2021年浙江省温州市中考数学试卷含答案
中考真题浙江省温州市2021年中考数学试卷Word解析版

中考真题浙江省温州市2021年中考数学试卷Word解析版人生的目标不应是祈求风平浪静,而是要造一艘大船,破浪前行。
不管过去如何,过去的已经过去,最好的总在未来等着你。
____年浙江省温州市中考数学试卷
一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1.(4分)计算:(﹣3)__215;5的结果是()
A .﹣15
B .15
C .﹣2
D .2
2.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000
000 000用科学记数法表示为()
A .0.25__215;1018
B .2.5__215;1017
C .25__215;1016
D .2.5__215;1016
3.(
4分)某露天舞台如图所示,它的俯视图是()
A .
B .
C .
D . 4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背
面朝上,从中任意抽取1张,是“红桃”的概率为()
A .
B .
C .
D .
5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所
示统计图.已知选择鲳鱼的有
40人,那么选择黄鱼的有()
A .20人
B .40人
C .60人
D .80人
6.(4分)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距_ (米)的对应数据如
下表,根据表中数据,可得y 关于_ 的函数表达式为()。
2021年中考数学试题及解析:浙江温州-解析版

浙江省温州市2021年中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.)1、(2021•温州)计算:(﹣1)+2的结果是()A、﹣1B、1C、﹣3D、3考点:有理数的加法。
分析:异号两数相加,取绝对值较大加数的符号,再用较大绝对值减去较小绝对值.解答:解:(﹣1)+2=+(2﹣1)=1.故选B.点评:此题主要考查了有理数的加法,做题的关键是掌握好有理数的加法法则.2、(2021•温州)某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是()A、排球B、乒乓球C、篮球D、跳绳考点:扇形统计图。
分析:因为总人数是一样的,所占的百分比越大,参加人数就越多,从图上可看出篮球的百分比最大,故参加篮球的人数最多.解答:解:∵篮球的百分比是35%,最大.∴参加篮球的人数最多.故选C.点评:本题对扇形图的识图能力,扇形统计图表现的是部分占整体的百分比,因为总数一样,所以百分比越大,人数就越多.3、(2021•温州)如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是()A、B、C、D、考点:简单组合体的三视图。
分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:主视图是从正面看,圆柱从正面看是长方形,两个圆柱,看到两个长方形.故选A.点评:此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.4、(2021•温州)已知点P(﹣1,4)在反比例函数的图象上,则k的值是()A、B、C、4 D、﹣4考点:待定系数法求反比例函数解析式。
专题:待定系数法。
分析:根据反比例函数图象上的点的坐标特征,将P(﹣1,4)代入反比例函数的解析式,然后解关于k的方程即可.解答:解:∵点P(﹣1,4)在反比例函数的图象上,∴点P(﹣1,4)满足反比例函数的解析式,∴4=,解得,k=﹣4.故选D.点评:此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上的点的坐标特征”这一知识点.5、(2021•温州)如图,在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是()A、B、C、D、考点:锐角三角函数的定义;勾股定理。
2021年浙江省温州中考数学一模试卷(附答案详解)

2021年浙江省温州中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.2的相反数是()A. 2B. −2C. 12D. −122.如图,由相同的小正方体搭成的几何体的主视图是()A.B.C.D.3.计算−2ab⋅a2的结果是()A. 2a2bB. −2a2bC. −2a3bD. 2a3b4.我校七年级举行大合唱比赛,六位评委给七年级一班的打分如下:(单位:分)9.2,9.4,9.6,9.5,9.8,9.5,则该班得分的平均分为()A. 9.45分B. 9.50分C. 9.55分D. 9.60分5.由于新冠疫情影响,某口罩加工厂改进技术,扩大生产,从10月份开始,平均每个月生产量的增长率为50%,已知第四季度的生产量为2375万个,设10月份口罩的生产量为x万个,则可列方程()A. x(1+50%)2=2375B. x+x(1+50%)2=2375C. x+x(1+50%)+x(1+50%)2=2375D. x(1+50%)+x(1+50%)2=23756.如图,四边形ABCD是⊙O的内接四边形,它的一个外角∠CBE=70°,则∠AOC的度数为()A. 70°B. 110°C. 140°D. 160°7.如图是一张高脚木凳,AC//EF//GH,AB=CD,点E,G是AB的三等分点,已知EF与GH之间的距离为25cm,∠EGH=80°,则椅脚AB的长度为()cm.A. 25sin80∘B. 75sin80°C. 75sin80∘D. 75tan80∘8.已知一次函数y=ax+1(a≠0)与x轴交于点A,与反比例函数y=4交于点B,过x 点B作BC⊥x轴于点C,OC=OA,则线段AB的长为()A. 2√3B. 2√5C. 5D. 2√109.若m,n(m<n)是关于x的一元二次方程(x−a)(x−b)−3=0的两根,且a<b,则m,n,a,b的大小关系是()A. m<n<a<bB. a<m<n<bC. a<m<b<nD. m<a<b<n10.我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图,后人称其为赵爽弦图(如图1).图2为小明同学根据弦图思路设计的.在正方形ABCD中,以点B为圆心,AB 为半径作AC⏜,再以CD为直径作半圆交AC⏜于点E,若边长AB=10,则△CDE的面积为()A. 20B. 252√3 C. 24 D. 10√5二、填空题(本大题共6小题,共30.0分)11.分解因式:a2−9=______.12.不等式组{x−13+x>−32x+3≤9的解集为______ .13.某校初三(1)班同学参加内容为“最适合自己的考前减压方式”的调查,收集并整理数据绘制如图扇形统计图,已知选择享用美食的8人,则选择体育运动的有______ 人.14.如图,点O为平行四边形ABCD的对角线AC和BD的交点,点E为边BC的中点,连接AE交BD于点F,则OFBD的值为______ .15.如图,在⊙O内放置两个全等菱形ABCD和菱形EFGH.点A,C,E,G均在同一直径上,点A,B,F,G,H,D均在圆周上,已知AB=4√13,AE=10.则⊙O的半径为______ .16.某游乐场经过改造之后游客明显增多,现需要在入口处增建一个大型售货亭如图1.小羽设计该售货亭主体结构,其侧面为Rt△ABE与矩形BCDE组合而成如图2,其中∠A=90°,AE=2.4米,BE=5.1米,A点到地面CD的距离5米,已知立柱BC 造价每米400元,立柱DE造价每米340元.则图2中立柱DE的造价为______ 元.在综合考虑造价与占地面积后,小哲在图2的基础上保持Rt△ABE形状大小以及点A 到地面CD的距离不变,给出图3的设计,此时DE=3.08米,则图3中立柱BC的造价为______ 元.三、解答题(本大题共8小题,共80.0分)17.(1)计算:−4sin30°+(√2−1)0+√8.(2)化简:(1−1x )×xx2−1.18.如图,在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,AC=CD,BC=CE.(1)求证:AB=DE.(2)若AB=1,AC=AE,求CD的长.19.为了缓解我校周五放学家长接送学生造成校门口的拥堵情况,我校党委成立“交通管理志愿者服务队”,设立三个交通管理点:①中学东门,②中学南门,③小学门口.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到三个管理点.(1)李老师被分配到“中学东门”的概率为______ .(2)用列表法或画树状图法,求李老师和王老师都被分配到中学东门的概率.20.如图,在6×6的方格纸中,线段AB的两个端分别落在格点上,请按要求画图:(1)在图1中画一个格点四边形APBQ,且AB与PQ垂直.(2)在图2中画一个以AB为中位线的格点△DEF.21.已知抛物线l:y=−x2+bx经过点(4,0),点A,点B均在抛物线上,且AB//x轴.(1)求b的值和抛物线的顶点坐标.(2)在第一象限内作一个矩形ABCD,点C,D落在x轴上.将抛物线l平移,使抛物线顶点落在矩形ABCD 内部(包括顶点),新抛物线与y轴交点为(0,c),若AB=2,请求出c的取值范围.22.如图,在△ABC中,BA=BC,以AB为直径作⊙O,交边AC于点D,交CB的延长线于点E,连接DE交AB于点F.(1)求证:AD=DE.(2)若sin∠ABE=√15,AD=2√10,求⊙O的直径4和EF的长.23.为了推进现代化教育,教育局决定给某区每所中学配备m台电脑,每所小学配备n台电脑.现有甲、乙两家企业愿意捐赠其结对的学校所需的电脑(结对学校数的情况如图),甲企业计划捐赠295台,乙企业计划捐赠305台.(1)求m,n的值.(2)现两家企业决定在计划购买电脑总金额1650000元不变的情况下,统一购买A,B两种型号电脑(单价如下表).在实际购买时,商家给予打折优惠:A,B两种型号电脑分别打a折和b折(a≤b<10,a、b都是整数),最后购进的电脑总数比计划多100台.求实际购买的A,B两种型号电脑各多少台.型号A B单价(元/台)3000250024.如图,已知正方形ABCD,AB=8,点M为射线DC上的动点,射线AM交BD于E,交射线BC于F,过点C作CQ⊥CE,交AF于点Q.(1)当BE=2DE时,求DM的长.(2)当M在线段CD上时,若CQ=3,求MF的长.(3)①当DM=2CM时,作点D关于AM的对称点N,求tan∠NAB的值.②若BE=4DE,直接写出△CQE与△CMF的面积比______ .答案和解析1.【答案】B【解析】【分析】本题考查了相反数的知识,根据相反数的定义求解即可.【解答】解:2的相反数为:−2.故选B.2.【答案】D【解析】解;从正面看第一层是三个正方形,第二层是中间一个正方形.故选:D.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【答案】C【解析】解:−2ab⋅a2=−2a3b.故选:C.直接利用单项式乘多项式运算法则计算得出答案.此题主要考查了单项式乘多项式运算,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:(9.2+9.4+9.6+9.5+9.8+9.5)÷6=9.50(分).故该班得分的平均分为9.50分.故选:B.根据求平均数的计算公式计算即可求解.本题考查了平均数的求法,熟记平均数的公式是解决本题的关键.5.【答案】C【解析】解:设10月份口罩的生产量为x万个,则11月份口罩的生产量为x(1+50%)万个,12月份口罩的生产量为x(1+50%)2万个,依题意得:x+x(1+50%)+x(1+50%)2=2375.故选:C.设10月份口罩的生产量为x万个,则11月份口罩的生产量为x(1+50%)万个,12月份口罩的生产量为x(1+50%)2万个,根据第四季度的生产量为2375万个,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.【答案】C【解析】解:∵∠CBE是圆内接四边形ABCD的一个外角,∠CBE=70°,∴∠D=∠CBE=70°,由圆周角定理得,∠AOC=2∠D=140°,故选:C.根据圆内接四边形的性质求出∠D,再根据圆周角定理计算,得到答案.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.7.【答案】C【解析】解:∵E,G是AB的三等分点,∴AE=EG=GB=13AB,∴AE:EG:GB=1:1:1,∵AC//EF//GH,∴AEEG =CFFH,∵AEEG=1,∴CFFH=1,∴CF=FH,过E点作ME⊥GH于M,∵EF//GH,∴EM即为EF与GH之间的距离,在Rt△EMG中,sin∠EGM=EMEG,∵∠EGM=∠EGH=80°,且EF与GH之间的距离为25cm,∴EM=25cm,∴sin∠EGM=sin80°=EMEG,∴EG=EMsin80∘=25sin80∘(cm),∵EG=13AB,∴AB=3EG=3×25sin80∘=75sin80∘(cm),故选:C.根据平行线线段成比例得出CF=FH,过E点作ME⊥GH于M,进而利用直角三角形的三角函数解答即可.此题考查解直角三角形的应用,关键是根据直角三角形的三角函数解答.8.【答案】B【解析】解:在y=ax+1中,当x=0时,y=1,∴D(0,1),∴OD=1,∵BC⊥x轴于点C,∴BC//OD,又OA=OC,∴OAAC =ODBC,即12=1BC,∴BC=2,∴B点的纵坐标为2,代入y=4x,可得B点的横坐标为2,∴A(−2,0),B(2,2),∴AB=√(2+2)2+(2−0)2)=2√5,故选:B.根据一次函数的解析式求得D的坐标,进而B点的纵坐标,代入反比例函数解析式求得横坐标,得到A、B点的坐标,根据勾股定理即可求得AB.本题考查了一次函数和反比例函数图象的交点问题,求得A、B的坐标是解题的关键.9.【答案】D【解析】解:如图,抛物线y2=(x−a)(x−b)与x轴交点(a,0),(b,0),抛物线与直线y1=3的交点为(m,3),(n,3),由图象可知m<a<b<n.故选:D.由(x−a)(x−b)−3=0可以将(m,3),(n,3)看成直线y1=3与抛物线y2=(x−a)(x−b)两交点,画出大致图象即可以判断.此题考查的是一元二次方程根的分布,一元二次方程转化为二次函数与x轴的交点问题,在此题中关键在于能够对(x−a)(x−b)−3=0拆分成直线y1=3与抛物线y2=(x−a)(x−b),再通过大致图象即可解题,这也给我提供了一种解决此类问题的技巧.10.【答案】A【解析】解:取CD的中点F,连接BF、BE、EF,由题意可得,FE=FC,BE=BC,∴BF是EC的垂直平分线,∴∠FBC+∠BCE=90°,∵∠BCD=90°,∴∠DCE+∠BCE=90°,∴∠FBC=∠DCE,又∵∠BCF=∠CED=90°,∴△BCF∽△CED,∴BCCE =CFED=BFCD,∵BC=10,CD=10,CF=5,∠BCF=90°,∴BF=√102+52=5√5,∴10CE =5ED=5√510,解得CE=4√5,ED=2√5,∴△CDE的面积为:4√5×2√5=20,2故选:A.根据题意,作出合适的辅助线,然后根据相似三角形的判定与性质,可以得到DE和CE的值,从而可以求得△CDE的面积.本题考查圆的有关计算、勾股定理、正方形的性质、线段垂直平分线的性质、相似三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】(a+3)(a−3)【解析】解:a2−9=(a+3)(a−3).故答案为:(a+3)(a−3).直接利用平方差公式分解因式,进而得出答案.此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.12.【答案】−2<x≤3+x>−3,得:x>−2,【解析】解:解不等式x−13解不等式2x+3≤9,得:x≤3,故答案为:−2<x≤3.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.【答案】12【解析】解:由题意知,参与调查的总人数为8÷20%=40(人),所以选择体育运动的有40×30%=12(人),故答案为:12.先根据选择享用美食的人数及其所占百分比求出参与调查的总人数,再用总人数乘以选择体育运动的人数所占百分比即可得出答案.本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.14.【答案】16【解析】解:连接OE,如图,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵点E为边BC的中点,∴OE为△CAB的中位线,∴OE//AB,OE=12AB,∵OB//AB,∴△OEF∽△BAF,∴OFBF =OEAB=12,∴OFOB =13,∴OFBD =16.故答案为16.连接OE,如图,根据平行四边形的性质得到OA=OC,OB=OD,则OE为△CAB的中位线,所以OE//AB,OE=12AB,证明△OEF∽△BAF,利用相似比得到OFBF=12,然后根据比例的性质求OFBD的值.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.15.【答案】13【解析】解:连接BD交AG于J,连接OA.由题意AE=CG=10,∵OA=OC,∴OE=OC,设OE=OC=x,则OA=OB=x+10,AC=AE+EC=10+2x,∵OA⊥BD,AJ=IC,∴AJ=JC=5+x,OJ=x+10−(5+x)=5,∵BE2=AB2−AJ2=OB2−OJ2,∴(4√13)2−(5+x)2=(x+10)2−52,∴x=3或−18(舍弃),∴OA=13,故答案为:13.连接BD交AG于J,连接OA.设OE=OC=x,则OA=OB=x+10,AC=AE+EC= 10+2x,根据BE2=AB2−AJ2=OB2−OJ2,构建方程求解即可.本题考查菱形的性质,垂径定理,解直角三角形等知识,解题的关键是理解题意,学会利用参数构建方程解决问题.16.【答案】980 960【解析】解:作AH⊥CD交BE于F,∵BE=5.1米,AH=2.4米,∠HAE=90°,∴AB=4.5(米),∴S△AEB=12×4.5×2.4,∵S△AEB12×5.1×AF,∴AF=12×4.5×2.412×5.1=3617(米),∵AH=5(米),∴DE=HF=5−3617=4917(米),∴DE的造价为4917×340=980(元),如图,将其补成最大矩形,由DM=5米,DE=3.08米,∴EH=1.92(米),∵∠EAB=90°,∴AB=√BE2−AE2=√5.12−2.42=4.5(米),∵∠TAB+∠EAH=90°,∠TBA+∠TAB=90°,∴∠TBA=∠EAH,∠BTA=∠AHE=90°,∴△ATB∽△EHA,∴HEAE =ATAB,∴1.922.4=AT4.5,∴AT=3.6(米),∴TB=√4.52−3.62=2.7(米),∴BC=TC−TB=HD−TB=2.3(米),∴造价为2.3×400=960(元),故答案为:980;960.作AH⊥CD交BE于F,根据三角形面积公式得出AF,进而利用勾股定理解答即可.此题考查勾股定理的应用,关键是根据勾股定理和三角形面积公式解答.17.【答案】解:(1)原式=−4×12+1+2√2=−1+2√2.(2)原式=x−1x ⋅x(x+1)(x−1)=1x+1.【解析】(1)根据特殊角的锐角三角函数、零指数幂的意义以及二次根式的运算法则即可求出答案.(2)分式的运算法则即可求出答案.本题考查实数的以及分式的运算,解题的关键是熟练运用分式的运算法则以及实数的运算法则,本题属于基础题型.18.【答案】解:(1)证明:∵∠BCE=∠ACD=90°,∴∠ACB=∠DCE,在△ABC和△DEC中,{AC=CD∠ACB=∠DCE BC=CE,∴△ABC≌△DEC(SAS),∴AB=DE;(2)∵AC=AE,AC=CD,∴AC=AE=CD,在Rt△ACD中,根据勾股定理,得AD2=AC2+CD2,∴(CD+DE)2=CD2+CD2,∴(CD+1)2=2CD2,解得CD=1+√2或CD=1−√2(舍去),∴CD的长为1+√2.【解析】(1)由“SAS”可证△ABC≌△DEC,可得结论;(2)由等腰直角三角形的性质和勾股定理可求解.本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,掌握全等三角形的判定是本题的关键.19.【答案】13【解析】解:(1)∵共有三个交通管理点,分别是:①中学东门,②中学南门,③小学门口,∴李老师被分配到“中学东门”的概率为1.3.故答案为:13(2)根据题意列表如下:共有9种等可能的结果,其中李老师和王老师都被分配到中学东门的有1种,.所以李老师和王老师都被分配到中学东门的概19(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到李老师和王老师都被分配到中学东门的结果,再利用概率公式求解即可.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】解:(1)如图1中,四边形APBQ即为所求作(答案不唯一).(2)如图,△DEF即为所求作(答案不唯一).【解析】(1)根据要求作出图形即可(答案不唯一).(2)根据要求作出图形即可(答案不唯一).本题考查作图−应用与设计作图,解题的关键是理解题意,灵活运用所学知识解决问题. 21.【答案】解:(1)∵抛物线l :y =−x 2+bx 经过点(4,0),∴−16+4b =0,∴b =4,∴抛物线l 为:y =−x 2+4x ,∵y =−x 2+4x =−(x −2)2+4,∴顶点坐标为(2,4);(2)设A 、B 点的横坐标为x 1,x 2,∵对称轴x =2,∴x 1+x 2=4,∵AB =2,∴x 1−x 2=2,由{x 1+x 2=4x 1−x 2=2解得{x 1=3x 2=1, 把x =1代入y =−x 2+4x 得y =3,∴A(3,3),B(1,3),∴D(3,0),当抛物线顶点移到点B 时,则y =−(x −1)2+3,令x =0,则y =2,∴c =2,当抛物线顶点移到点D 时,则y =−(x −3)2,令x =0,则y =−9,∴c =−9,∴−9≤c ≤2.【解析】(1)把点(4,0)代入y=−x2+bx,利用待定系数法即可求得解析式,然后把解析式化成顶点式即可求得顶点坐标;(2)根据题意求得A、B的坐标,即可求得D的坐标,根据A、D的坐标即可求得抛物线的解析式,令x=0,与y轴的交点,求得c的值,根据图象即可求得符合题意的c的取值.本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,矩形的性质,求得A、B的坐标是解题的关键.22.【答案】(1)证明:连接BE,∵BA=BC,∴∠A=∠C,∵∠A=∠E,∴∠E=∠C,∴DE=DC,∵AB为⊙O的直径,∴∠AB=90°,即BD⊥AC,∴AD=DC,∴AD=DE;(2)解:连接AE,设⊙O的半径为r,在Rt△ABE中,根据sin∠ABE=√154得,AEAB=AE2r=√154,∴AE=√152r,由勾股定理得BE=12r,∵AD=2√10,AD=CD=DE,∴AC=4√10,DE=2√10,在Rt△ACE中,∵AC2=AE2+CE2,∴(4√10)2=(52r)2+(√152r)2,解得r=4,∴⊙O的直径为8,连接OD,∵AO =BO ,AD =CD ,∴OD//BC ,∴OD//BE ,∴△DOF∽△EBF ,∴OD BE=DF EF , ∴r 12r =2√10−EF EF, 解得EF =2√103.【解析】(1)连接BE ,根据等腰三角形的性质和圆周角定理DE =DC ,再根据等腰三角形的性质证得AD =DC ,即可得到AD =DE ;(2)连接AE ,设⊙O 的半径为r ,在Rt △ABE 中,根据三角函数的意义得到AE =√152r ,由勾股定理得BE =12r ,在Rt △ACE 中,根据勾股定理r =4,可得⊙O 的直径为8.连接OD ,证得△DOF∽△EBF ,根据相似三角形的性质即可求得EF .本题主要考查了相似三角形的性质和判定,圆周角定理,勾股定理,等腰三角形的性质,解直角三角形等知识,正确作出辅助线是解决问题的关键. 23.【答案】解:(1)由题意得:{4m +3n =2952m +5n =305, 解得:{m =40n =45; (2)设购买的A ,B 两种型号电脑分别为x 台、(295+305+100−x)台,即(700−x)台,由题意得:3000×0.1ax +2500×0.1b(700−x)=1650000,整理得:x =1650000−175000b 300a−250b ,∵A 型电脑台数小于700台,∴1650000−175000b 300a−250b<700, 解得:a >557,又∵a ≤b <10,a 、b 都是整数,∴有三种情况:①{a =8b =8,②{a =8b =9,③{a =9b =9, 代入方程检验得:①x =625,②x =500,③x 不是整数,舍去;∴实际购买A 型625台,B 型电脑75台或A 型500台,B 型电脑200台.【解析】(1)由题意得出方程组,解方程组即可;(2)设购买的A,B两种型号电脑分别为x台、(295+305+100−x)台,即(700−x)台,由题意得出方程,进而得出得1650000−175000b300a−250b <700,则a>557,再由∵a≤b<10,a、b都是整数,得出有三种情况,即可解决问题.本题考查了二元一次方程组的应用以及不等式的应用,根据题意列出正确的方程组和不等式是本题的关键.24.【答案】1730【解析】解:(1)∵四边形ABCD是正方形,∴AB//CD,∴△ABE∽△MDE,∴ABDM =BEDE,∵BE=2DE,AB=8,∴ABDM =BEDE=2,∴DM=12AB=4;(2)∵四边形ABCD是正方形,∴AD=CD=AB=8,∠ADC=∠BCD=90°,∠ADE=∠CDE=45°,AD//BC,∴∠EAD=∠F,又∵DE=DE,∴△ADE≌△CDE(SAS),∴∠EAD=∠ECM,∵CQ⊥CE,∴∠ECQ=90°=∠BCD,∴∠ECM=∠QCF,∴∠F=∠QCF,∴CQ=FQ,又∵∠F+∠CMQ=∠QCF+∠MCQ=90°,∴∠CMQ=∠MCQ,∴CQ=MQ,∴CQ=MQ=FQ=12MF=3,∴MF=6;(3)①a、当点N在正方形内部时,延长AN交BC于点G,如图1所示:∵DM=2CM,CD=8,∴CM=13CD=83,∵四边形ABCD是正方形,∴BC=AB=8,AB//CD,AD//BC,∴∠DAF=∠F,△MCF∽△ABF,∴CFBF =CMAB=13,∴CF=13BF,∴CF=12AB=4,∴BF=AB+CF=12,由对称的性质得:∠GAF=∠DAF,∴∠GAF=∠F,∴AG=FG,设BG=x,则AG=FG=12−x,在Rt△ABG中,由勾股定理得:AB2+BG2=AG2,即82+x2=(12−x)2,解得:x=103,∴BG=103,∴tan∠NAB=BGAB =1038=512;b、当点N在正方形外部时,连接AN、MN,延长AB交MN 于点G,如图2所示:由得出的性质得:∠N=∠ADC=90°,AN=AD=8,∠AMN=∠AMD,同上得:∠BAM=∠AMD=∠NMA,∴AG=MG,设NG=x,则AG=MG=16−x,在Rt△ANG中,由勾股定理得:AN2+NG2=AG2,即82+x2=(16−x)2,解得:x =6,∴NG =6,∴tan∠NAB =NG AN =68=34; 综上所述,tan∠NAB 的值为512或34; ②过E 作EP ⊥CD 于P ,如图3所示: 则EP//BC , ∴△DEP∽△DBC ,∴DPDC =EPBC =DEBD ,∵BE =4DE ,∴BD =5DE ,∴DP DC =EP BC =DE BD =15,∴DP =EP =15BC =85,∵AB//CD ,∴△MDE∽△ABE ,∴DMAB =MEAE=DE BE =14, ∴DM =14AB =2,ME AM =15, ∴CM =CD −DM =8−2=6,AM =√AD 2+DM 2=√82+22=2√17,∴EM =15AM =2√175,∵AB//CD ,∴△MCF∽△ABF ,∴MFAF =MCAB =68=34, ∴MF =3AM =6√17,同(2)得:CQ =MQ =FQ =12MF =3√17,∴EQ =EM +MQ =2√175+3√17=17√175, ∴△CQE 与△CMF 的面积比=EQ MF =17√1756√17=1730, 故答案为:1730.(1)证△ABE∽△MDE,得ABDM =BEDE,则ABDM=BEDE=2,即可得出答案;(2)证△ADE≌△CDE(SAS),得∠EAD=∠ECM,再证∠ECM=∠QCF=∠F,得CQ= MQ=FQ=12MF=3,则MF=6;(3)①a、当点N在正方形内部时,延长AN交BC于点G,证△MCF∽△ABF,得CFBF =CMAB=13,则CF=12AB=4,BF=AB+CF=12,再证AG=FG,设BG=x,则AG=FG=12−x,由勾股定理得:AB2+BG2=AG2,即82+x2=(12−x)2,得BG=103,即可求解;b、当点N在正方形外部时,连接AN、MN,延长AB交MN于点G,证AG=MG,设NG=x,则AG=MG=16−x,由勾股定理得:AN2+NG2=AG2,求出NG=6,即可求解;②过E作EP⊥CD于P,由相似三角形的判定与性质求出EQ和MF的长,即可解决问题.本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、等腰直角三角形的判定与性质、平行线的性质、轴对称的性质、勾股定理、锐角三角函数定义等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解题的关键.。
浙江省温州市2021年中考数学试卷C卷

浙江省温州市2021年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七上·双台子期末) ﹣2019的相反数是()A . ﹣2019B . ﹣C . 2019D .2. (2分)下列运算正确的是()A .B .C .D .3. (2分) (2020八上·新乡期末) 使分式有意义,则x满足条件()A . x>0B . x≠0C . x>1D . x≠14. (2分)为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是()A . 6小时、6小时B . 6小时、4小时C . 4小时、4小时D . 4小时、6小时5. (2分) (2019八下·双鸭山期末) 如图,点,,在同一条直线上,正方形,正方形的边长分别为3,4,为线段的中点,则的长为()A .B .C . 或D .6. (2分)某中学开展“阳光体育活动”,九年级一班全体同学分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师统计了该班参加这三项活动的人数,并绘制了如图所示的频数直方图和扇形统计图.根据这两个统计图,可以知道该班参加乒乓球活动的人数是()A . 50B . 25C . 15D . 107. (2分)(2017·南山模拟) 如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是()A . 7个B . 8个C . 9个D . 10个8. (2分) (2019七下·江阴期中) 如图,△ABC中,∠C=90°,BC=6,AC=8,点E是AB的中点,BD=2CD,则△BDE的面积是()A . 4B . 6C . 8D . 129. (2分)(2018·青羊模拟) 已知:如图,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A . 30°B . 35°C . 45°D . 70°10. (2分)(2019·德州模拟) 如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为S1、S2、S3 ,则S1、S2、S3之间的关系是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2020八下·海勃湾期末) 若x,y为实数,且y= ,则x-y=________.12. (1分)(2018·吉林模拟) 分解因式 4x2 – 4xy + y2 = ________.13. (1分) (2019八下·双阳期末) 某校要从甲、乙两名跳远运动员挑选一人参加校际比赛.在十次选拔比赛中,他们的方差分别为S甲2=0.32,S乙2=0.26,则应选________参加这项比赛(填“甲”或者“乙”)14. (1分)如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于________.15. (1分) (2018八上·徐州期末) 如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,则关于x的方程3x+b=ax﹣2的解为x=________.16. (1分) (2019九上·西安开学考) 如图,菱形和菱形的边长分别为4和6,,则阴影部分的面积是________.三、解答题 (共8题;共85分)17. (5分)(2020·凤县模拟) 计算:18. (10分) (2019七下·鸡西期末) 解方程组:(1)(2)19. (10分)(2019·河北模拟) 如图,反比例函数y= (x>0)过点A(3,4),直线AC与x轴交于点C (6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C, D四点为项点的四边形为平行四边形,试写出符合条件的所有D点的坐标。
2021年浙江省温州中考数学一模试卷(附答案详解)

2021年浙江省温州中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.数1,0,−12,−2中最大的是()A. −2B. −12C. 0D. 12.如图所示的几何体,它的俯视图是()A.B.C.D.3.下列计算正确的是()A. 2a+3a=6aB. 3a−a=3C. a3+2a3=3a3D. a3−a2=a4.从分别写有1,2,3,4,5的五张卡片中任抽一张,卡片上的数是奇数的概率是()A. 15B. 25C. 35D. 455.如图,△A′B′C′和△ABC是位似三角形,位似中心为点O,AA′=2A′O,则△A′B′C′和△ABC的位似比为()A. 12B. 13C. 14D. 196.某停车场入口的栏杆如图所示,栏杆从水平位置AB绕点O旋转到CD的位置.已知AO=4米,若栏杆的旋转角∠AOD=31°,则栏杆端点A上升的垂直距离为()A. 4sin31°米B. 4cos31°米C. 4tan31°米D. 4sin31∘米7.如图,⊙O的两条弦AB⊥CD,已知∠ADC=35°,则∠BAD的度数为()A. 55°B. 70°C. 110°D. 130°8.某汽车的油箱一次加满汽油50升,可行驶y千米(假设汽油能行驶至油用完),设该汽车行驶每100千米耗油x升,则y关于x的函数表达式为()A. y=2xB. y=2x C. y=5000x D. y=5000x9.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值如表所示,点A(−4,y1),B(−2,y2),C(4,y3)在该抛物线上,则y1,y2,y3的大小关系为() x…−3−2−101…y…−3−2−3−6−11…A. y1=y3<y2B. y3<y1<y2C. y1<y2<y3D. y1<y3<y210.在欧几里得时代,人们就已经知道了勾股定理的一些拓展.小博在学习完勾股定理后,根据课本上的阅读材料进行改编与研究.如图,在Rt△ABC中,∠BAC=90°,tan∠ABC=12,现分别以AB,AC,BC为直角边作三个等腰直角三角形:△ABD,△ACE,△BCF,其中∠DBA=∠BCF=∠ACE=90°,BF与AD交于点G,CF与AE交于点H,记△DBG的面积为S1,△CEH的面积为S2,则S1:S2为()A. 9:1B. 9:2C. 9:4D. 4:1二、填空题(本大题共6小题,共30.0分)11.分解因式:3x2−6x=______ .12.不等式组{2x<3−xx+13≤1的解为______ .13.若扇形圆心角为36°,半径为3,则该扇形的弧长为______ .14.某校抽查部分九年级学生1分钟垫球测试成绩(单位:个),将测试成绩分成4组,得到如图不完整的频数直方图(每一组含前一个边界值,不含后一个边界值),已知在120−150组别的人数占抽测总人数的40%,则1分钟垫球少于90个的有______ 人.15.如图,半圆的直径AB=6,C为半圆上一点,连接AC,BC,D为BC上一点,连接OD,交BC于点E,连接AE,若四边形ACDE为平行四边形,则AE的长为______ .16.某游乐园有一圆形喷水池(如图),中心立柱AM上有一喷水头A,其喷出的水柱距池中心3米处达到最高,最远落点到中心M的距离为9米,距立柱4米处地面上有一射灯C,现将喷水头A向上移动1.5米至点B(其余条件均不变),若此时水柱最高处D与A,C在同一直线上,则水柱最远落点到中心M的距离增加了______ 米.三、解答题(本大题共8小题,共80.0分)17.(1)计算:2×(−4)+(−1)2−√9+20210;(2)化简:(3+x)(3−x)+3(x−3).18.如图,在正方形ABCD中,AC,BD相交于点O,E,F分别在OA,OD上,∠ABE=∠DCF.(1)求证:△ABE≌△DCF.(2)若BC=4√2,AE=3,求BE的长.19.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,2),B(5,2),请在所给网格区域(不含边界)上按要求画整点四边形.(1)在图1中画一个以A,B,C,D为顶点的平行四边形,使AO=CO.(2)在图2中画一个以A,B,C,D为顶点的平行四边形,使点C的横坐标与纵坐标的和等于点A的纵坐标的3倍.20.温州市初中毕业生体育学业考试在即,某校体育老师对91班30名学生的体育学业模拟考试成绩统计如下,39分及以上属于优秀.成绩(分)4039383736353491班人数(10575201人)(1)求91班学生体育学业模拟考试成绩的平均数、中位数和优秀率.(2)92班30名学生的体育学业模拟考试成绩的平均数为38分,中位数为38.5分,优秀率为60%,请结合平均数、中位数、优秀率等统计量进行分析,并衡量两个班级的体育学业模拟考试成绩的水平.21.已知抛物线y=ax2−6ax+1(a>0).(1)若抛物线顶点在x轴上,求该抛物线的表达式.(2)若点A(m,y1),B(m+4,y2)在抛物线上,且y1<y2,求m的取值范围.22.AB是⊙O的直径,弦CD⊥AB于点E,连接AC,过点D作DF//AC交⊙O于点F,连接AF,CF,过点A作AG⊥DF延长线于点G.(1)求证:CA=CF.(2)若tan∠ACF=2,CF−GF=9,求△ACF的面积.323.在新冠肺炎疫情发生后,某企业引进A,B两条生产线生产防护服.已知A生产线比B生产线每小时多生产4套防护服,且A生产线生产160套防护服和B生产线生产120套防护服所用时间相等.(1)求两条生产线每小时各生产防护服多少套?(2)因疫情期间,防护服的需求量急增,企业又引进C生产线.已知C生产线每小时生产24套防护服,三条生产线一天共运行了25小时,设A生产线运行a小时,B 生产线运行b小时,a,b为正整数且不超过12.①该企业防护服的日产量(用a,b的代数式表示).②若该企业防护服日产量不少于440套,求C生产线运行时间的最小值.24.如图1,在菱形ABCD中,∠A为锐角,点P,H分别在边AD,CB上,且AP=CH.在CD边上取点M,N(点M在CM之间),使DM=4CN.当P从点A匀速运动到点D时,点Q恰好从点M匀速运动到点N.连接PQ,PH分别交对角线BD于点E,F,记QN=x,AP=y,已知y=−2x+10.(1)①请判断FP与FH的大小关系,并说明理由.②求AD,CN的长.(2)如图2,连接QH,QF.当四边形BFQH中有两边平行时,求DE:EF的值.(3)若tanA=4,则△PFQ面积的最小值为______ .(直接写出答案)3答案和解析1.【答案】D【解析】解:因为|−12|=12,|−2|=2,而12<2,所以−2<−12<0<1,所以数1,0,−12,−2中最大的是1.故选:D.根据有理数大小比较的方法即可得出答案.本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.【答案】A【解析】解:从上面可看到从左往右二列小正方形的个数为:1,2,左面的小正方形在上面.故选:A.根据俯视图的确定方法,找到从上面看所得到的图形即是所求图形.此题主要考查了三视图的知识,根据俯视图是从物体的上面看得到的视图是解题关键.3.【答案】C【解析】解:A、2a+3a=5a,故本选项不合题意;B、3a−a=2a,故本选项不合题意;C、a3+2a3=3a3,故本选项符合题意;D、a3与−a2不是同类项,所以不能合并,故本选项不合题意;故选:C.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.4.【答案】C【解析】解:∵5张大小相同的卡片上分别标有数字1,2,3,4,5,其中有1、3、5共3张是奇数,∴从中随机抽取一张,卡片上的数字是奇数的概率为3,5故选:C.根据概率的求法,让是奇数的卡片数除以总卡片数即为所求的概率.本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m.n5.【答案】B【解析】解:∵AA′=2A′O,∴OA′:OA=1:3,∵△A′B′C′和△ABC是位似三角形,位似中心为点O,∴△A′B′C′和△ABC的位似比为OA′:OA=1:3.故选:B.根据位似比的定义,计算出OA′:OA即可.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.位似图形必须是相似形,对应点的连线都经过同一点;对应边平行或共线.6.【答案】A【解析】解:过点D作DF⊥AB于点F,则∠DFO=90°,由题意可知:DO=AO=4米,∠AOD=31°,∵sin∠AOD=DF,DO∴DF=4sin31°(米),故选:A.过点D作DF⊥AB于点F,根据锐角三角函数的定义即可求出答案.本题考查了解直角三角形,解题的关键是熟练运用锐角三角函数的定义,属于基础题型.7.【答案】A【解析】解:如图,设AB交CD于K.∵AB⊥CD,∴∠AKD=90°,∵∠ADC=35°,∴∠BAD=90°−35°=55°,故选:A.利用三角形内角和定理求解即可.本题考查三角形内角和定理,垂线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】D【解析】解:∵该汽车行驶每100千米耗油x升,∴1升汽油可走100x千米,∴y=50×100x =5000x,∴y关于x的函数表达式为y=5000x,故选:D.行驶千米数=汽油升数×每升汽油可行驶千米数,把相关值代入即可求解.本题考查了函数关系式,解决本题的关键是找到行驶的千米数的等量关系.9.【答案】B【解析】解:由表格可得,该函数的对称轴是直线x=−3+(−1)2=−2,当x>−2时,y随x的增大而减小,当x<−2时,y随x的增大而增大,∵点A(−4,y1),B(−2,y2),C(4,y3)在该抛物线上,−2−(−4)=2,4−(−2)=6,∴y3<y1<y2,故选:B.根据表格中的数据和二次函数的性质,可以判断y1,y2,y3的大小关系,本题得以解决.本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10.【答案】B【解析】解:如图,连接EF,∵△ACE,△BCF都是等腰直角三角形,∴CA=CE,CB=CF,∠FCB=∠ACE=90°,∴∠BCA+∠ACF=∠ACF+∠FCE,∴∠BCA=∠FCE,在△BCA和△FCE中,{CB=CF∠BCA=∠FCE CA=CE,∴△BCA≌△FCE(SAS),∴FE=BA,∠FEC=∠BAC=90°,∵∠ACE=∠BAC=90°,∴AB//CE,∵BD⊥BA,FE⊥CE,AB//CE,∴BD//EF,∴∠BDG=∠FEG,∠DBG=∠EFG,∵FE=BA,BA=BD,∴FE=BD,在△BDG和△FEG中,{∠BDG=∠FEG BD=FE∠DBG=∠EFG,∴△BDG≌△FEG(ASA),∴DG=EG,设AC=a,∵∠BAC=90°,tan∠ABC=12,∴AB=atan∠ABC=2a,∴BD=2a,CE=a,AD=√2AB=2√2a,AE=√2AC=√2a,∴DG=12DE=12(DA+AE)=3√22a,∵∠BDG=∠GFA=45°,∠DGB=∠FGH,∴△BDG∽△HFG,∵∠GFH=∠HEC=45°,∠FHG=∠EHC,∴△HFG∽△HEC,∴△BDG∽△HEC,∴S1:S2=(DGEC )2=(3√22)2=92.故选:B.如图,连接EF,证明△BCA≌△FCE(SAS)、△BDG≌△FEG(ASA);设AC=a,用a表示出相关线段;判定△BDG∽△HFG、△HFG∽△HEC、△BDG∽△HEC,从而根据相似三角形的面积比等于相似比的平方,可得答案.本题考查了等腰直角三角形的性质、全等三角形的判定与性质、锐角三角函数的定义及相似三角形的判定与性质等知识点,数形结合、熟练掌握相关性质及定理是解题的关键.11.【答案】3x(x−2)【解析】解:3x2−6x=3x(x−2).故答案为:3x(x−2).首先确定公因式为3x,然后提取公因式3x,进行分解.此题考查的是因式分解−提公因式法,解答此题的关键是先确定公因式3x.12.【答案】x<1【解析】解:解不等式2x<3−x,得:x<1,解不等式x+13≤1,得:x≤2,则不等式组的解集为x<1,故答案为:x<1.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.【答案】3π5【解析】解:该扇形的弧长=36⋅π⋅3180=3π5.故答案为:3π5.直接利用弧长公式计算即可.本题考查弧长公式,解题的关键是记住弧长公式l=nπr180.14.【答案】15【解析】解:由题意可得,本次抽取的学生有:40÷40%=100(人),故1分钟垫球少于90个的有:100−20−40−25=15(人),故答案为:15.根据在120−150组别的人数和所占抽测总人数的百分比,可以计算出本次抽取的学生数,然后再根据频数分布直方图中的数据,即可计算出1分钟垫球少于90个的人数.本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】2√3【解析】解:如图,连接OC.∵AB是直径,∴∠ACB=90°,∵四边形ACDE是平行四边形,∴AC=DE,CD=AE,AC//DE,∴∠ACE=∠DEC=90°,∴OD⊥BC,∴EC=EB,∵OA=OB,∴AC=2OE=DE,∵OD=OC=3,∴OE=1,DE=2,∴CE2=OC2−OE2=CD2−DE2,∴32−12=CD2−22,∴CD=2√3或−2√3(舍弃).故答案为:2√3.如图,连接OC.证明AC=DE=2OE,利用勾股定理构建关系式,可得结论.本题考查圆周角定理,垂径定理,勾股定理,平行四边形的性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】(3√212−6)【解析】解:如图,过点D作DF⊥x轴,交移动前水柱于点E,交x轴与点F,∵AM⊥x轴,∴AM//DF,∴△ACM∽△DCF,∴CMCF =AMDF,其中CM=4,CF=CM+MF=4+3=7,设当x>0时,抛物线解析式为:y=a(x−3)2+ℎ,当x=0时,y=9a+ℎ,∴点A的坐标为(0,9a+ℎ),∴AM=9a+ℎ当x=3时,y=ℎ,∴点E(3,ℎ),∴EF=ℎ,DF=ℎ+1.5,∴47=9a+ℎℎ+1.5∴21a+ℎ=2①,又最远落点到中心M的距离为9米,∴x=9时,y=0,即36a+ℎ=0②,联立①和②,可得:a=−215,ℎ=245,∴当x>0时,抛物线解析式为:y=−215(x−3)2+245,将抛物线向上平移1.5m,∴当x>0时,新的抛物线解析式y′=−215(x−3)2+6.3,此时当y=0时,x=3+3√212(已舍弃负值),则水柱水柱最远落点到中心M的距离增加了(3√212−6)米,故答案为:(3√212−6).过点D作DF⊥x轴,交移动前水柱于点E,交x轴与点F,设当x>0时,抛物线解析式为:y=a(x−3)2+ℎ,然后分别表示出点A和点E的坐标,利用图形相似,求出a 和h的值,最后求出x>0时向上平移后图象解析式,进而得到M的最远距离,再减去原来的9米,即为增加的距离.此题主要考查了二次函数的应用,正确得出抛物线解析式是解题关键.17.【答案】解:(1)原式=−8+1−3+1=−9;(2)原式=9−x2+3x−9=−x2+3x.【解析】(1)原式利用乘法法则,乘方的意义,算术平方根定义,以及零指数幂法则计算即可求出值;(2)原式利用平方差公式计算,去括号合并即可得到结果.此题考查了平方差公式,零指数幂,以及实数的运算,熟练掌握运算法则及公式是解本题的关键.18.【答案】证明:(1)∵四边形ABCD是正方形,∴AB=CD,∠BAE=∠CDF=45°,∵∠ABE=∠DCF,在△ABE与△DCF中,{∠ABE=∠DCF AB=CD∠BAE=∠CDF,∴△ABE≌△DCF(ASA);(2)∵四边形ABCD是正方形,∴AB=BC,OA=OB=OC=OD,∠ABC=∠AOB=90°,∵BC=4√2,∴AB=4√2,∴AC=√AB2+BC2=√(4√2)2+(4√2)2=8,∴OA=OB=4,∵AE=3,∴OE=OA−AE=4−3=1,在Rt△BOE中,BE=√OB2+OE2=√42+12=√17.【解析】(1)根据正方形的性质和全等三角形的判定解答即可;(2)根据正方形的性质和勾股定理解答即可.此题考查正方形的性质,关键是根据正方形的性质和全等三角形的判定以及勾股定理解答.19.【答案】解:(1)如图,四边形ACBD或四边形ABD′C即为所求作.(2)如图,四边形ACBD或四边形ABC′D′即为所求作.【解析】(1)由题意C(2,1),根据要求作出图形即可.(2)由题意C(3,3)或(5,1),根据题意作出图形即可.本题考查作图−复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题.20.【答案】解:(1)91班学生平均数为(40×10+39×5+38×7+37×5+36×2+ 34)÷30=38.4(分),中位数为39+382=38.5(分),优秀率(10+5)÷30×100%=50%;(2)从平均数、中位数、优秀率进行分析,91班学生平均数高于92班学生平均数,中位数相等,91班学生优秀率低于92班学生优秀率,可知91班学生体育学业模拟考试成绩整体情况较好,92班学生体育学业模拟考试成绩优秀的较多.【解析】(1)根据平均数、中位数和优秀率的定义即可求解;(2)结合平均数、中位数、优秀率等统计量进行分析,并衡量两个班级的体育学业模拟考试成绩的水平.本题考查频数分布表、中位数、平均数、优秀率,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)根据题意得△=(−6a)2−4a=0,解得a1=0,a2=19,∵a>0,∴a=19,∴抛物线解析式为y=19x2−23x+1;(2)抛物线开口向上,抛物线的对称轴为直线x=−−6a2a=3,当点A、点B都在对称轴的右边时,y1<y2,此时m≥3;当点A、点B在对称轴的两侧时,即m<3<m+4,y1<y2,则3−m<m+4−3,解得m>1,此时m的范围为1<m<3,综上所述,m的范围为m>1.【解析】(1)根据判别式的意义得到△=(−6a)2−4a=0,然后解方程得到满足条件的a的值,从而确定抛物线解析式;(2)先求出抛物线的对称轴为直线x=3,利用二次函数的性质:当点A、点B都在对称轴的右边时,有y1<y2,则m≥3;当点A、点B在对称轴的两侧时,即m<3<m+4,利用点A到直线x=3的距离小于B点到直线x=3的距离得到3−m<m+4−3,从而确定此时m的范围,然后综合两种情况得到m的范围.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.22.【答案】(1)证明:连接AD.∵AB是直径,AB⊥CD,∴EC=ED,∴AC=AD,∵AC//DF,∴∠ACF=∠FCD,∴AF⏜=CD⏜,∴AD⏜=CF⏜,∴AD=CF,∴AC=CF.(2)解:过点A作AH⊥CF于H.∵∠AFG+∠AFD=180°,∠AFD+∠ACD=180°,∴∠AFG=∠ACD,∵AC=AD,∴∠ACD=∠ADC,∵∠ADC=∠AFC,∴∠AFG=∠AFH,∵AG⊥FG,AH⊥FH,∴∠G=∠AHF=90°,∵AF=AF,∴△AFG≌△AFH(AAS),∴FG=FH,∵CF−FG=CF−FH=CH=9,tan∠ACH=AHCH =23,∴AH=6,∴AC=AF=√AH2+CH2=√62+92=3√13,∴S△ACF=12⋅CF⋅AH=12×3√13×6=9√13.【解析】(1)连接AD.想办法证明AC=AD,AD=CF,可得结论.(2)过点A作AH⊥CF于H.证明△AFG≌△AFH(AAS),推出FG=FH,因为CF−FG=CF−FH=CH=9,求出AH,AC可得结论.本题属于圆综合题,考查了圆周角定理,垂径定理,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.23.【答案】解:(1)设B生产线每小时生产防护服x套,则A生产线每小时生产防护服(x+4)套,依题意得:160x+4=120x,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:A生产线每小时生产防护服16套,B生产线每小时生产防护服12套.(2)①设A生产线运行a小时,B生产线运行b小时,则C生产线运行(25−a−b)小时,依题意得:该企业防护服的日产量=16a+12b+24(25−a−b)=(600−8a−12b)套.②∵该企业防护服日产量不少于440套,∴600−8a−12b≥440,∴2a+3b≤40.设k=a+b,则2k+b≤40,∴b值越小,k值越大.∵a,b为正整数且不超过12,∴当a=12时,b≤163,b可取的最大值为5,此时k的最大值为17,25−a−b=25−k= 8;当a=11时,b≤6,b可取的最大值为6,此时k的最大值为17,25−a−b=25−k=8;当a=10时,b≤203,b可取的最大值为6,此时k的最大值为16,25−a−b=25−k=9;当a=9时,b≤223,b可取的最大值为7,此时k的最大值为16,25−a−b=25−k=9.∴C生产线运行时间的最小值为8小时.【解析】(1)设B生产线每小时生产防护服x套,则A生产线每小时生产防护服(x+4)套,利用工作时间=工作总量÷工作效率,结合A生产线生产160套防护服和B生产线生产120套防护服所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)①设A生产线运行a小时,B生产线运行b小时,则C生产线运行(25−a−b)小时,利用工作总量=工作效率×工作时间,即可用含a,b的代数式表示出该企业防护服的日产量;②由①的结论及该企业防护服日产量不少于440套,即可得出2a+3b≤40,设k=a+ b,则2k+b≤40,进而可得出b值越小,k值越大,结合a,b为正整数且不超过12,可找出k的最大值,将其代入25−a−b=25−k中可求出C生产线运行时间的最小值.本题考查了分式方程的应用、列代数式以及不等式的解集,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)①根据各数量之间的关系,用含a,b的代数式表示出该企业防护服的日产量;②根据2a+3b≤40结合a,b的取值范围,找出(a+b)的最大值.24.【答案】11920【解析】解:(1)①FP=FH,理由如下:∵四边形ABCD是菱形,AD=DC,∴AD//BC,AD=BC,∵AP=CH,∴∠PDF=∠HBF,∠DPF=∠BHF,PD=BH,在△PDF和△HBF中,{∠PDF=∠HBF PD=BH∠DPF=∠BHF,∴△PDF≌△HBF(ASA),∴FP=FH;②当x=0时,y=10,则AD=10,即CD=10,当y=0时,0=−2x+10,得x=5,则QN=5,∴DM+CN=DC−QN=10−5=5,∵DM=4CN,∴CN=1,即AD=10,CN=1;(2)当四边形BFQH中有两边平行时,分两种情况:①当BF//QH时,∵BF//QH,∴△CQH∽△CDB,∵CD=BC,∴CQ=CH,DQ=BH,∵CQ=1+x,CH=AP=y,∴1+x=−2x+10,解得:x=3,y=4,即QN=3,AP=4,∴DP=DQ=6,由(1)中△PDF≌△HBF,∴BF=DF,∴点F为对角线BD的中点,∵平行四边形ABCD的对角线互相平分,∴点F为AC的中点,即A、F、C共线,连接AC,∵四边形ABCD是菱形,∴∠PDF=QDF,AC⊥BD,AD//BC,∴PE⊥BD,∴PE//AC,即PE//AF,∴DE:EF=DP:AP=6:4=3:2;②当FQ//BH时,∵BF=DF,∴QF=DQ=CQ=5,即QN=x=4,∴AP=y=2,PD=8,∵AD//BC,即PD//QF,∴DE:EF=PD:QF=8:5;综上,DE:EF=3:2或8:5;(3)在图2中,过点B作BT⊥AD于T,延长PQ交BC延长线于K,∵tanA=43,∴sinA=45,∵AB=10,∴BT=AB⋅sinA=8,设△PDQ的底边的高为a,∵PD//CK,∴△PDQ∽△KCQ,∴DQQC =a8−a=10−x−11+x,∴a=365−45x,则S△PFQ=S△ACD−S△PDQ−S△FAP−S△CQF=12×10×8−12×(10−y)×(365−45x)−12×4y−12×4(1+x)=45x2−265+18=45(x−134)+11920,∴当x=134时,S△PFQ有最小值,最小值为11920.故答案为:11920.(1)①根据菱形的性质和全等三角形的判定证得△PDF≌△HBF,再根据全等三角形的性质即可解答;②根据题意,分别令x=0,y=0即可求解;(2)分BF//QH和FQ//BH两种情况讨论解答即可;(3)过点B作BT⊥AD于T,延长PQ交BC延长线于K,根据tanA=43可得BT=8,设△PDQ的底边的高为a,证明△PDQ∽△KCQ,根据相似三角形高的比等于相似比可证得a=365−45x,则S△PFQ=S△ACD−S△PDQ−S△FAP−S△CQF=45x2−265+18,由二次函数求最值的方法求解即可.本题是四边形综合题,主要考查了菱形的性质,平行四边形的判定与性质、平行线的判定与性质、相似三角形的判定与性质等知识;本题综合性强,难度较大,熟练掌握相似三角形的判定与性质是解题的关键.。
浙江温州市2021年中考数学试题(word版含解析)

浙江温州市2021年中考数学试题(word版含解析)浙江省温州市2021年中考数学试卷(解析版)一、选择题1. ( 2分 ) 给出四个实数 A.B.2 C.0 D.-1 【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。
【分析】根据负数的定义,负数小于0 即可得出答案。
,2,0,-1,其中负数是()2. ( 2分 ) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。
故答案为:B。
【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。
3. ( 2分 ) 计算的结果是()A. B. C. D.【答案】C【考点】同底数幂的乘法a 2=a8 【解析】【解答】解: a ·故答案为:C。
【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。
4. ( 2分 ) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C 【考点】中位数6<7<7<7<8<9<9,【解析】【解答】解:将这组数据按从小到大排列为:故中位数为:7分,故答案为:C。
【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。
5. ( 2分 ) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A. B.C. 【答案】D 【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。
【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。
2021年浙江温州中考数学试卷及答案(word解析版)

2021温州市中考数学解析版数学(满分:150分 考试时间120分钟)一、选择题(本题有10小题,每个小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选均不给分) (2013浙江温州市,1,4分)计算:(-2)×3的结果是( )A .-6 B.-1 C.1 D.6 【答案】A(2013浙江温州市,2,4分)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图. 由图可知,该班同学最喜欢的球类项目是( )A .羽毛球 B.乒乓球 C .排球 D.篮球 【答案】D(2013浙江温州市,3,4分)下列个图中,经过折叠能围成一个立方体的是( )【答案】A(2013浙江温州市,4,4分)下列各组数可能是一个三角形的边长的是( )A .1,2,4 B.4,5,9 C.4,6,8 D.5,5,11 【答案】C(2013浙江温州市,5,4分)若分式43+-x x 的值为0,则x 的值是( ) A .x =3 B.x =0 C.x =-3 D.x =-4 【答案】A(2013浙江温州市,6,4分)已知点P (1,-3)在反比例函数)0(≠=k xky 的图象上,则k 的值是( )A.3B.-3C.31 D.31- 【答案】B(2013浙江温州市,7,4分)如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是( )A.3B.5C.15D.17【答案】B(2013浙江温州市,8,4分)如图,在△ABC 中,∠C =90°,AB =5,BC =3,则sinA 的值是( )A .43 B.34 C.53 D.54【答案】C(2013浙江温州市,9,4分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .已知AE =6,34AD DB =,则EC 的长是( )A.4.5B.8C.10.5D.14 【答案】B(2013浙江温州市,10,4分)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ,如图所示,若AB =4,AC =2,12-S 4S π=,则S 3-S 4的值是( )A.429π B.423π C.411π D.45π【答案】D二、填空题(本题有6小题,每小题5分,共30分)(2013浙江温州市,11,5分)因式分解:m 2-5m = . 【答案】m (m-5)(2013浙江温州市,12,5分)在演唱比赛中,5位评委给一位歌手打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均分是 分. 【答案】8.0(2013浙江温州市,13,5分)如图,直线a ,b 被直线c 所截. 若a ∥b ,∠1=40°,∠2=70°,则∠3= 度.【答案】110(2013浙江温州市,14,5分)方程x 2-2x -1=0的解是 . 【答案】21,2121-=+=x x(2013浙江温州市,15,5分)如图,在平面直角坐标系中△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴. 将△ABC 以y 轴为对称轴对称变换,得到△A′B′C′(A 和A ′,B 和B′,C 和C ′分别是对应顶点).直线y =x +b 经过点A ,C ′,则点C ′的坐标是 .【答案】(1,3)(2013浙江温州市,16,5分)一块矩形木板,它的右上角有一个圆洞. 现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上,木工师傅想到了一个巧妙的办法,他测量了PQ 与圆洞的切点K 到点B 的距离及相关的数据(单位:cm )后,从点N 沿折线NF —FM (NF ∥BC ,FM ∥AB )切割,如图1所示.图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不计损耗),则CN ,AM 的长分别是 .【答案】18cm ,31cm三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)(2013浙江温州市,17(1),5分)计算:0211-28)()(++解:0211-28)()(++=22+(2-1)+1=32.(2013浙江温州市,17(2),5分)化简:(1+a )(1-a )+a (a -3) 解:(1+a )(1-a )+a (a -3)=1-a 2+a 2-3a =1-3a .(2013浙江温州市,18,8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E .(1)求证:△ACD ≌△AED ; (2)若∠B =30°,CD =1,求BD 的长. (1)证明1:∵AD 平分∠CAB .∴∠CAD =∠EAD . ∵DE ⊥AB , ∠C =90°, ∴∠ACD =∠AED =90°. 又∵AD =AD ,∴△ACD ≌△AED (AAS). 证明2:∵∠C =90°,∴AC ⊥CD , ∵DE ⊥AB , ∴CD =DE ,∵AD =AD ,∴△ACD ≌△AED (HL). (2)解:∵△ACD ≌△AED ∴DE =CD =1. ∵∠B =30°, ∠DEB =90°, ∴BD =2DE =2.(2013浙江温州市,19,9分)如图,在方格纸中,△ABC 的三个顶点和点P 都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部..,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部..,在图乙中画出示意图.解:(1)答案如图示:(2)答案如图示:(2013浙江温州市,20,10分)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C. 过点C作CD∥x轴交抛物线的对称轴于点D,连结BD. 已知点A的坐标为(-1,0).(1)求抛物线的解析式;(2)求梯形COBD的面积.解:(1)把A(-1,0)代入y=a(x-1)2+4,得0=4a+4,∴a=-1,∴y=-(x-1)2+4.(2)令x=0,得y=3,∴OC=3.∵抛物线y=-(x -1)2+4的对称轴是直线x =1, ∴CD =1. ∵A (-1,0) ∴B (3,0), ∴OB =3. ∴.623)31(=⨯+=COBD S 梯形(2013浙江温州市,21,10分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现在袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于31。
浙江省温州市2021年中考数学试卷(I)卷

浙江省温州市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·剑河期中) 下列说法错误的是()A . 的相反数是2B . 3的倒数是C .D . ,0,4这三个数中最小的数是02. (2分)(2020·南岸模拟) 如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是()A .B .C .D .3. (2分)(2017·深圳模拟) 我们身处在自然环境中,一年接受的宇宙射线及其他天然辐射照射量约为3100微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为()A . 3.1×106西弗B . 3.1×103西弗C . 3.1×10-3西弗D . 3.1×10-6西弗4. (2分)(2017·正定模拟) 下列运算正确的是()A . a3+a2=2a5B . a6÷a2=a3C . a4•a3=a7D . (ab2)3=a2b55. (2分)(2017·福建) 下列关于图形对称性的命题,正确的是()A . 圆既是轴对称性图形,又是中心对称图形B . 正三角形既是轴对称图形,又是中心对称图形C . 线段是轴对称图形,但不是中心对称图形D . 菱形是中心对称图形,但不是轴对称图形6. (2分)不等式组的解是()A . x<1B . x≥3C . 1≤x<3D . 1<x≤37. (2分)(2019·泰安) 某射击运动员在训练中射击了10次,成绩如图所示:下列结论错误的是()A . 众数是8B . 中位数是8C . 平均数是8.2D . 方差是1.28. (2分)如图,小正方形的边长均为1,则∠1的正切值为()A .B .C .D .9. (2分)已知二次函数y=ax2+bx+c(a , b , c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数在同一坐标系内的大致图象是()A .B .C .D .10. (2分) (2017九上·柳江期中) 如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF 的位置,连接EF,则△AEF的形状是()A . 等腰三角形B . 直角三角形C . 等腰直角三角形D . 等边三角形二、填空题 (共6题;共6分)11. (1分)(2019·河池模拟) 计算:=________.12. (1分)若梯形中位线被它的两条对角线分成三等分,则梯形的两底之比为________.13. (1分) (2018九上·渝中期末) 如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为________.14. (1分) (2017七上·温岭期末) 有理数a、b、c在数轴上的位置如图所示,化简的结果是________.15. (1分) (2017八下·路南期末) 如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=________.16. (1分)如图,点A、B分别在双曲线y= 和y= 上,四边形ABCO为平行四边形,则▱ABCO的面积为________.三、解答题 (共9题;共45分)17. (5分)(2017·揭西模拟) 先化简,再求值:÷(﹣x),其中x= ﹣2.18. (5分) (2018八上·泸西期末) 如图,AB=AD,BC=DC,求证:∠ABC=∠ADC.19. (5分)(2017·福建) 如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AD于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20. (5分)(2018·凉州) 《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.21. (5分)如图Rt中,∠A=30°,OB=2,如果将Rt在坐标平面内,绕原点O按顺时针方向旋转到的位置.(1)求点的坐标.(2)求顶点A从开始到点结束经过的路径长.22. (5分) (2019九上·武邑月考) 如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB ,若∠BAO=60°,求k的值.23. (5分)某公司实行年工资制,职工的年工资由基础工资、住房补贴和医疗费三项组成,具体规定如下:项目第一年的工资(万元)一年后的计算方法基础工资1每年的增长率相同住房补贴0.04每年增加0.04医疗费0.1384固定不变(1)设基础工资每年的增长率为x,用含x的代数式表示第三年的基础工资为多少万元.(2)某人在公司工作了3年,他算了一下这3年拿到的住房补贴和医疗费正好是这3年基础工资总额的18%,问基础工资每年的增长率是多少?24. (5分)求证:一个人在两个高度相同的路灯之间行走,他前后的两个影子的长度之和是一个定值.25. (5分) (2019九上·海淀期中) 生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O为圆心AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为0.8a,顶棚到路面的距离是3.2a,点B到路面的距离为2a.请你求出路面的宽度l.(用含a的式子表示)参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共45分)17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、第11 页共11 页。