雷电对电力线路危害及高压架空线路防雷保护措施

合集下载

10KV配电线路雷击事故分析及防雷对策

10KV配电线路雷击事故分析及防雷对策

10KV配电线路雷击事故分析及防雷对策一、雷击事故分析雷击是自然界极为危险的天气现象,当雷电活动发生时,如果雷电与建筑物、电力设施等接触,就会造成雷击事故。

10KV配电线路作为电力系统的重要组成部分,也面临着雷击的风险。

雷击事故一旦发生,不仅会造成设备的损坏和停电,还可能危及人民群众的生命财产安全。

对于10KV配电线路雷击事故的分析及防雷对策显得尤为重要。

1.1 10KV配电线路雷击事故特点雷击事故频率较高。

由于10KV配电线路横跨大片地面,搭设在高空,很容易成为雷电活动的“目标”,导致雷击事故频率较高。

雷击事故损失严重。

由于10KV配电线路所承载的电力负荷较大,一旦发生雷击事故,不仅会造成设备的损毁,还可能导致大面积停电,影响供电正常运行。

雷击事故风险难以预测。

雷电活动具有突发性和随机性,难以准确地对雷击事故的发生时间和位置进行预测,10KV配电线路的雷击事故防范面临一定的困难。

10KV配电线路雷击事故的发生有其特定的原因,主要包括以下几个方面:第一,雷电活动频繁。

气象部门数据显示,我国每年的雷电次数约为50-60天,雷电主要发生在夏季,而10KV配电线路正是这段时间电力需求相对较大的时候,因此雷击事故发生的概率相对较高。

第二,线路接地不良。

10KV配电线路若接地不良,导致接地电阻增大,容易成为雷击事故的“好发地”,因为雷电冲击时,会通过接地电阻进入地下,造成线路损毁。

线路设备缺陷。

10KV配电线路设备长期使用后,会出现老化、漏电、接触不良等缺陷,这些缺陷会增加雷击事故的风险。

直接雷击。

直接雷击是指雷电直接击中10KV配电线路或设备,在瞬间产生高压电流,造成线路设备损坏。

雷电流跳闸。

雷电冲击使得10KV配电线路中的电流瞬间增大,导致电力系统保护设备跳闸,造成线路停电。

设备损坏。

10KV配电线路遭受雷击冲击后,线路设备会受到严重损坏,需要更换或维修,增加了电力系统的维护成本。

停电影响。

10KV配电线路发生雷击事故后,可能会造成区域性的停电,影响用户正常用电。

架空线路防雷保护措施

架空线路防雷保护措施

架空线路防雷保护措施引言架空线路是电力传输和配电系统中常见的一种形式,它由许多电线和电缆组成,将电能从发电站传输到终端用户。

然而,在雷电活动频繁的地区,架空线路往往面临着被雷击的风险。

为了保护架空线路免遭雷击,采取一系列的防雷保护措施是必不可少的。

本文将介绍一些常见的架空线路防雷保护措施,包括避雷针的设置、屏蔽线的使用以及接地系统的建立。

1. 避雷针的设置避雷针是一种利用物体尖端的放电原理来吸引和引导雷电放电的设备。

通过安装避雷针,可以有效地减少雷电击中架空线路的风险。

在架空线路上设置避雷针时,应遵循以下几点:•按照地区的实际情况确定避雷针的数量和位置,通常每隔一段距离设置一个避雷针;•避雷针应该安装在架空线路的最高点,以提高有效吸引雷电的概率;•避雷针应该与架空线路之间保持一定的距离,以免介导过电压到达线路。

2. 屏蔽线的使用屏蔽线是一种能够吸收和消散雷电电荷的导体。

在架空线路中使用屏蔽线可以有效地减少雷电对线路的干扰。

使用屏蔽线时,需要注意以下几点:•屏蔽线应该与架空线路成一定的错层或缠绕结构,以增加雷电放电途径的长度,减少雷电对线路的影响;•屏蔽线的导电性能应该符合相关标准,确保其能够有效地吸收和消散雷电电荷;•屏蔽线与架空线路之间的接地应该可靠,以确保电荷能够有效地被导入地下。

3. 接地系统的建立接地系统是架空线路防雷保护的重要组成部分。

通过建立良好的接地系统,可以将雷电电荷有效地引入地下,减少对架空线路的影响。

建立接地系统时,需要考虑以下几点:•接地系统应该符合相关标准,确保其安全可靠;•接地系统的导电性能要良好,以保持低电阻;•接地系统应该定期检查和维护,确保其正常运行。

结论架空线路防雷保护是确保电力传输和配电系统安全运行的重要措施。

通过合理设置避雷针、使用屏蔽线以及建立良好的接地系统,可以有效地降低雷电对架空线路的影响。

然而,为了保持防雷保护的有效性,相关设备和系统需要定期检查和维护,以确保其正常运行。

架空线路遭雷击原因及防雷措施

架空线路遭雷击原因及防雷措施

架空线路遭雷击原因及防雷措施架空线路遭雷击的原因主要包括以下几个方面:1. 天气条件:雷击通常发生在雷暴天气中,具有较高的雷暴和闪电频率。

这种天气条件下,雷电活动较为频繁,增加了架空线路遭雷击的可能性。

2. 线路高度:架空线路一般处于较高的位置,容易成为雷击的目标。

由于架空线路一般处于地面以上几米至十几米的高度,正好处于雷击发生的范围之内,因此更容易受到雷击。

3. 线路走向:架空线路通常呈线性分布,较长的线路更容易遭到雷击。

较长的线路增大了受雷击的概率,因为雷电所产生的电磁波会在一定范围内传播,而较长的线路更容易成为电磁波的目标。

4. 架空线路金属材质:架空线路一般由金属材质制成,比如铝合金等。

金属材质具有良好的导电性能,容易将雷击电流导向地面,从而减少线路遭到雷击的概率。

5. 线路绝缘性能:架空线路的绝缘性能对遭雷击起着关键的作用。

如果线路的绝缘性能较差,就容易形成电弧,进而导致线路发生击穿,从而造成雷击事故。

为了防止架空线路遭雷击,可以采取以下一些防雷措施:1. 架设避雷针:在架空线路附近的高空地段,可以设置避雷针来吸引雷电,减小对线路的影响。

避雷针可以通过导线或者金属尖端与大地连接,并且应安装在距离线路较近和较高的地方。

2. 提高线路绝缘性能:应选择具有良好绝缘性能的材料进行线路绝缘处理,比如使用绝缘塑料或者涂覆绝缘漆等。

要定期对线路进行绝缘检查,以确保绝缘性能正常。

3. 设置避雷器:避雷器可以将雷电能量引导到地面,起到隔离和保护线路的作用。

在架空线路附近安装合适的避雷器,可以有效降低线路遭到雷击的概率。

4. 加强接地措施:对于架空线路来说,良好的接地系统可以将雷击电流迅速引入地面,保护线路不受雷击的影响。

要定期检查和维护接地装置,确保其电阻足够小,接地效果良好。

5. 增加支架数目:在较长的线路中增加支架的数量,可以减小线路的长度,减少受雷击的概率。

增加支架还可以增加线路的稳定性和强度,提高线路的抗雷击能力。

高压输电线路雷害特点及防雷措施

高压输电线路雷害特点及防雷措施

高压输电线路雷害特点及防雷措施
高压输电线路雷害是我国重要的天气灾害之一,每年造成巨大损失,伤害社会公共利益。

因此,采取有效的防雷措施非常重要。

高压输电线路雷害的特点是非常危险,可能导致失电、火灾、漏电、电击等严重后果。

雷电有特殊的能量特性,可以高能量地击中线路,破坏线路设备。

另外,雷电的流量大,瞬间可以达到数千安培,而普通电流只有几安培,这是极其危险的。

针对线路雷害,有以下防雷措施:
1、安装防雷装置。

防雷装置可以将闪电的能量和过热的能量分离,使线路免受雷击而不受损。

2、安装耐雷护栏。

耐雷护栏可以将高电压线路隔离,防止雷电攻击设备。

3、检查线路储备条件。

通过定期检查线路,消除任何隐患,减少雷焰扩散的可能性。

4、改善线路绝缘性能。

线路绝缘是保护电力系统安全避免雷击的关键,应加强绝缘检查,采取改善绝缘性能的措施。

5、进行警戒检查。

应定期进行警戒性检查,检查路线上的破坏,查明隐患,此外,还可以采取抢修方法,以便及时采取措施。

综上所述,高压输电线路雷害的特点十分危险,防雷措施也必不可少。

为了避免雷害,各方都应该采取有效的防雷措施,确保线路安全运行。

高压输电线路综合防雷措施的应用

高压输电线路综合防雷措施的应用

高压输电线路综合防雷措施的应用高压输电线路是电力输送的重要组成部分,为确保电力输送的安全和稳定,高压输电线路的防雷工作显得尤为重要。

在现代社会,雷电对电力系统造成的影响是不可忽视的,因而高压输电线路综合防雷措施的应用显得至关重要。

本文将从高压输电线路防雷的必要性、常见的防雷措施及其应用效果等方面展开阐述。

一、高压输电线路防雷的必要性高压输电线路承担着将电能从发电站输送到用户的重要任务,是电力系统的重要组成部分。

由于自然界雷电活动的不可预测性和破坏性,使得高压输电线路成为雷电攻击的重要目标。

雷电对高压输电线路可能造成以下几方面的影响:1. 直接损坏设备:雷电直击导线、绝缘子、变压器等设备,可能导致设备的损坏,造成停电甚至事故。

2. 间接影响:雷电引起的电磁感应可能导致线路过电压,影响电力系统的正常运行。

3. 安全隐患:雷电对高压输电线路的影响可能造成对周围环境和人员的安全隐患。

由于上述原因,高压输电线路必须进行综合防雷工作,以保障电力系统的稳定运行和人员财产的安全。

1. 金属氧化物避雷器:金属氧化物避雷器是高压输电线路防雷的重要设备之一。

其原理是利用氧化锌等金属氧化物的非线性电阻特性,在电压大于一定值时形成导通通道,将雷电击中的能量引向大地,从而保护设备和线路免受雷击。

2. 接地网:接地网是将设备和线路上的电荷引入地下的装置,能够有效地把雷电击中的电荷引入地下,减少雷电对设备和线路的损害。

3. 防雷线:在高压输电线路上悬挂防雷线,以降低雷电击中导致的线路过电压,保护设备和线路的安全。

4. 避雷带:在高压输电线路周围设置避雷带,通过避雷带的导电性能将雷电击中的能量引入地下,减少雷电对周围环境和人员的影响。

5. 避雷接地装置:避雷接地装置是将高压输电线路上的导线通过接地装置引入地下,降低雷电对线路的影响。

综合防雷措施的应用可以显著地提高高压输电线路的防雷能力,保障电力系统的安全运行和人员财产的安全。

以下是综合防雷措施的应用效果:1. 提高设备和线路的抗雷能力:金属氧化物避雷器、接地网、防雷线等设备的使用可以有效地将雷电击中的能量引入地下,保护设备和线路免受雷击。

线路防雷四原则和具体措施

线路防雷四原则和具体措施

线路防雷四原则和具体措施
线路防雷的四原则如下:
1. 保护导线不受或少受雷直击。

2. 雷击塔顶或避雷线时不使或少使绝缘发生闪络。

3. 当绝缘发生冲击闪络时,尽量减小由冲击闪络转变为稳定电力电弧的概率,从而减少雷击跳闸率次数。

4. 即使跳闸也不中断电力的供应。

具体措施如下:
1. 合理选择输电线路路径,避开易遭受雷击的地段,如雷暴走廊、潮湿盆地、土壤电阻率突变地带等。

2. 降低杆塔接地电阻、提高耦合系数、减小分流系数、加强高压输电线路绝缘等,以提高高压输电线路的耐雷水平。

3. 根据地区的地貌、地形、地质以及土壤状况与接地电阻的合理水平,找出可能存在薄弱环节或缺陷,因地制宜地采取措施。

请注意,上述措施并不能保证线路完全不受雷击,雷电活动具有复杂性和随机性,因此应综合考虑各种因素,采取多种措施,以最大程度地减少雷击对线路的危害。

探讨10kV配网线路防雷技术的保护方案

探讨10kV配网线路防雷技术的保护方案

探讨10kV配网线路防雷技术的保护方案10kV配网线路防雷技术的保护方案主要针对天气雷电活动对电力配网线路的损坏和影响进行预防和保护。

以下是一种常见的10kV配网线路防雷技术的保护方案。

1. 使用耐雷能力好的材料:在线路建设中,选用高耐雷的材料,如耐雷瓷绝缘子、耐雷电的导线、耐腐蚀的金属杆等。

这样可以减少雷电对线路的冲击,降低线路损坏的风险。

2. 雷电接地系统:建立完善的雷电接地系统是防雷的重要措施之一。

包括系统接地和设备接地两个方面。

系统接地通过合理设置接地装置,将雷击电流导入地下,保护设备和线路不受损坏。

设备接地主要是将设备的金属外壳和接地线连接,以便将雷电引入地下。

3. 避雷器的应用:在10kV配网线路上设置避雷器,可有效抵抗雷电冲击。

避雷器能够通过快速引爆减少雷电冲击产生的过电压,并将其导入到接地系统中。

在避免雷电冲击过高的情况下,保护线路和设备的安全运行。

4. 防雷装置的设置:在线路上设置防雷装置,如避雷网、避雷线等。

通过这些装置,可以将雷击电流引导到地下,减少对线路的伤害。

5. 定期维护检查:定期对10kV配网线路进行维护检查,及时发现并修复潜在的雷电损坏风险。

这包括检查接地装置是否正常,避雷器是否损坏等。

6. 提高线路的耐雷能力:线路的材料和结构设计要满足防雷的要求,提高线路的耐雷能力。

选择合适的绝缘子型号、加大绝缘子串的间隔和侧线的弧垂等措施,有效提高线路的耐雷性能。

7. 配电变压器的保护:对10kV配网线路的配电变压器进行保护。

可以安装避雷器、防雷措施等,减少雷电冲击对变压器的损害。

10kV配网线路的防雷技术保护方案包括使用耐雷材料、建立雷电接地系统、设置避雷器和防雷装置、定期维护检查、提高线路耐雷能力以及保护配电变压器等措施。

这些措施的综合应用可以有效减少雷电对配电线路的损坏和影响,保障电力系统的正常运行。

35kV架空线路的防雷保护措施

35kV架空线路的防雷保护措施

35kV架空线路的防雷保护措施本文介绍了35kV线路遭受雷击后的危害。

采用典型的防雷保护接线;在35kV线路变电所进出线段架设避雷线;降低杆塔接地电阻;在无避雷线杆塔上装设金属性消雷器,这些防雷技术措施,可以使35kV线路免受雷击的危害。

标签:大气过电压;避雷线;不平衡绝缘;金属性消雷器;避雷器;自动重合闸一、前言35kV线路一般分布很广,雷雨季节遭受雷击机会很多。

线路遭受雷击有三种情况:一是雷击于线路导线上,产生直击雷过电压;二是雷击避雷线后,反击到输电线上;三是雷击于线路附近或杆塔上,在输电线上产生感应过电压。

雷电进行波顺线路侵入到变电站,威胁电气设备的绝缘,造成避雷器爆炸、主变压器绝缘损坏等事故,直接影响了变电站的安全运行。

为了提高供电的可靠性,减少因大气过电压造成的危害,对35kV架空线路应采取必要的防雷保护措施。

二、35kV架空线路应采取的的防雷保护措施1、选择典型的防雷保护接线防止35kV线路直击雷和进行波最有效的方法是架设避雷线。

但因雷击避雷线时,避雷线上产生的电位相当高,35kV线路的绝缘水平承受不了这个高电压,容易造成反击,同样会引起线路跳闸,同时避雷线线路造价又高,因此,35kV 线路只在变电所進出线段,根据变压器容量,架设1~2公里避雷线,以限制流进避雷器的雷电流和限制入侵波的陡度。

为了降低侵入波的峰值和陡度,35kV 线路除架设避雷线外,限制侵入波峰值的办法是在避雷线两端杆塔上还加装管型避雷器或保护间隙。

为此,35kV线路和变电所要选择典型防雷保护接线,如图1所示:图中:HY5W2-52.7/134型氧化锌避雷器;GB1-2-GXS(35/2-10)型管型避雷器。

2、35kV线路防雷保护的设计要求2.1避雷线的选择2.1.1带避雷线杆塔的选择带地线的35kV线路,要选用定型的杆塔,以确定避雷线悬点高度和与导线间垂直距离h和避雷线的保护角α=tg-1S/h(度)。

一般水泥双杆h为3.25m-4m 为双根避雷线,铁塔h为5.7m为单根避雷线,以满足角α为20°~30°的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈雷电对电力线路的危害及高压架空线路的防雷保护措

摘要:随着社会的发展,我国电网的规模也在不断扩大。

雷电击打高压架空线路的现象也频频发生,因北提高高压架空线路的防雷保护也越来越重要。

本文首先分析了雷电对高压架空线路的危害,然后对高压架空线路的防雷保护的现状进行了研究,并分析了雷电活动频繁的位置,以此为基础提出了高压架空线路的防雷保护措施,以及防雷保护设施在技术上的完善,为我国的高压架空线路的防雷保护提供必要条件。

关键词:高压架空线路防雷措施
前言
雷电是一种大气放电现象,产生于积雨云中,积雨云在形成过程中,某些云团带正电荷,某些云团带负电荷。

它们对大地的静电感应,使地面或建(构)筑物表面产生异性电荷,当电荷积聚到一定程度时,不同电荷云团之间,或云团与大地之间的电场强度可以击穿空气(一般为25~30 kv/cm),开始游离放电,我们称之为“先导放电”。

云对地的先导放电是云向地面跳跃式逐渐发展的,当到达地面吋(地面上的建筑物,架空输电线等),便会产生由地面向云团的逆导主放电。

在主放电阶段里,会出现很大的雷电流(一般为几十ka至几百ka),并随之发生强烈的闪电和巨响,这就形成了雷电。

雷电一般伴有阵雨,有时还会出现局部的大风、冰雹等强对流天气。

强雷暴天气出现有时还带来灾害,如雷击危及人身和电力设备安
全,当家用电器、计算机机房直接遭雷击或感应雷时将会被损坏,有时还会引起火灾等。

1 雷电的特征及危害
1.1雷电日特征
雷电活动从季节来讲以夏季最活跃,冬季最少:从地区分布来讲是赤道附近最活跃,随纬度升高而减少,极地最少。

评价某一地区雷电活动的强弱,通常是用“雷电日”,即以一年当中该地区有多少天发生耳朵能听到雷鸣来表示该地区的雷电活动强弱,雷电闩的天数越多,表示该地区雷电活动越强,反之则越弱。

我国平均雷电日的分布,大致可以划分为4个区域:西北地区一般在15日以下;长江以北大部分地区(包括东北)在15~40日之间;长江以南地区在40日以上:北纬23°以南地区平均雷电日达80日。

广东的雷州半岛地区及海南省,是我国雷电活动最剧烈的地区,高达120~130日,年平均雷电日只能给人们提供一个概略的情况。

事实上,即使在同一地区内,雷电活动也有所不同,有些局部地区,雷击要比邻近地区多得多,如广州的沙河、北京的十三陵等地.我们称这些地方为该地区的“雷击区”。

当放电通道发展到离地面不远的空中时,电场受地面物体影响而发生畸变。

如果地面上有一座较高的尖顶建筑物,例如一座很高的铁塔,由于这些建筑物的尖顶具有较大的电场强度,雷电先驱自然会被吸引向这些建筑物,这就是高耸突出的建筑物容易遭受雷击的缘故。

同样的道理,架空电力线路自然也是雷电最喜欢袭击的“建筑”。

1.2雷电的危害
架空线路受到直接雷击或线路附近落雷时,导线上会因电磁感应而产生过电压,即大气过电压(外过电压)。

这个电压往往高出线路相电压的2倍及以上,使线路绝缘遭受破坏而引起事故。

当雷击线路时,巨大的雷电流在线路对地阻抗上产生很高的电位差,从而导致线路绝缘闪络。

雷击不但危害线路本身的安全,而且雷电会沿导线迅速传到变电站,若站内防雷措施不良,则会造成站内设备严重损坏。

2高压架空线路的防雷保护措施
根据运行经验,采取降低杆塔接地电阻、加装耦合地线及线路避雷器、减小线路地线保护角、增加绝缘子片数、采用自动重合闸等措施均可以有效地降低雷击跳闸率。

以上加强防护措施可根据线路的重要性、雷电活动的频数、地形地貌特点以及土壤电阻率等情况确定选取合理的一种或几种组合。

2.1架设地线以及减少地线保护角
地线是送电线路最基本的防雷措施之一,它的功能:①防止雷直击导线;②雷击杆塔时对雷电流的分流作用,减小流入杆塔的雷电流,使杆塔顶电位降低;③对导线有耦合使用,降低雷击杆塔时塔头绝缘上的电压;④对导线能起到屏蔽作用,降低导线上的感应过电压。

减小保护角可降低绕击率,保证雷电不致绕过地线而直接击中导线。

为提高线路耐雷水平,我所所辖线路均按规程要求,线路全线均架设两根地线,及时对锈蚀架空地线进行更换;直线塔上
地线对边导线保护角分别不大于15°(500kv)及20°(110~
220kv),杆塔上两根地线之间距离小于地线与导线垂直距离的5倍。

2.2降低杆塔接地电阻
地线对雷电过电压的降压作用,是依靠低的接地电阻来实现的,而且接近于成比例关系。

对一般高度的杆塔,降低线路杆塔地网接地电阻是提高线路耐雷水平,以防止反击的有效措施,也是最经济、最有效降低线路雷击跳闸率的措施之一。

因此,我所为做好接地装置的全过程技术管理工作,不断加强输电线路杆塔地网的检查维护,按有关规程规定定期对线路杆塔接地网进行检查测试,并及时对线路中杆塔接地电阻值偏高的杆塔地网进行技术改造处理。

同时加强曾发生雷击跳闸线路杆塔的接地电阻测试工作。

2.3加强绝缘
根据大量的权威试验数据表明,绝缘子串的雷电冲击闪络电压和绝缘子的型式关系不大,而主要取决于串长。

但在线路设计过程中,一般不按雷电过电压的要求选择绝缘子串的绝缘子强度,但应根据已选定的绝缘子水平来检验线路的耐雷水平,并应符合现行规程规定。

如在某些情况下雷击跳闸率太高,则可根据具体情况(如考虑采用降低接地电阻等其他综合措施)酌量增加绝缘子片数。

另外,零值和劣质绝缘子增多,绝缘水平下降亦会造成耐雷水平偏低。

2.4装设自动重合闸
据统计,我国110kv及以上送电线路自动重合闸成功率可达75%~95%。

因此规程要求“各级电压线路应尽量装设三相或单相自
动重合闸”。

对我局1995~2001年线路雷击跳闸统计结果表明:35次跳闸中有32次重合成功,1次强送成功,1次不起动,91.43%的跳闸重合闸是成功的,这说明我市110~500kv线路耐雷水平较高,自动重合闸可以有效消除雷击故障,避免了因雷击而造成的停电事故。

安装线路型氧化锌避雷器
随着送电线路防雷技术的不断提高,线路氧化锌避雷器作为一种新的线路防雷技术,已得到越来越广泛的认可和应用。

省内众多兄弟单位已积累了一定的经验,且多年的运行经验表明,在雷电活动频繁、土壤电阻率高、地形复杂的地区安装线路型氧化锌避雷无论在防止雷绕击导线、雷击塔顶或地线时的反击都非常有效。

我所于2000年在110kv紫海线#25、#26、#27共3基塔共安装了9相线路避雷器,由于接受雷雨季节考验的日子尚短,防雷效果有待验证。

由于该类产品价格较高,使用成本大,若在线路上广泛推广使用,前提必须是大幅降低产品的价格。

3 结语
架空线的防雷从工程设计阶段就要认真加以考虑,应根据本地的实际情况,采取切实可行的防雷方案,选用质量可靠的电气设备和可靠性高的防雷设备,同时,真正按照等电位的原则,做好符合要求的共用接地网,综合考虑防雷与接地,并对雷击故障作详尽的调查分析,针对故障原因制订有关反事故措施。

对雷电活动较频繁的地区应加强线路的运行维护工作,并在防雷设计中采取相应的有
效的措施。

只有这样,输电线路和设备才能避免遭受雷击。

相关文档
最新文档