T; % 时间向量X = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t); % 生成信号Y = fft(X); % 进行傅里叶变换f = Fs*(0:(L/2))/L; % 计算频率plot(f, abs(Y(1:L/2+1))); % 绘制单边频谱图xlabel('频率 (Hz)');ylabel('|Y(f)|');```上述代码生成了一个包含两个正弦波的信号,并绘制了其单边频谱图。

傅里叶变换matlab程序

傅里叶变换matlab程序

Fs = 1000;% Sampling frequency采样频率T = 1/Fs; % Sample time采样周期L = 1000;% Length of signal信号长度(点的个数)t = (0:L—1)*T; %Time vector时间向量(序列)(用来画图)% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid一个50赫兹正弦加上120赫兹正弦x = 0。

7*sin(2*pi*50*t) + sin(2*pi*120*t);y = x + 2*randn(size(t)); % Sinusoids plus noise正弦之和加上正态噪声figure(1);plot(Fs*t(1:50),y(1:50))title('Signal Corrupted with Zero-Mean Random Noise’)%被零均值噪声祸害的信号xlabel('time (milliseconds)')%It is difficult to identify the frequency components by looking at the original signal。

Converting to the frequency domain, the discrete Fourier transform of the noisy signal y is found by taking the fast Fourier transform (FFT):%从时域上直接看原信号难以确定各频率分量. 通过使用快速傅里叶变换FFT,实现了含噪声信号Y的离散傅里叶变换,从而把信号转换到频域上(确定频率分量)NFFT = 2^nextpow2(L); % Next power of 2 from length of yY = fft(y,NFFT)/L;f = Fs/2*linspace(0,1,NFFT/2+1);% Plot single—sided amplitude spectrum.figure(2);plot(f,2*abs(Y(1:NFFT/2+1)))title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)’)ylabel('|Y(f)|')A=xlsread('SHUJU2。

matlab如何做傅里叶变换

matlab如何做傅里叶变换

matlab如何做傅里叶变换
MATLAB 是一种用于数学建模和计算的高级编程语言,它拥有丰富的图形处理、计算和可视化工具,可以为用户提供强大的思维创新和简化研究的方法。

傅里叶变换 (FFT) 是一种快速的数学处理方法,可以用来将信号和系统的时间域表示转换为频率域中的表示。

MATLAB 具有内置函数,可帮助用户执行傅里叶变换,从而为用户提供了非常方便的使用方式。

首先,使用 MATLAB 中的 fft 函数可以进行傅立叶变换。

由于傅里叶变换是一种离散变换,因此在使用过程中,需要考虑计算时的采样频率等问题,使用如下语句可以实现:y = fft(x,n)。

其中,x 表示要进行变换的原始信号,n 表示要进行傅里叶变换的长度,默认的n 为原始信号的长度。

此外,MATLAB 还提供了另一个相关的函数 ifft,用于进行逆变换。

它的函数形式与前文所述的进行正向变换的函数非常类似,如下所示:ifft(x,n),其中 x 表示要逆变换的存储在矢量中的信号,n 表示要进行反变换的长度,默认的 n 为 x 的长度。

此外,MATLAB 还提供了另一个函数 fftshift,它主要用于移动傅里叶变换的中心位置,并调整频域的形状,因此可以有效地提高频谱的准确性。

最后,MATLAB 还提供了多种其他的傅里叶变换相关的相关函数,例如 fft2 用于二维离散时间信号的变换,fft3 用于三维离散时间信号的变换,以及 rofft、gofft 等形式的实数和复数形式的变换等。

因此,MATLAB 具有可扩展性强的特点,可以为不同的傅立叶变换应用场景提供支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

function [Spec,Freq]=STFT(Sig,nLevel,WinLen,SampFreq)
%计算离散信号的短时傅里叶变换;
% Sig 待分析信号;
% nLevel 频率轴长度划分(默认值512);
% WinLen 汉宁窗长度(默认值64);
% SampFreq 信号的采样频率(默认值1);
if (nargin <1),
error('At least one parameter required!');
end;
Sig=real(Sig);
SigLen=length(Sig);
if (nargin <4),
SampFreq=1;
end
if (nargin <3),
WinLen=64;
end
if (nargin <2),
nLevel=513;
end
nLevel=ceil(nLevel/2)*2+1;
WinLen=ceil(WinLen/2)*2+1;
WinFun=exp(-6*linspace(-1,1,WinLen).^2);
WinFun=WinFun/norm(WinFun);
Lh=(WinLen-1)/2;
Ln=(nLevel-1)/2;
Spec=zeros(nLevel,SigLen);
wait=waitbar(0,'Under calculation,please wait...');
for iLoop=1:SigLen,
waitbar(iLoop/SigLen,wait);
iLeft=min([iLoop-1,Lh,Ln]);
iRight=min([SigLen-iLoop,Lh,Ln]);
iIndex=-iLeft:iRight;
iIndex1=iIndex+iLoop;
iIndex2=iIndex+Lh+1;
Index=iIndex+Ln+1;
Spec(Index,iLoop)=Sig(iIndex1).*conj(WinFun(iIndex2)); end;
close(wait);
Spec=fft(Spec);
Spec=abs(Spec(1:(end-1)/2,:));
Freq=linspace(0,0.5,(nLevel-1)/2)*SampFreq; t=(0:(SigLen-1))/SampFreq;
clf
set(gcf,'Position',[20 100 500 430]);
set(gcf,'Color','w');
axes('Position',[0.1 0.45 0.53 0.5]);
mesh(t,Freq,Spec);
axis([min(t) max(t) 0 max(Freq)]);
colorbar
xlabel('t/s');
ylabel('f/Hz');
title('STFT时频谱图');
axes('Position',[0.1 0.1 0.55 0.25]);
plot(t,Sig);
axis tight
ylabel('x(t)');
title('时域波形');
axes('Position',[0.73 0.45 0.24 0.5]);
PSP=abs(fft(Sig));
Freq=linspace(0,1,SigLen)*SampFreq;
plot(PSP(1:end/2),Freq(1:end/2));
title('频谱');。

相关文档
最新文档