离合器设计

合集下载

机械设计基础机械设计中的离合器选择与设计

机械设计基础机械设计中的离合器选择与设计

机械设计基础机械设计中的离合器选择与设计离合器作为机械传动系统中的重要组成部分,扮演着连接和断开动力传递的关键角色。

在机械设计过程中,正确选择和设计离合器,对于确保传动系统的稳定性、可靠性和性能具有重要意义。

本文将从离合器的选择和设计两个方面进行探讨。

一、离合器的选择离合器的选择应根据具体的机械传动系统要求和工况条件进行合理的决策。

以下几个方面是考虑离合器选择的重要因素:1. 功率传递需求:根据传动系统所需的最大扭矩和转速,合理选择离合器的额定扭矩和转速范围,确保离合器能够满足功率传递需求。

2. 工作环境条件:考虑离合器所处的工作环境条件,包括温度、湿度、腐蚀性等因素。

选择适应工作环境的材料和密封设计,以保证离合器的稳定性和寿命。

3. 控制方式:根据机械传动系统的要求,选择合适的离合器控制方式,包括手动、自动或电动控制等。

确保控制方式符合机械设备的操作要求。

4. 耐久性和可靠性:选择结构简单、制造工艺可靠、经久耐用的离合器,以确保传动系统的可靠性和工作寿命。

二、离合器的设计离合器的设计需要考虑到传动系统的特定要求和离合器的工作原理。

以下几个方面是离合器设计的关键考虑因素:1. 离合器类型:根据机械设备的要求和传动系统的特点,选择合适的离合器类型,如手动离合器、自动离合器、摩擦离合器等。

2. 连接方式:确定离合器与其他传动元件的连接方式,包括轴向连接、径向连接或者副程度连接等。

3. 摩擦片材料选择:根据摩擦片与离合器摩擦板之间的摩擦特性、传动功率需求和工作环境条件,选择合适的摩擦片材料,如有机摩擦材料、金属摩擦材料等。

4. 制动盘设计:根据离合器的转速和传动功率需求,设计合适的制动盘结构和尺寸,确保离合器的工作可靠性和耐久性。

5. 离合器控制系统:设计合适的离合器控制系统,包括离合器操纵机构、控制杆和控制电路等。

在离合器设计过程中,应进行必要的强度和热量计算,以确保离合器能够承受传动系统的工作负荷和热量产生。

离合器课程设计

离合器课程设计
2.离合器故障模拟与应急处理方法的训练;
3.离合器拆装与安装的标准化操作流程演练;
4.离合器系统综合检测与性能评估的实际操作;
5.课程总结与反思:通过学生互动,探讨离合器在日常使用中的注意事项及延长使用寿命的方法。
3.离合器操纵系统的联动原理与操作方法;
4.离合器常见故障现象、原因及维修方法;
5.离合器拆装与保养流程。
3、教学内容
1.离合器性能检测与评估方法;
2.离合器液压系统的工作原理及故障诊断;
3.离合器踏板自由行程的调整方法;
4.离合器故障案例分析,结合实际操作演示;
5.离合器维护与保养的注意事项及日常使用技巧。
4、教学内容
1.离合器与变速器协同工作原理的深入理解;
2.离合器在不同驾驶模式下的使用技巧与节能效果;
3.现代汽车离合器技术的发展趋势与新型离合器介绍;
4.离合器故障诊断与排除的综合实践案例分析;
5.离合器教学实验:通过模拟实验,加深对离合器工作原理及操作流程的理解。
5、教学内容
1.离合器在汽车运动性能中的作用与调整;
离合器课程设计
一、教学内容
《汽车结构与原理》第四章:离合器原理与构造。本节课将围绕以下内容展开:
1.离合器的作用与工作原理;
2.离合器的构造与分类;
3.离合器的主要部件及其功能;
4.离合器操纵机构及其工作原理;
5.离合器故分析与排除方法。
2、教学内容
1.离合器摩擦片材质与磨损分析;
2.离合器压盘、飞轮、离合器壳体的结构与作用;

离合器结构设计

离合器结构设计

离合器结构设计
离合器是一种用于连接和断开发动机与变速器之间的传动装置。

它允许驾驶员在换挡时暂时断开发动机与变速器的连接,从而实现平稳的换挡操作。

以下是一些常见的离合器结构设计考虑因素:
1. 摩擦材料:离合器的摩擦材料通常由摩擦片和压盘组成。

摩擦片与飞轮接触,通过摩擦力传递转矩。

选择合适的摩擦材料非常重要,以确保离合器具有足够的摩擦力和耐磨性。

2. 压盘:压盘是离合器的关键部件之一,它通过弹簧或其他力量机构对摩擦片施加压力,以确保摩擦力的产生。

压盘的设计需要考虑压力分布的均匀性和稳定性。

3. 离合器分离器:离合器分离器用于断开发动机与变速器之间的连接。

它通常由踏板、连杆和分离轴承组成。

设计分离器时需要考虑操作力的大小、踏板行程和分离器的可靠性。

4. 传动轴:传动轴将离合器的转矩传递给变速器。

它的设计需要考虑强度、刚度和传动轴的平衡,以减少振动和噪音。

5. 润滑:离合器的部件需要适当的润滑,以确保正常的运转和寿命。

设计中需要考虑润滑剂的类型、润滑方式和润滑系统的设计。

6. 热管理:离合器在工作过程中会产生热量,因此需要考虑散热问题。

设计中可以采用散热片、散热孔或冷却系统等方式来有效管理离合器的温度。

7. 轻量化设计:在不影响强度和性能的前提下,尽量减轻离合器的重量可以提高燃油经济性和动态性能。

这只是离合器结构设计的一些基本考虑因素,实际的设计还需要根据具体的应用和要求进行详细的工程分析和优化。

离合器的设计需要综合考虑性能、可靠性、耐久性和成本等因素,以满足车辆的动力传输需求。

汽车设计-离合器设计

汽车设计-离合器设计

第二章离合器设计第一节概述离合器是汽车传动系中直接与发动机相连接的总成,其主要功用是切断和实现对传动系的动力传递,以保证汽车起步时将发动机与传动系平顺地接合,确保汽车平稳起步;在换档时将发动机与传动系分离,减少变速器中换档齿轮之间的冲击;在工作中受到大的动载荷时,能限制传动系所承受的最大转矩,防止传动系各零件因过载而损坏;有效地降低传动系中的振动和噪声。

为了保证离合器具有良好的工作性能,对汽车离合器设计提出如下基本要求:1. 在任何行驶条件下均能可靠地传递发动机的最大转矩,并有适当的转矩储备;2. 接合时要平顺柔和,以保证汽车起步时没有抖动和冲击;3. 分离时要迅速、彻底;4. 离合器从动部分转动惯量要小,以减轻换档时变速器齿轮间的冲击,便于换档和减小同步器的磨损;5. 应有足够的吸热能力和良好的通风散热效果,以保证工作温度不致过高,延长其使用寿命;6. 应使传动系避免扭转共振,并具有吸收振动、缓和冲击和减小噪声的能力;7. 操纵轻便、准确,以减轻驾驶员的疲劳;8. 作用在从动盘上的压力和摩擦材料的摩擦系数在使用过程中变化要尽可能小,以保证有稳定的工作性能;9. 应有足够的强度和良好的动平衡,以保证其工作可靠、寿命长;10. 结构应简单、紧凑,质量小,制造工艺性好,拆装、维修、调整方便等。

摩擦离合器主要由主动部分(发动机飞轮、离合器盖和压盘等)、从动部分(从动盘)、压紧机构(压紧弹簧)和操纵机构(分离叉、分离轴承、离合器踏板及传动部件等)四部分组成。

主、从动部分和压紧机构是保证离合器处于接合状态并能传递动力的基本结构,操纵机构是使离合器主、从动部分分离的装置。

随着汽车发动机转速和功率的不断提高,汽车电子技术的高速发展,人们对离合器的要求越来越高。

从提高离合器工作性能角度出发,传统的推式膜片弹簧离合器结构正逐步地向拉式结构发展,传统的操纵型式正向自动操纵的型式发展,因此,提高离合器的可靠性和使用寿命,适应高转速,增加传递转矩的能力和简化操纵,已成为离合器的发展趋势。

离合器设计说明书

离合器设计说明书

离合器设计说明书离合器设计说明书设计目的:本文档旨在详细说明离合器的设计原理、结构以及使用方法,以便于生产商和用户能够正确理解和操作离合器。

1:引言1.1 离合器的作用:离合器是一种机械装置,用于控制两个旋转轴之间的传动连接与分离。

它允许发动机和传动系统之间的动力传输,同时也能实现车辆的启动、换挡和停止。

1.2 设计背景:离合器设计是汽车制造中的重要环节,对于汽车的性能和安全性具有关键影响。

本文档意在提供一套完整的离合器设计方案,满足汽车制造商和用户的需求。

2:设计原理2.1 离合器工作原理:离合器由一个压盘、一组离合片和压盘螺旋弹簧组成。

当离合器踏板松起时,压盘受到压盘螺旋弹簧的作用,离合片与压盘分离,传动系统断开。

当离合器踏板踩下时,离合器压盘受到离合器释放器的作用,压盘受力,离合片与压盘连接,传动系统连接。

2.2 离合器设计要点:- 离合器尺寸和材料选择- 离合片结构和摩擦片材料的选择- 离合器的加载力和压盘压力- 离合器的热耐受能力- 离合器的寿命和可靠性3:离合器设计方案3.1 尺寸和材料选择:根据传动系统的要求,确定离合器的直径和厚度。

选择适当的材料,如钢、铸铁和复合材料等。

3.2 离合片结构和摩擦片材料选择:根据传动系统需求和工作环境,选择适当的离合片结构和摩擦片材料,如有机摩擦片、金属摩擦片和碳化硅摩擦片等。

3.3 加载力和压盘压力:根据发动机的最大扭矩和传动系统的要求,确定离合器的最大加载力和压盘压力。

3.4 热耐受能力:通过热传导分析和热力学计算,确定离合器的热耐受能力,以确保离合器在高温环境下的稳定工作。

3.5 寿命和可靠性:通过材料强度分析和疲劳寿命测试,确定离合器的寿命和可靠性,以确保离合器在长时间使用中的稳定性能。

4:使用说明4.1 离合器的安装:详细介绍离合器的安装步骤和注意事项,包括传动系统的拆卸和组装、离合器的对中和调整等。

4.2 离合器的调试:介绍离合器安装后的调试步骤,包括行车试验和性能检查等。

离合器的设计

离合器的设计
பைடு நூலகம்
第六节
与制动器助力相似
例题
干式
P=M.N
1)外摩擦片
2)内摩擦片
图4-1 摩擦片结构示意图
轴向压力F---摩擦力---传递转矩 。
图4-2 摩擦离合器结构示意图 1-主动盘; 2-从动盘; 3-滑环
主动轴1与外壳2相联接
图4-3 多片式摩擦离合器 1-主动轴; 2-外鼓; 3-被动片; 6-压板; 4-摩擦片;
离合器的选型:
1).干式: 摩擦片数多可以增大所传递的转矩。但片数过多, 将各层间压力分布不均匀。
6. 摩擦片外径D,内径d和厚度
摩擦片外径D(mm)也可根据如下经验公式选用: DKD Temax 式中:KD为直径系数,KD =14.5~24.0。 摩擦片的厚度b主要有3.2mm、3.5mm和4.0mm三种
7.离合器传递的转矩 T m
8. 离合器的储备系数
离合器在接合过程中除承受工作载荷外,还要承受惯性载荷。
并引起摩擦片的磨损和发热。为了限制磨损和发热, 应使接合面上的单位压力不超过许用单位压力 。 2.对湿式离合器而言,摩擦副的面积应为扣除油槽面积后的 有效摩擦工作面面积
4.摩擦副材料的摩擦系数f,基本许用单位压力见表4-1。
5.摩擦片单位压力值p对离合器工作性能和使用寿命有很大影响,选取时应考虑
离合器的工作条件,发动机后备功率大小,摩擦片尺寸,材料及其质量和后备系数等因素。 离合器使用频繁,发动机后备系数较小时, 应取小些;当摩擦片外径较大时,为了降 低摩擦片外缘处的热负荷, 应取小些;后备系数较大时,可适当增大 。 工程机械在工作时经常需要频繁地使用离合器,而且它们的工作条件差,属于重载荷类 型,因此应选用较小的值
摩擦转矩、储备系数、摩擦副数量和摩擦衬片的内外径等。

毕业设计离合器设计

毕业设计离合器设计

毕业设计离合器设计毕业设计:离合器设计一、引言离合器作为汽车传动系统中的重要部件,其设计对于汽车的性能和驾驶体验起着至关重要的作用。

本篇文章将深入探讨毕业设计中离合器的设计问题,包括设计原理、材料选择、结构设计等方面。

二、设计原理离合器的基本原理是通过压力传递和摩擦力的作用来实现发动机与变速器的连接与分离。

在离合器设计中,需要考虑到传递扭矩的能力、摩擦片的磨损与热量散发等因素。

为了提高离合器的性能,设计师需要综合考虑这些因素,并确定最佳的设计参数。

三、材料选择离合器的摩擦片通常由摩擦材料制成,常见的材料有有机材料和金属材料。

有机材料摩擦片具有摩擦系数稳定、摩擦性能好等优点,但其耐磨性和耐高温性相对较差;金属材料摩擦片则具有耐磨性和耐高温性好的特点,但其摩擦系数相对较低。

在设计中,需要根据具体的使用环境和要求来选择合适的材料。

四、结构设计离合器的结构设计也是毕业设计中的重要内容之一。

结构设计需要考虑到离合器的紧凑性、重量、制造成本等方面。

同时,还需要注意离合器的可靠性和耐久性,以确保其在长时间使用过程中不会出现故障。

在设计过程中,可以借鉴现有的离合器结构,并结合自身的创新思维,提出更好的设计方案。

五、实验验证在毕业设计中,实验验证是非常重要的一环。

通过实验可以验证设计的可行性,并评估设计方案的优劣。

在离合器设计中,可以通过摩擦片的磨损测试、扭矩传递测试等来评估离合器的性能。

实验结果将为设计的改进提供有力的依据。

六、结论离合器设计作为毕业设计的重要内容之一,需要综合考虑设计原理、材料选择、结构设计等方面。

通过合理的设计和实验验证,可以得到优秀的离合器设计方案,提高汽车的性能和驾驶体验。

七、展望离合器设计是汽车工程领域中的重要研究方向之一。

未来,随着汽车科技的不断发展,离合器的设计将面临更多的挑战和机遇。

希望通过毕业设计的学习和研究,能够为离合器设计领域的发展做出贡献。

八、参考文献[1] 张三, 离合器设计原理与应用[M]. 北京:机械工业出版社,2010.[2] 李四, 汽车离合器材料选择与应用[M]. 上海:上海交通大学出版社,2015.以上是对毕业设计中离合器设计的一些探讨和思考。

离合器设计方案说明书

离合器设计方案说明书

离合器设计方案说明书一、背景及需求分析离合器是汽车等机械设备中重要的传动部件之一,用于控制发动机与传动系统之间的连接和分离。

通过合理设计和选用合适的材料,可以提高离合器的传动效率和寿命,降低能源消耗和成本。

本文档旨在介绍一种优化的离合器设计方案,满足以下需求: 1. 提高离合器的传动效率; 2. 增加离合器的使用寿命; 3. 降低离合器的成本。

二、设计思路基于需求分析,我们提出以下设计思路: 1. 优化材料选择:选择高强度、耐磨损和热稳定性好的材料,以提高离合器的性能和使用寿命; 2. 优化结构设计:通过改进离合器的结构和尺寸,提高转矩传递效率和减小传动损失; 3. 优化摩擦片设计:结合摩擦片表面涂层技术,提高摩擦片与离合器盘的摩擦系数,以提升传动效率; 4. 应用驱动控制技术:结合驱动控制系统,实现离合器的精确控制和自适应调节,提高驾驶性能和舒适性。

三、具体实施方案1. 材料选择根据需求分析和研究数据,我们建议采用以下材料: - 离合器盘和飞轮:优质钢材,具有高强度和热稳定性; - 摩擦片:高温耐磨陶瓷材料,表面涂覆金属及摩擦材料复合涂层,提高摩擦系数和耐磨损性; - 弹簧:优质高强度弹簧钢,提高弹簧的耐久性。

2. 结构设计优化优化离合器的结构和尺寸,重点包括: - 提高接触面积:增大离合器盘和飞轮的接触面积,以提高传递转矩的能力; - 减小离合器盘和飞轮的质量:减小离合器盘和飞轮的质量,降低离合器的惯性,减小传动损失; - 设计合理的冷却系统:引入冷却系统,保持离合器在高温工况下的稳定性和寿命。

3. 摩擦片设计优化优化摩擦片的设计,注重以下方面: - 表面涂层技术:采用金属及摩擦材料复合涂层,提高摩擦片的摩擦系数和耐磨性; - 结构调整:优化摩擦片的密封结构,减小气密性损失,提高传动效率; - 磨损监测:引入磨损监测系统,实时监测摩擦片的磨损情况,提前预警更换。

4. 驱动控制技术应用通过引入驱动控制系统,实现离合器的精确控制和自适应调节,以提高驾驶性能和舒适性: - 采用电子控制单元(ECU):实现离合器的精确和快速控制; - 引入传感器:监测驱动系统和行驶状况,实现自适应调节; - 优化离合器调节策略:结合驱动控制系统,设计合理的离合器调节策略,提高换挡的顺畅性和驾驶舒适性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4) 为了保证扭转减振器的安装,摩擦片内径d必须大于减振器弹 簧位置直径2Ro约50mm,即 d >2Ro+50
5) 为反映离合器传递转矩并保护过载的能力,单位摩擦面积传 递的转矩应小于其许用值,即
3 约束条件
3 约束条件
6) 为降低离合器滑磨时的热负荷,防止摩擦片损伤,单位压力p0对 于不同车型,根据所用的摩擦材料在一定范围内选取,最大范围 p0为0.10~1.50MPa,即 0.10MPa≤p0≤1.50MPa 7) 为了减少汽车起步过程中离合器的滑磨,防止摩擦片表面温度过 高而发生烧伤,每一次接合的单位摩擦面积滑磨功应小于其许用 值,即 4W

Tc fFZRc
(2-1)
(2-2)
假设摩擦片上工作压力均匀,则有
摩擦片的平均摩擦半径Rc根据压力均匀的假设,可表示为

(D2 d 2 ) F p0 A p0 4
D3 d 3 Rc 3( D 2 d 2 )
(2-3)
当d/D≥0.6时,Rc可相当准确地由下式计算

Rc
多片离合器多为湿式,它有分离不彻底、轴向 尺寸和质量较大等缺点,主要用于行星齿轮变速 器换挡机构中。它具有接合平顺柔和、摩擦表面 温度较低、磨损较小,使用寿命长等优点,主要 应用于重型牵引车和自卸车上。
2.压紧弹簧和布置形式的选择
周置弹簧离合器的压紧弹 簧采用圆柱螺旋弹簧,其特点 是结构简单、制造容易,因此 应用较为广泛。当发动机最大 转速很高时,周置弹簧由于受 离心力作用而向外弯曲,使离 合器传递转矩能力随之降低。 中央弹簧离合器的压 紧弹簧,布置在离合器的 中心。可选较大的杠杆比, 有利于减小踏板力。通过 调整垫片或螺纹容易实现 对压紧力的调整,多用于 重型汽车上。
3.摩擦片外径D、内径d和厚度
在离合器结构形式及摩擦片材料选定、其他参数已 知或选取后,结合式(2-1)和式(2-5)即可估算出摩擦片 尺寸。 摩擦片外径D(mm)也可根据如下经验公式选用
D KD Te max
(2-7)
式中:KD为直径系数,轿车:KD=14.5;轻、中型货车:单片KD =16.0~

Tc=βTemax
(2-6)
式中,Temax为发动机最大转矩。
β为离合器的后备系数,定义为离合器所能传递的最大 静摩擦力矩与发动机最大转矩之比,β必须大于1。
离合器基本参数的选择
基本参数主要有性能参数β和p0,尺寸参数D和d及摩擦 片厚度b。 1.后备系数β 后备系数β是离合器一个重要设计参数,它反映了离合器 传递发动机最大转矩的可靠程度。在选择β时,应保证离合器 应能可靠地传递发动机最大转矩、要防止离合器滑磨过大、 要能防止传动系过载。因此,在选择β时应考虑以下几点: 1)为可靠传递发动机最大转矩,β不宜选取太小; 2)为减少传动系过载,保证操纵轻便,β又不宜选取太大; 3)当发动机后备功率较大、使用条件较好时,β可选取小些;
确保汽车平稳起步;
(2)在换挡时将发动机与传动系分离,减少变速
器中换挡齿轮之间的冲击;
(3)限制传动系所承受的最大转矩,防止传动系
各零件因过载而损坏;
(4)有效地降低传动系中的振动和噪声。
摩擦离合器基本组成
摩擦离合器主要由主动部分(发动机飞 轮、离合器盖和压盘等)、从动部分(从动 盘)、压紧机构(压紧弹簧)和操纵机构(分 离叉、分离轴承、离合器踏板及传动部件等) 四部分组成。 主、从动部分和压紧机构是保证离合器处 于接合状态并能传递动力的基本结构。操纵机 构是使离合器主、从动部分分离的装置。
汽车离合器设计的基本要求
1)在任何行驶条件下,能可靠地传递发动机的最大转矩。 2)接合时平顺柔和,保证汽车起步时没有抖动和冲击。 3)分离时要迅速、彻底。 4)从动部分转动惯量小,减轻换挡时变速器齿轮间的冲击。 5)有良好的吸热能力和通风散热效果,保证离合器的使用
寿命。 6)避免传动系产生扭转共振,具有吸收振动、缓和冲击的 能力。 7)操纵轻便、准确。 8)作用在从动盘上的压力和摩擦材料的摩擦因数在使用过 程中变化要尽可能小,保证有稳定的工作性能。 9)应有足够的强度和良好的动平衡。 10)结构应简单、紧凑,制造工艺性好,维修、调整方便等。
18.5,双片KD =13.5~15.0;重型货车: KD =22.5~24.0。
摩擦片的厚度b主要有3.2mm、3.5mm和4.0mm三种。
第3 节结束
第四节 离合器的设计与计算
一、离合器基本参数的优化
1 设计变量 后备系数β取决于离合器工作压力F和离合器的主要尺寸参数 D 和d。单位压力 p0也取决于F和D及d。因此,离合器基本参数的优 化设计变量选为 X=[x1 x2 x3 ]T=[ F D d ]T 2 目标函数 离合器基本参数优化设计追求的目标是在保证离合器性能要求 条件下,使其结构尺寸尽可能小,即目标函数为
将式(2-2)与式(2-3)代入式(2-1)得
Dd 4
(2-4)
Tc

12
fZp0 D (1 c ) (2-5)
3 3
式中,c为摩擦片内外径之比,c=d/D,一般在0.53~0.70之间。
摩擦片正面
摩擦片背面
Tc

12
fZp0 D 3 (1 c 3 )
(2-5)
式中,c为摩擦片内外径之比,c=d/D,一般在0.53~0.70 之间。 为了保证离合器在任何工况下都能可靠地传递发动机的 最大转矩,设计时Tc应大于发动机最大转矩,即
Eh1 ln( R / r ) F1 2 6(1 ) ( R1 r1 ) 2
H—内截锥高度 E—弹性模量 E=21× 104 N/mm2 泊松比μ=0.3
Rr 1 R r 2 )( H )h ( H 1 R1 r1 2 R1 r1
中央压紧弹簧
周布弹簧离合器
离合器盖
离合器从动部分
从动盘本 体(钢片) 从 动 扭 盘 转 毂
减 震 器
从动盘组件
飞轮 从动盘及扭转 减振器
离合器壳 (飞轮壳)
压盘及离合器 盖
分离轴承
膜片弹簧
变速器输入 轴
1.从动盘数的选择
单片离合器 (图2-1)结构简单, 尺寸紧凑,散热良 好,维修调整方便, 从动部分转动惯量 小,在使用时能保 证分离彻底、接合 平顺。
5 压盘的驱动方式
压盘的驱动方式主要有凸块-窗孔式、销钉式、 键块式和传动片式多种。 前三种的共同缺点是在连接键之间都有间隙, 在驱动中将产生冲击和噪声,而且在零件相对滑 动中有摩擦和磨损,降低了离合器传动效率。 传动片式是近年来广泛采用的结构。
第2节结束
第三节 离合器主要参数的选择
离合器的静摩擦力矩根据摩擦定律可表示为

Z D d
2
2


( 2- 9 )
W为汽车起步时离合器接合一次所产生的总滑磨 功(W),可根据下式计算
W
2 2 ne ma rr2
1800i i
2 2 0 g
( 2-10)
二、膜片弹簧的载荷变形特性
注:可以略去不讲
三、膜片弹簧的强度校核
注:可以略去不讲
问题:试着对膜片弹簧受力分析并进行强度校核?
4)压力分布均匀,摩擦片磨损均匀;
5)易于实现良好的通风散热,使用寿命长; 6)平衡性好;
图2-3 膜片弹簧离合器
膜片弹簧的制造工艺较复杂,对材质 和尺寸精度要求高。
近年来,由于材料性能的提高,制造 工艺和设计方法的逐步完善,膜片弹簧 离合器不仅在轿车上被大量采用,而且 在轻、中、重型货车以及客车上也被广 泛采用。
概述 离合器的结构方案分析 离合器主要参数的选择 离合器的设计与计算 扭转减振器的设计 离合器的操纵机构 离合器的结构元件
第一节 概述
1.复习内容:
1.离合器的功用?
2.离合器的基本组成部件有哪些?
离合器的主要功能是切断和实现对传动系的动 力传递。主要作用:
(1)汽车起步时将发动机与传动系平顺地接合,
四、膜片弹簧主要参数的选择
膜片弹簧的主要参数: 膜片弹簧自由状态下碟簧部分的 内截锥高度 H; 膜片弹簧钢板厚度 h ; 自由状态下碟簧部分大端半径 R; 自由状态下碟簧部分小端半径 r ; 自由状态时碟簧部分的圆锥底角 α; 分离指数目 n 等,见图2-9。
第二章
离合器设计
第二章 离合器设计
本章主要学习:
(1)汽车离合器设计的基本要求;
(2)各种形式汽车离合器的特点及应用; (3)离合器基本参数的选择及优化; (4)膜片弹簧主要参数的选择及优化; (5)扭转减振器的设计; (6)离合器的操纵。
第二章 离合器设计



第一节 第二节 第三节 第四节 第五节 第六节 第七节
2 2 f x min D d 4


3 约束条件
1) 摩擦片的外径D(mm)的选取应使最大圆周速度υD不超过65~ 70m/s,即
D

60
ne max D 10 3 65 ~ 75m / s
( 2- 7)
2) 摩擦片的内外径比c应在0.53~0.70范围内,即 0.53≤c≤0.70 3) 为保证离合器可靠传递转矩,并防止传动系过载,不同车型 的β值应在一定范围内,最大范围β为1.2~4.0,即 1.2≤β≤4.0
图2-9膜片弹簧的主要参数
膜片弹簧
1.膜片弹簧载荷变形特性
膜片弹簧本身兼起压紧弹簧和分离杠杆的作用,
使得离合器结构简化,质量减小,并缩短了离合 器的轴向尺寸;
由于膜片弹簧与压盘以整个圆周接触,是压力分
布均匀,摩擦片的接触良好,磨损均匀;
膜片弹簧所具有的非线性特性胜过螺旋弹簧
相关文档
最新文档