FFT快速傅里叶变换Matlab自编程序.

合集下载

matlab自行编写fft傅里叶变换

matlab自行编写fft傅里叶变换

傅里叶变换(Fourier Transform)是信号处理中的重要数学工具,它可以将一个信号从时域转换到频域。

在数字信号处理领域中,傅里叶变换被广泛应用于频谱分析、滤波、频谱估计等方面。

MATLAB作为一个功能强大的数学软件,自带了丰富的信号处理工具箱,可以用于实现傅里叶变换。

在MATLAB中,自行编写FFT(Fast Fourier Transform)的过程需要以下几个步骤:1. 确定输入信号我们首先需要确定输入信号,可以是任意时间序列数据,例如声音信号、振动信号、光学信号等。

假设我们有一个长度为N的信号x,即x = [x[0], x[1], ..., x[N-1]]。

2. 生成频率向量在进行傅里叶变换之前,我们需要生成一个频率向量f,用于表示频域中的频率范围。

频率向量的长度为N,且频率范围为[0, Fs),其中Fs 为输入信号的采样频率。

3. 实现FFT算法FFT算法是一种高效的离散傅里叶变换算法,它可以快速计算出输入信号的频域表示。

在MATLAB中,我们可以使用fft函数来实现FFT 算法,其调用方式为X = fft(x)。

其中X为输入信号x的频域表示。

4. 计算频谱通过FFT算法得到的频域表示X是一个复数数组,我们可以计算其幅度谱和相位谱。

幅度谱表示频率成分的强弱,可以通过abs(X)得到;相位谱表示不同频率成分之间的相位差,可以通过angle(X)得到。

5. 绘制结果我们可以将输入信号的时域波形和频域表示进行可视化。

在MATLAB 中,我们可以使用plot函数来绘制时域波形或频谱图。

通过以上几个步骤,我们就可以在MATLAB中自行编写FFT傅里叶变换的算法。

通过对信号的时域和频域表示进行分析,我们可以更好地理解信号的特性,从而在实际应用中进行更精确的信号处理和分析。

6. 频谱分析借助自行编写的FFT傅里叶变换算法,我们可以对信号进行频谱分析。

频谱分析是一种非常重要的信号处理技术,可以帮助我们了解信号中所包含的各种频率成分以及它们在信号中的能量分布情况。

matlab fft变换代码

matlab fft变换代码

MATLAB中提供了fft变换函数,可以用来对信号进行傅里叶变换,得到信号的频谱信息。

下面将介绍如何使用MATLAB进行fft变换,并给出代码示例。

1. 准备信号数据我们需要准备一段信号数据,可以是从文件中读取的音频数据,也可以是模拟信号的采样数据。

假设我们有一个长度为N的信号向量x,其中包含了我们要进行fft变换的信号数据。

2. 计算fft变换在MATLAB中,可以使用fft函数来对信号进行傅里叶变换。

在进行变换之前,通常需要对信号做一些预处理,如去除直流分量、进行窗函数处理等。

假设我们已经对信号进行了预处理,接下来可以对信号进行fft变换了。

代码示例如下:```matlabX = fft(x);```这里,X是得到的频谱数据,它是一个长度为N的复数向量,包含了信号的频谱信息。

3. 频谱数据处理得到频谱数据之后,通常需要对其进行进一步的处理,如计算幅度谱、相位谱、频谱图等。

代码示例如下:```matlabP2 = abs(X/N);P1 = P2(1:N/2+1);P1(2:end-1) = 2*P1(2:end-1);f = Fs*(0:(N/2))/N;plot(f,P1)title('Single-Sided Amplitude Spectrum of X(t)')xlabel('f (Hz)')ylabel('|P1(f)|')```在这段示例代码中,计算了信号的单边幅度谱,并绘制了频谱图。

在实际应用中,还可以根据具体需求对频谱数据进行进一步处理。

4. 代码示例下面给出一个完整的MATLAB代码示例,展示了如何进行fft变换并绘制频谱图:```matlab准备信号数据Fs = 1000; 采样频率t = 0:1/Fs:1-1/Fs; 时间向量x = cos(2*pi*100*t) + 2*sin(2*pi*200*t);计算fft变换N = length(x);X = fft(x);频谱数据处理P2 = abs(X/N);P1 = P2(1:N/2+1);P1(2:end-1) = 2*P1(2:end-1);f = Fs*(0:(N/2))/N;plot(f,P1)title('Single-Sided Amplitude Spectrum of X(t)')xlabel('f (Hz)')ylabel('|P1(f)|')```运行以上代码,即可得到信号的频谱图。

详解用matlab如何实现fft变换

详解用matlab如何实现fft变换

详解用matlab如何实现fft变换使用MATLAB实现FFT(快速傅里叶变换)非常简单。

MATLAB提供了内置的fft函数,可以直接用于计算信号的傅里叶变换。

首先,我们需要准备一个要进行傅里叶变换的信号。

可以使用MATLAB的数组来表示信号。

例如,我们可以创建一个包含100个采样点的正弦信号:```matlabFs=1000;%采样频率T=1/Fs;%采样间隔L=1000;%信号长度t=(0:L-1)*T;%时间向量A=0.7;%信号幅值f=50;%信号频率x = A*sin(2*pi*f*t); % 正弦信号```接下来,我们可以使用fft函数计算信号的傅里叶变换:```matlabY = fft(x); % 计算信号的傅里叶变换P2 = abs(Y/L); % 双边频谱P1=P2(1:L/2+1);%单边频谱P1(2:end-1) = 2*P1(2:end-1); % 修正幅度f=Fs*(0:(L/2))/L;%频率向量plot(f,P1) % 绘制单边频谱title('单边振幅谱')xlabel('频率 (Hz)')ylabel('幅值')```上述代码首先使用fft函数计算信号x的傅里叶变换,得到一个包含复数的向量Y。

然后,我们计算双边频谱P2,即将复数取模。

接下来,我们提取出单边频谱P1,并对幅度进行修正,以保证能量的准确表示。

最后,我们计算频率向量f,并绘制单边频谱。

运行上述代码,就可以得到信号的傅里叶变换结果的幅度谱图。

需要注意的是,FFT是一种高效的算法,但它要求输入信号的长度为2的幂。

如果信号的长度不是2的幂,可以使用MATLAB的fft函数之前,使用padarray函数将信号填充到2的幂次方长度。

此外,MATLAB还提供了其他一些函数,可以用于计算不同类型的傅里叶变换,如快速傅里叶变换、离散傅里叶变换、短时傅里叶变换等。

可以根据具体的需求选择合适的函数进行使用。

快速傅里叶变换fft的Matlab实现 实验报告

快速傅里叶变换fft的Matlab实现 实验报告

一、实验目的1在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解;2熟悉并掌握按时间抽取FFT算法的程序;3了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。

二、实验内容1仔细分析教材第六章‘时间抽取法FFT’的算法结构,编制出相应的用FFT 进行信号分析的C语言(或MATLAB语言)程序;用MATLAB语言编写的FFT源程序如下:%%输入数据f、N、T及是否补零clc;clear;f=input('输入信号频率f:');N=input('输入采样点数N:');T=input('输入采样间隔T:');C=input('信号是否补零(补零输入1,不补零输入0):');%补零则输入1,不补则输入0if(C==0)t=0:T:(N-1)*T;x=sin(2*pi*f*t);b=0;e lseb=input('输入补零的个数:');while(log2(N+b)~=fix(log2(N+b)))b=input('输入错误,请重新输入补零的个数:');endt=0:T:(N+b-1)*T;x=sin(2*pi*f*t).*(t<=(N-1)*T);end%%fft算法的实现A=bitrevorder(x);%将序列按二进制倒序N=N+b;M=log2(N);%M为蝶形算法的层数W=exp(-j*2*pi/N);for L=1:1:M%第L层蝶形算法B=2^L/2;%B为每层蝶形算法进行加减运算的两个数的间隔K=N/(2^L);%K为每层蝶形算法中独立模块的个数for k=0:1:K-1for J=0:1:B-1p=J*2^(M-L);%p是W的指数q=A(k*2^L+J+1);%用q来代替运算前面那个数A(k*2^L+J+1)=q+W^p*A(k*2^L+J+B+1);A(k*2^L+J+B+1)=q-W^p*A(k*2^L+J+B+1);endendend%%画模特性的频谱图z=abs(A);%取模z=z./max(z);%归一化hold onsubplot(2,1,1);stem(0:1:N-1,x,'DisplayName','z');title('时域信号');subplot(2,1,2);stem(0:1:N-1,z,'DisplayName','z');title('频谱图');figure(gcf)%画图2用FFT 程序计算有限长度正弦信号()sin(2),0*y t f t t N Tπ=≤<分别在以下情况下所得的DFT 结果并进行分析和讨论:a )信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625sb )信号频率f =50Hz ,采样点数N=32,采样间隔T=0.005sT=0.0046875sc)信号频率f=50Hz,采样点数N=32,采样间隔051015202530350510152025303505101520253035 e)信号频率f=50Hz,采样点数N=64,采样间隔T=0.000625sg)将c)信号后补32个0,做64点FFT三、实验分析DFT是对有限序列做傅里叶变换后在频域上进行采样,而相对应的时域以频谱上的采样频率的倒数进行周期拓展。

Matlab编程实现FFT变换及频谱分析的程序代码

Matlab编程实现FFT变换及频谱分析的程序代码

Matlab编程实现FFT变换及频谱分析的程序代码内容1.用Matlab产生正弦波,矩形波,以及白噪声信号,并显示各自时域波形图2.进行FFT变换,显示各自频谱图,其中采样率,频率、数据长度自选3.做出上述三种信号的均方根图谱,功率图谱,以及对数均方根图谱4.用IFFT傅立叶反变换恢复信号,并显示恢复的正弦信号时域波形图源程序%*************************************************************** **********%% FFT实践及频谱分析%%*************************************************************** **********%%*************************************************************** **********%%***************1.正弦波****************%fs=100;%设定采样频率N=128;n=0:N-1;t=n/fs;f0=10;%设定正弦信号频率%生成正弦信号x=sin(2*pi*f0*t);figure(1);subplot(231);plot(t,x);%作正弦信号的时域波形xlabel('t');ylabel('y');title('正弦信号y=2*pi*10t时域波形');grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(1);subplot(232);plot(f,mag);%做频谱图axis([0,100,0,80]);xlabel('频率(Hz)');ylabel('幅值');title('正弦信号y=2*pi*10t幅频谱图N=128');grid;%求均方根谱sq=abs(y);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('正弦信号y=2*pi*10t均方根谱');grid;%求功率谱power=sq.^2;figure(1);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('正弦信号y=2*pi*10t功率谱');grid;%求对数谱ln=log(sq);figure(1);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('正弦信号y=2*pi*10t对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(1);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的正弦信号波形');grid;%****************2.矩形波****************% fs=10;%设定采样频率t=-5:0.1:5;x=rectpuls(t,2);x=x(1:99);figure(2);subplot(231);plot(t(1:99),x);%作矩形波的时域波形ylabel('y');title('矩形波时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(2);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');title('矩形波幅频谱图');grid;%求均方根谱sq=abs(y);figure(2);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('矩形波均方根谱');grid;%求功率谱power=sq.^2;figure(2);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('矩形波功率谱');grid;%求对数谱ln=log(sq);figure(2);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('矩形波对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(2);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的矩形波波形');grid;%****************3.白噪声****************% fs=10;%设定采样频率t=-5:0.1:5;x=zeros(1,100);x(50)=100000;figure(3);subplot(231);plot(t(1:100),x);%作白噪声的时域波形xlabel('t');ylabel('y');title('白噪声时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(3);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');title('白噪声幅频谱图');grid;%求均方根谱sq=abs(y);figure(3);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('白噪声均方根谱');grid;%求功率谱power=sq.^2;figure(3);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('白噪声功率谱');grid;%求对数谱ln=log(sq);figure(3);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('白噪声对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(3);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的白噪声波形'); grid;。

Matlab编程实现FFT变换

Matlab编程实现FFT变换

Matlab编程实现FFT变换及频谱分析的程序代码内容1.用Matlab产生正弦波,矩形波,以及白噪声信号,并显示各自时域波形图2.进行FFT变换,显示各自频谱图,其中采样率,频率、数据长度自选3.做出上述三种信号的均方根图谱,功率图谱,以及对数均方根图谱4.用IFFT傅立叶反变换恢复信号,并显示恢复的正弦信号时域波形图源程序%*************************************************************** **********%% FFT实践及频谱分析%%*************************************************************** **********%%*************************************************************** **********%%***************1.正弦波****************%fs=100;%设定采样频率N=128;n=0:N-1;t=n/fs;f0=10;%设定正弦信号频率%生成正弦信号x=sin(2*pi*f0*t);figure(1);subplot(231);plot(t,x);%作正弦信号的时域波形xlabel('t');ylabel('y');title('正弦信号y=2*pi*10t时域波形');grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(1);subplot(232);plot(f,mag);%做频谱图axis([0,100,0,80]);xlabel('频率(Hz)');ylabel('幅值');title('正弦信号y=2*pi*10t幅频谱图N=128');grid;%求均方根谱sq=abs(y);figure(1);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('正弦信号y=2*pi*10t均方根谱');grid;%求功率谱power=sq.^2;figure(1);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('正弦信号y=2*pi*10t功率谱');grid;%求对数谱ln=log(sq);figure(1);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('正弦信号y=2*pi*10t对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(1);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的正弦信号波形');grid;%****************2.矩形波****************% fs=10;%设定采样频率t=-5:0.1:5;x=rectpuls(t,2);x=x(1:99);figure(2);subplot(231);plot(t(1:99),x);%作矩形波的时域波形xlabel('t');ylabel('y');title('矩形波时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(2);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');title('矩形波幅频谱图');grid;%求均方根谱sq=abs(y);figure(2);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('矩形波均方根谱');grid;%求功率谱power=sq.^2;figure(2);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('矩形波功率谱');grid;%求对数谱ln=log(sq);figure(2);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('矩形波对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(2);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的矩形波波形');grid;%****************3.白噪声****************% fs=10;%设定采样频率t=-5:0.1:5;x=zeros(1,100);x(50)=100000;figure(3);subplot(231);plot(t(1:100),x);%作白噪声的时域波形xlabel('t');ylabel('y');title('白噪声时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(3);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');title('白噪声幅频谱图');grid;%求均方根谱sq=abs(y);figure(3);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('白噪声均方根谱');grid;%求功率谱power=sq.^2;figure(3);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('白噪声功率谱');grid;%求对数谱ln=log(sq);figure(3);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('白噪声对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(3);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的白噪声波形'); grid;。

数字信号处理实验 matlab版 快速傅里叶变换(FFT)

数字信号处理实验 matlab版 快速傅里叶变换(FFT)

实验14 快速傅里叶变换(FFT)(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX 学号姓名处XXXX一、实验目的1、加深对双线性变换法设计IIR 数字滤波器基本方法的了解。

2、掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。

3、了解MA TLAB 有关双线性变换法的子函数。

二、实验内容1、双线性变换法的基本知识2、用双线性变换法设计IIR 数字低通滤波器3、用双线性变换法设计IIR 数字高通滤波器4、用双线性变换法设计IIR 数字带通滤波器三、实验环境MA TLAB7.0四、实验原理1、实验涉及的MATLAB 子函数(1)fft功能:一维快速傅里叶变换(FFT)。

调用格式:)(x fft y =;利用FFT 算法计算矢量x 的离散傅里叶变换,当x 为矩阵时,y 为矩阵x每一列的FFT 。

当x 的长度为2的幂次方时,则fft 函数采用基2的FFT 算法,否则采用稍慢的混合基算法。

),(n x fft y =;采用n 点FFT 。

当x 的长度小于n 时,fft 函数在x 的尾部补零,以构成n点数据;当x 的长度大于n 时,fft 函数会截断序列x 。

当x 为矩阵时,fft 函数按类似的方式处理列长度。

(2)ifft功能:一维快速傅里叶逆变换(IFFT)。

调用格式:)(x ifft y =;用于计算矢量x 的IFFT 。

当x 为矩阵时,计算所得的y 为矩阵x 中每一列的IFFT 。

),(n x ifft y =;采用n 点IFFT 。

当length(x)<n 时,在x 中补零;当length(x)>n 时,将x 截断,使length(x)=n 。

(3)fftshift功能:对fft 的输出进行重新排列,将零频分量移到频谱的中心。

调用格式:)(x fftshift y =;对fft 的输出进行重新排列,将零频分量移到频谱的中心。

FFT算法MATLAB实现程序使用

FFT算法MATLAB实现程序使用

FFT算法MATLAB实现程序使用
一、本程序主要的功能:
1,实现FFT的两种基2算法,DIT和DIF算法;
2,可以多次计算信号的FFT;
二、使用介绍:
1,在MATLAB软件运行该程序,出现如下提示界面:
⚫首先输入频率f1的数值,必须在要求的数值区间,否则会出现如下提示,需要重新输入f1数值:
⚫然后输入频率f2的数值,同样要求在要求的数值区间,否则会出现如下提示,需要重新输入f1数值:
⚫接着选择用DIF算法或者DIT算法:
⚫然后可以在图窗查看图形结果,或者在变量工作区查看计算结果:
⚫最后可以选择是否继续下次运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档