密码学的发展史
密码学基础PPT课件

一个明文字母有多种可能的代换密文字母,使 得频率分析困难的多(hs成为BP, hq成为YP)。
由于这些原因,Playfair密码过去长期被认 为是不可破的。
最简单的多表代换密码---Vigenère
注意
Internet的广泛应用,可以把全世界的计算机资源 连成一体,形成巨大的计算能力,从而拥有巨大的 密码破译能力,使原来认为安全的密码被破译。
1994年,40多个国家的600多位科学家通过Internet, 历时9个月破译了RSA-129密码,1999年又破译了RSA - 140密码,2005年,RSA-200也被成功破译。
经典密码运用的两种基本技术:
代换法:将明文字母替换成其他字母、数字 或符号
置换法:明文的字母保持相同,但顺序被打 乱
代换技术
代换法,是将明文字母替换成其他字母、数 字或符号的方法。
Caesar密码(已知的最早的代换密码)
例如:明晨五点发动反攻 明文:MING CHEN WU DIAN FA DONG FAN GONG 密文:PLQJ FKHQ ZX GLDQ ID GRQJ IDQ JRQJ
密码系统的分类(3)
根据加密算法是否变化分类
设E为加密算法,K0, K1,…,Kn,为密钥, M0,M1,…,Mn为明文,C为密文
固定算法密码体制
C0=E(M0,K0), C1=E(M1,K1),..., Cn=E(Mn,Kn)
变化算法密码体制
C0=E1 (M0,K0), C1=E2 (M1,K1),..., Cn=En (Mn,Kn)
密码学的发展历史(5)
简述密码学发展史

密码学发展史简述密码学作为一门古老而又充满活力的学科,经历了漫长的发展历程。
以下是密码学发展史的主要阶段和特点:1. 古典密码阶段:古典密码阶段主要指古代至20世纪初的密码技术。
这一时期的密码技术以简单的替换和置换为基础,如凯撒密码和维吉尼亚密码等。
古典密码的加密方法较为简单,容易被破解,但为后续密码学的发展奠定了基础。
2. 近代密码阶段:随着20世纪初数学的发展,密码学逐渐进入近代密码阶段。
这一时期的密码技术开始利用数学工具进行加密,如频率分析、线性代数和概率论等。
近代密码阶段的代表性成果包括二战期间德国的恩尼格玛密码机和美国的斯诺登密码等。
3. 现代密码阶段:20世纪70年代以后,随着计算机科学和信息论的发展,密码学进入现代密码阶段。
现代密码阶段以公钥密码和哈希函数为代表,这些加密方法能够提供更加安全和可靠的通信和数据保护。
RSA、Diffie-Hellman、SHA-256等算法的出现标志着现代密码学的成熟。
4. 当代密码阶段:进入21世纪,随着互联网和移动通信的普及,密码学在信息社会中的作用越来越重要。
当代密码阶段注重的是隐私保护、安全通信、身份认证等方面的问题,密码学与其他学科的交叉发展也越来越明显。
同时,随着量子计算技术的发展,量子密码学也成为一个研究热点。
5. 量子密码学:量子密码学是利用量子力学原理进行信息加密和安全通信的学科。
由于量子力学中的一些基本原理,如量子不可克隆定理和海森堡不确定性原理等,量子密码能够提供更加可靠和安全的加密方法,是未来密码学的一个重要发展方向。
6. 密码学与其他学科的交叉发展:随着应用需求的不断拓展,密码学与多个学科领域产生了交叉融合。
例如,生物信息学、量子物理学、人工智能等领域与密码学的结合,为解决复杂的安全问题提供了新的思路和方法。
7. 密码学应用领域的拓展:随着技术的发展和社会需求的增加,密码学的应用领域也在不断拓展。
除了传统的通信和网络安全领域外,密码学还广泛应用于金融、医疗、物联网、区块链等领域。
密码重点技术发展史

密码技术发展史密码学是一种即古老又新兴旳学科。
密码学(Cryptology)一字源自希腊文"krypto's"及"logos"两字,直译即为"隐藏"及"讯息"之意。
密码学有一种奇妙旳发展历程,固然,密而不宣总是扮演重要角色。
因此有人把密码学旳发展划分为三个阶段:第一阶段为从古代到1949年。
这一时期可以看作是科学密码学旳前夜时期,这阶段旳密码技术可以说是一种艺术,而不是一种科学,密码学专家常常是凭知觉和信念来进行密码设计和分析,而不是推理和证明。
早在古埃及就已经开始使用密码技术,但是用于军事目旳,不公开。
1844年,萨米尔·莫尔斯发明了莫尔斯电码:用一系列旳电子点划来进行电报通讯。
电报旳浮现第一次使远距离迅速传递信息成为也许,事实上,它增强了西方各国旳通讯能力。
20世纪初,意大利物理学家奎里亚摩·马可尼发明了无线电报,让无线电波成为新旳通讯手段,它实现了远距离通讯旳即时传播。
马可尼旳发明永远地变化了密码世界。
由于通过无线电波送出旳每条信息不仅传给了己方,也传送给了敌方,这就意味着必须给每条信息加密。
随着第一次世界大战旳爆发,对密码和解码人员旳需求急剧上升,一场秘密通讯旳全球战役打响了。
在第一次世界大战之初,隐文术与密码术同步在发挥着作用。
在索姆河前线德法交界处,尽管法军哨兵林立,对过往行人严加盘查,德军还是对协约国旳驻防状况了如指掌,并不断发动攻势使其陷入被动,法国情报人员都感到莫名其妙。
一天,有位提篮子旳德国农妇在过边界时受到了盘查。
哨兵打开农妇提着旳篮子,见里头都是煮熟旳鸡蛋,亳无可疑之处,便无意识地拿起一种抛向空中,农妇匆忙把它接住。
哨兵们觉得这很可疑,她们将鸡蛋剥开,发现蛋白上布满了笔迹,都是英军旳具体布防图,尚有各师旅旳番号。
本来,这种传递情报旳措施是德国一位化学家提供旳,其作法并不复杂:用醋酸在蛋壳上写字,等醋酸干了后,再将鸡蛋煮熟,笔迹便透过蛋壳印在蛋白上,外面却没有任何痕迹。
chap9:密码学基本理论(DES)

DES加密算法一轮迭代的过程 加密算法一轮迭代的过程
加密: Li = Ri–1 Ri = Li–1 ⊕ F(Ri–1, Ki) 解密: Ri–1 = Li Li–1 = Ri ⊕ F(Ri–1, Ki)= Ri ⊕ F(Li , Ki)
单轮变换的详细过程
单轮操作结构
单轮变换的详细过程
函数F
Expansion: 32 -> 48 S-box: 6 -> 4 Permutation: 32 -> 32
DES
背景简介 1973年5月15日,NBS(现在NIST,美国国家标 准技术研究所)开始公开征集标准加密算法,并 公布了它的设计要求:
(1)算法必须提供高度的安全性 (2)算法必须有详细的说明,并易于理解 (3)算法的安全性取决于密钥,不依赖于算法 (4)算法适用于所有用户 (5)算法适用于不同应用场合 (6)算法必须高效、经济 (7)算法必须能被证实有效 (8)算法必须是可出口的
计算机安全
CH9:密码学基本理论 CH9:密码学基本理论
(DES)
内容提要
密码学基本知识 对称密码 非对称密码
密码学的发展历史
第1阶段:1949年以前。 第2阶段:从1949年到1975年。
标志:1949年Shannon发表的《保密系统的 信息理论》。
第3阶段:1976年至今。
标志:1976年Diffie和Hellman发表了《密码 学新方向》。
对称密码算法
DES IDEA AES
DES的基本构件 DES的基本构件
[Shannon49]指出每种现代对称加密算法都符 合两种基本运算方式(基本构件):替换 (substitution)和扩散(diffusion) 。 替换:密文的内容是用不同的位和字节代替 了明文中的位和字节,尽可能使密文和加密密钥 间的统计关系复杂化,以阻止攻击者发现密钥。 扩散:在密文中将这些替换的位和字节转移 到不同的地方,尽可能使明文和密文间的统计关 系复杂化,以阻止攻击者推导出密钥。
密码学是什么

密码学是什么1、什么是密码学密码学(Cryptography)是一门研究保护信息安全的学科,旨在发明和推广应用用来保护信息不被未经授权的实体获取的一系列技术。
它的研究规定了认证方式,加密算法,数字签名等技术,使得信息在网络上传输的安全性得到有效保障。
2、密码学发展历史从古代祭祀文本,到中世纪以前采用信封保护信息,再到如今运用根据科学原理设计的隐藏手段来免受攻击,形成了自己独特的新时代——密码学从古至今飞速发展。
在古代,人们提出基于门限理论的“将信息隐藏在古文献中”的想法,致使密码学技术的研究进入一个全新的研究水平。
噬血无声的18世纪,密码学技术得到了按比例加密法、变换锁以及一些其他加密技术的发明,使得发送者可以保护其传输的信息安全性。
20世纪,随着计算机科学、数学和通信学的迅猛发展,对于密码学的研究不断深入,密码破译也得到了彻底的结束。
3、密码学的应用密码学技术的应用正在不断的扩大,已经影响到计算机安全,电子商务,社交媒体,安全性协议。
其中,在计算机安全领域,应用的最广的就是网络安全了,例如使用数字签名,校验数据完整性及可靠性;实现密码认证,提高网络安全性;确保交易安全,实现交易无痕迹。
此外,在其他领域,还应用于支付货币,移动通信,数字信息传输,数字家庭,多媒体看门狗等。
4、密码学体系建设根据国家科学研究规划,国家建立自己的密码体系,推动密码学发展,建立一套完整的标准化体系,促进社会的网络安全发展,促进新的网络体系的快速发展,并且提出国家大力研究密码学,在国际技术水平上更具有单调作用和竞争优势。
5、总结综上所述,我们可以看到,密码学是一门相对年轻的学科,但是它在近十数年中有着突飞猛进的发展,并且把它妥善运用到了当今信息时代。
密码学研究实际上在不断推动并加强现代通信网络的安全性,使得更多的人群乐于在网上购买等等,为人们的网络安全提供了有效的保障。
只要把它的研究应用得当,密码学必将为更多的人带来更多的安全保障。
密码学的发展历史简介

密码学的发展简史中国科学院研究生院信息安全国家重点实验室聂旭云学号:2004 密码学是一门年轻又古老的学科,它有着悠久而奇妙的历史。
它用于保护军事和外交通信可追溯到几千年前。
这几千年来,密码学一直在不断地向前发展。
而随着当今信息时代的高速发展,密码学的作用也越来越显得重要。
它已不仅仅局限于使用在军事、政治和外交方面,而更多的是与人们的生活息息相关:如人们在进行网上购物,与他人交流,使用信用卡进行匿名投票等等,都需要密码学的知识来保护人们的个人信息和隐私。
现在我们就来简单的回顾一下密码学的历史。
密码学的发展历史大致可划分为三个阶段:第一个阶段为从古代到1949年。
这一时期可看作是科学密码学的前夜时期,这段时间的密码技术可以说是一种艺术,而不是一门科学。
密码学专家常常是凭直觉和信念来进行密码设计和分析,而不是推理证明。
这一个阶段使用的一些密码体制为古典密码体制,大多数都比较简单而且容易破译,但这些密码的设计原理和分析方法对于理解、设计和分析现代密码是有帮助的。
这一阶段密码主要应用于军事、政治和外交。
最早的古典密码体制主要有单表代换密码体制和多表代换密码体制。
这是古典密码中的两种重要体制,曾被广泛地使用过。
单表代换的破译十分简单,因为在单表代换下,除了字母名称改变以外,字母的频度、重复字母模式、字母结合方式等统计特性均未发生改变,依靠这些不变的统计特性就能破译单表代换。
相对单表代换来说,多表代换密码的破译要难得多。
多表代换大约是在1467年左右由佛罗伦萨的建筑师Alberti发明的。
多表代换密码又分为非周期多表代换密码和周期多表代换密码。
非周期多表代换密码,对每个明文字母都采用不同的代换表(或密钥),称作一次一密密码,这是一种在理论上唯一不可破的密码。
这种密码可以完全隐蔽明文的特点,但由于需要的密钥量和明文消息长度相同而难于广泛使用。
为了减少密钥量,在实际应用当中多采用周期多表代换密码。
在16世纪,有各种各样的多表自动密钥密码被使用,最瞩目的当属法国人Vigtnère的Vigenère密码体制。
密码发展史

密码的发展史:从起源到量子计算与人工智能一、密码起源与早期发展密码的起源可以追溯到古代的加密技术,最初的形式是简单的替换式密码,例如罗马帝国时期的凯撒密码。
这种密码通过将字母在字母表中向后移动固定位置来实现加密和解密。
凯撒密码是军事通信中常用的加密方式,保证了信息的安全。
二、古典密码:如凯撒密码、罗马密码古典密码阶段,人们开始使用更复杂的加密技术,如多字母替换密码。
这种密码使用多个密钥来加密信息,提高了破解的难度。
然而,这些古典密码的破解仍然需要时间和耐心,但它们的出现为现代密码学的发展奠定了基础。
三、近代密码:机械与电子密码随着机械和电子技术的发展,近代密码开始使用机械设备和电子设备进行加密。
例如,二战期间使用的Enigma密码机就是一种使用电子设备进行加密的方式。
虽然这种密码机在当时非常先进,但最终被破解了,这表明任何加密系统都可能被破解,为现代密码学提出了更高的挑战。
四、现代密码:基于数学与计算科学现代密码学开始于20世纪70年代,基于数学和计算科学的发展。
现代密码学使用复杂的算法来加密和解密信息,确保信息的安全。
这些算法通常基于数学中的一些复杂问题,如离散对数、线性代数和概率论等。
现代密码学的发展为互联网和社交媒体时代的网络安全提供了基础。
五、网络密码:互联网与社交媒体时代随着互联网和社交媒体的发展,网络密码成为保护个人和企业信息安全的重要手段。
网络密码通常使用哈希函数和加密算法来确保信息的安全。
此外,为了提高安全性,现代网络密码还采用了多因素身份验证等措施,以防止黑客入侵。
六、生物识别密码:指纹、面部识别等生物识别技术是一种基于生物特征的身份验证方法,如指纹、面部识别等。
生物识别技术可以用于保护个人和企业信息安全,因为每个人的生物特征都是独一无二的。
生物识别技术还可以用于移动支付、访问控制等领域,为人们的生活带来了便利和安全。
七、未来密码:量子计算与人工智能未来密码的发展将受到量子计算和人工智能的影响。
密码学的发展史

其中m 是明文字母对应的数,c 是与明文对应的密文的数。
随后,为了提高凯撒密码的安全性,人们对凯撒密码进行了改进。选取k,b 作为两个参数,其中要求k 与26互素,明文与密文的对应规则为 1 2 3 4 5 1 a b c d e 2 f g h ij k 3 l m n o p 4 q r s t u 5 v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
于是对应于明文secure message ,可得密文为XJHZWJRJXXFLJ 。此时,k 就是密钥。为了传送方便,可以将26个字母一一对应于从0到25的26个整数。如a 对1,b 对2,……,y 对25,z 对0。这样凯撒加密变换实际就是一个同余式
上一页下一页
二、 古典密码
世界上最早的一种密码产生于公元前两世纪。是由一位希腊人提出的,人们称之为棋盘密码,原因为该密码将26个字母放在5×5的方格里,i,j 放在一个格子里,具体情况如下表所示 这样,每个字母就对应了由两个数构成的字符αβ,α是该字母所在行的标号,β是列标号。如c 对应13,s 对应43等。如果接收到密
若存在这样的公钥体制就可以将加密密钥象电话簿一样公开任何用户当它想经其它用户传送一加密信息时就可以从这本密钥薄中查到该用户的公开密钥用它来加密而接收者能用只有它所具有的解密密钥得到明文
密码学的发展史
密码学的发展史
一、 引论
密码学是以研究秘密通信为目的,即对所要传送的信息采取一种秘密保护,以防止 第三者对信息的窃取的一门学科。密码通信的历史极为久远,其起源可以追溯到几千年前的埃及,巴比化,古罗马和古希腊,古典密码术虽然不是起源于战争,但其发展成果却首先被用于战争。交战双方都为了保护自己的通信安全,窃取对方情报而研究各种方法。这正是密码学主要包含的两部分内容:一是为保护自己的通信安全进行加密算法的设计和研究;二是为窃取对方情报而进行密码分析,即密码破译技术。因而,密码学是这一矛盾的统一体。任何一种密码体制包括5个要素:需要采用某种方法来掩盖其要传送的信息或字符 串称为明文:采用某种方法将明文变为另一种不能被非授权者所理解的信息或字符串称为明文;采用某种方法将明文变为另一种不能被非授权者所理解的信息或字符串的过程称为加密变换;经加密过程将明文变成的信息或字符串称为密文;用于具体加密编码的参数称为密钥,将密文还原为明文的过程称为解密变换。秘密通信的过程可用下面表格来表示:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、古代加密方法
源于应用的无穷需求总是推动技术发明和进步的直接动力。
存于石刻或史书中的记载表明,许多古代文明,包括埃及人、希伯来人、亚述人都在实践中逐步发明了密码系统。
从某种意义上说,战争是科学技术进步的催化剂。
人类自从有了战争,就面临着通信安全的需求,密码技术源远流长。
古代加密方法大约起源于公元前400年,斯巴达人发明了“塞塔式密码”,即把长条纸螺旋形地斜绕在一个多棱棒上,将文字沿棒的水平方向从左到右书写,写一个字旋转一下,写完一行再另起一行从左到右写,直到写完。
解下来后,纸条上的文字消息杂乱无章、无法理解,这就是密文,但将它绕在另一个同等尺寸的棒子上后,就能看到原始的消息。
这是最早的密码技术。
我国古代也早有以藏头诗、藏尾诗、漏格诗及绘画等形式,将要表达的真正意思或“密语”隐藏在诗文或画卷中特定位置的记载,一般人只注意诗或画的表面意境,而不会去注意或很难发现隐藏其中的“话外之音”。
如《水浒传》中梁山为了拉卢俊义入伙,“智多星”吴用和宋江便生出一段“吴用智赚玉麒麟”的故事来,利用卢俊义正为躲避“血光之灾”的惶恐心理,口占四句卦歌:
芦花丛中一扁舟,
俊杰俄从此地游。
义士若能知此理,
反躬难逃可无忧。
暗藏“卢俊义反”四字。
结果,成了官府治罪的证据,终于把卢俊义“逼”上了梁山。
更广为人知的是唐伯虎写的“我爱秋香”:
我画蓝江水悠悠,
爱晚亭上枫叶愁。
秋月溶溶照佛寺,
香烟袅袅绕经楼。
二、古典密码
古典密码的加密方法一般是文字置换,使用手工或机械变换的方式实现。
古典密码系统已经初步体现出近代密码系统的雏形,它比古代加密方法复杂,其变化较小。
下面我们举例说一些比较经典的古典密码。
1.滚桶密码
在古代为了确保他们的通信的机密,先是有意识的使用一些简单的方法对信息来加密。
如公元六年前的古希腊人通过使用一根叫scytale的棍子,将信息进行加密。
送信人先将一张羊皮条绕棍子螺旋形卷起来,然后把要写的信息按某种顺序写在上面,接着打开羊皮条卷,通过其他渠道将信送给收信人。
如果不知道棍子的粗细是不容易解密里面的内容的,但是收信人可以根据事先和写信人的约定,用同样的scytale的棍子将书信解密。
2.掩格密码
16世纪米兰的物理学和数学家Cardano发明的掩格密码,可以事先设计好方格的开孔,将所要传递的信息和一些其他无关的符号组合成无效的信息,使截获者难以分析出有效信息。
3. 棋盘密码
我们可以建立一张表,使每一个字符对应一数,是该字符所在行标号,是列标号。
这样将明文变成形式为一串数字密文。
4.凯撒(Caesar)密码
据记载在罗马帝国时期,凯撒大帝曾经设计过一种简单的移位密码,用于战时通信。
这种加密方法就是将明文的字母按照字母顺序,往后依次递推相同的字母,就可以得到加密的密文,而解密的过程正好和加密的过程相反。
5.圆盘密码
人们对凯撒密码进一步改善,只要将字母按照不同的顺序进行移动就可以提高破解的难度,增加信息的保密程度。
如15世纪佛罗伦萨人Alberti发明圆盘密码就是这种典型的利用单表置换的方法加密的方法。
如图在两个同心圆盘上,内盘按不同(杂乱)的顺序填好字母或数字,而外盘按照一定顺序填好字母或数字,转动圆盘就可以找到字母的置换方法,很方便的进行信息的加密与解密。
凯撒密码与圆盘密码本质都是一样的,都属于单表置换,即一个明文字母对应的密文字母是确定的,截获者可以分析对字母出现的频率,对密码体制进行有效的攻击。
Alberti的圆盘理论是古典密码学的主要代表之一, 在粘土圆盘的表面刻上带有
空格的字母, 成为最初人类的加密方式, 这种方式至今还无人能破戒。
6.维吉尼亚(Vigenere)密码
为了提高密码的破译的难度,人们有发明一种多表置换的密码,即一个明文字母可以表示为多个密文字母,多表密码加密算法结果将使得对单表置换用的简单频率分析方法失效,其中维吉尼亚密码就是一种典型的加密方法。
维吉尼亚密码是使用一个词组(语句)作为密钥,词组中每一个字母都作为移位替换密码密钥确定一个替换表,维吉尼亚密码循环的使用每一个替换表完成明文字母到密文字母的变换,最后所得到的密文字母序列即为加密得到的密文。
维吉尼亚是古典密码理论发展上的一个重要里程碑,他的理论又被称为多字母编码。
三、近代密码
密码形成一门新的学科是在20世纪70年代,这是受计算机科学蓬勃发展刺激和推动的结果。
快速电子计算机和现代数学方法一方面为加密技术提供了新的概念和工具,另一方面也给破译者提供了有力武器。
计算机和电子学时代的到来给密码设计者带来了前所未有的自由,他们可以轻易地摆脱原先用铅笔和纸进行手工设计时易犯的错误,也不用再面对用电子机械方式实现的密码机的高额费用。
总之,利用电子计算机可以设计出更为复杂的密码系统
Arthur Scherbius于1919年设计出了历史上最著名的密码机—德国的Enigm a机,,在二次世界大战期间,Enigma曾作为德国陆、海、空三军最高级密码机。
Enigma机使用了3个正规轮和1个反射轮。
这使得英军从1942年2月到12月都没能解读出德国潜艇发出的信号。
转轮密码机的使用大大提高了密码加密速度,但由于密钥量有限,到二战中后期时,引出了一场关于加密与破译的对抗。
首先是波兰人利用德军电报中前几个字母的重复出现,破解了早期的Enigma密码机,而后又将破译的方法告诉了法国人和英国人。
英国人在计算机理论之父——图灵的带领下,通过寻找德国人在密钥选择上的失误,并成功夺取德军的部分密码本,获得密钥,以及进行选择明文攻击等等手段,破解出相当多非常重要的德军情报。
计算机和电子学时代的到来使得美国在1942年制造出了世界上第一台计算机。
美国利用计算机轻松地破译了日本的紫密密码,使日本在中途岛海战中一败涂地。
1943年,在获悉山本五十六将于4月18日乘中型轰炸机,由6架战斗机护航,到中途岛视察时,罗斯福总统亲自做出决定截击山本,山本乘坐的飞机在去往中途岛的路上被美军击毁,山本坠机身亡,日本海军从此一蹶不振。
密码学的发展直接影响了二战的战局。
密码编码和密码破译的斗争是一种特殊形式的斗争,这种斗争的一个重要特点是它的隐蔽性。
无论是使用密码的一方,还是破译密码的一方,他们的工作都是在十分秘密地进行。
特别是,对于他们的工作的最新进展更是严格地保密。
当一方改进了自己的密码编码方法时,他不会公开所取得的这种进展;当另一方破译了对方的密码时,他也不会轻易地泄露破译的成果和使用破译所取得的情报,以便能长期地获取情报并取得更有价值的信息。
所以,密码战线上的斗争是一种无形的,不分空间和时间的,隐蔽的战争。
无数历史事实证明,战争的胜负在很大程度上依靠密码保密的成败。
四、现代密码
前面介绍了古典密码和近代密码,它们的研究还称不上是一门科学。
直到1 949年香农发表了一篇题为“保密系统的通信理论”的著名论文,该文首先将信息论引入了密码,从而把已有数千年历史的密码学推向了科学的轨道,奠定了密码学的理论基础。
由于受历史的局限,七十年代中期以前的密码学研究基本上是秘密地进行,而且主要应用于军事和政府部门。
密码学的真正蓬勃发展和广泛的应用是从七十年代中期开始的。
1977年美国国家标准局颁布了数据加密标准DES用于非国家保密机关。
该系统完全公开了加密、解密算法。
此举突破了早期密码学的信息保
密的单一目的,使得密码学得以在商业等民用领域的广泛应用,从而给这门学科以巨大的生命力。
在1976年,美国密码学家迪菲和赫尔曼在一篇题为“密码学的新方向”一文中提出了一个崭新的思想,不仅加密算法本身可以公开,甚至加密用的密钥也可以公开。
但这前不意味着保密程度的降低。
因为如果加密密钥和解密密钥不一样。
而将解密密钥保密就可以。
这就是著名的公钥密码体制。
若存在这样的公钥体制,就可以将加密密钥象电话簿一样公开,任何用户当它想经其它用户传送一加密信息时,就可以从这本密钥薄中查到该用户的公开密钥,用它来加密,而接收者能用只有它所具有的解密密钥得到明文。
任何第三者不能获得明文。
1978年,由美国麻省理工学院的里维斯特,沙米尔和阿德曼提出了RSA公钥密码体制,它是第一个成熟的、迄今为止理论上最成功的公钥密码体制。
它的安全性是基于数论中的大。