切削加工技术发展史
刀具材料论文

金属切削刀具的发展历史与现状前言刀具是机械制造中用于切削加工的工具,又称切削工具。
广义的切削工具既包括刀具,还包括磨具。
刀具技术的进步,体现在刀具材料、刀具结构、刀具几何形状和刀具系统四个方面,刀具材料新产品更是琳琅满目。
当代正在应用的刀具材料有高速钢、硬质合金、陶瓷、立方氮化硼和金刚石。
其中,高速钢和硬质合金是用得最多的两种刀具材料,分别约占刀具总量的30%~40%和50%~60%。
本文将介绍刀具的发展历程,发展现状,并对未来刀具的发展法相作出分析。
刀具的发展历史刀具的发展在人类进步的历史上占有重要的地位。
中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。
战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。
当时的钻头和锯,与现代的扁钻和锯已有些相似之处。
然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。
1783年,法国的勒内首先制出铣刀。
1792年,英国的莫兹利制出丝锥和板牙。
有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。
那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。
1868年,英国的穆舍特制成含钨的合金工具钢。
1898年,美国的泰勒和.怀特发明高速钢。
1923年,德国的施勒特尔发明硬质合金。
在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大大提高。
由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。
1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他刀具上。
1938年,德国德古萨公司取得关于陶瓷刀具的专利。
1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。
这些非金属刀具材料可使刀具以更高的速度切削。
1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。
《金属切削原理与刀具》课程授课教案

13
3
5
第七,八章孔加工刀具
1.孔加工刀具的种类及用途
2.麻花钻
3.深孔钻
4.铰刀
4
7-2 7-4
7-8 8-1
课次二十四、五
14ห้องสมุดไป่ตู้
3
第九章拉刀
1.拉刀的种类及用途
2.拉刀的结构
3.圆孔拉刀的设计
2
9-1 9-2
9-3
课次二十六
14
15
5
3
第十章铣刀
1.铣刀的种类及用途
2.铣刀的几何角度
3.铣削力及铣削方式
其次,要根据机器的结构和技术要求,把某些零件装配成部件。部件是由若干组件、套件和零件在一个基准上装配而成的。部件在整个机器中能完成一定的、完整的功能。这种把零件和组件、套件装配成部件的过程称为部装过程。部装过程是依据部件装配工艺,应用相应的装配工具和技术完成的。部件装配的质量直接影响整个机器的性能和质量。
1.刀具材料应具备的基本性能
2.高速钢
3.硬质合金
4.其他刀具材料
4
2-1,2-2,
2-5
课次五
课次六
4
4
3
5
第三章金属切削过程的基本规律
一、切削变形
1.金属切削过程定义
2.切削层的变形
3.第一变形区
4.第二变形区
5.第三变形区
6.切削变形的变化规律
4
3-1,3-2
课次七
课次八
5
5
3
5
二、切削力
1.切削力的来源
0.4本课程的内容与学习方法
金属切削原理与刀具是研究金属切削过程基本规律、刀具设计与使用的一门科学,是机械制造专业的重要课程。
切削加工与刀具技术的历史

切削加工与刀具技术的历史介绍了中国远古时期石器时代铁器时代的切削加工与刀具技术中国领先于全世界从第一次工业革命以后阐述了欧美各国和俄罗斯在切削加工技术解放后工件与刀具双方交替发展关键词它在国民经济中占有重要地位刀具用坚硬的材料制成切削加工的任务是利用刀具切除被加工对象毛坯上的多余材料精度和表面质量都符合预定要求的表面是由古代切削加工本文将阐述古代1 古代的切削加工和刀具在切削加工方面旧石器时代距今约50~60万年的北京猿人制造和使用了各种带刃的石器刮削器和尖状器(图1)¿³ÔÒÆ÷ÓÒ²¿Ô²Íº×ó²¿ÓзæÈйÎÏ÷Æ÷ºÍ¼â×´Æ÷ÉÏÔò¾ù¾ßÓÐÃ÷ÏԵķæÀûÈв¿µ«ËüÊÇÒ»ÇÐÈËΪ¼Ó¹¤µÄ¿ªÊ¼到了新石器时代石刀石锛刀体比较匀称有凸刃圆刃等这是钻孔技术的开端制作形状和用途各异的切削工具新石器时代的人类曾把坚硬的石片镶嵌在骨把上石器时代的切削工具加工对象也多为非金属材料(如石材兽骨等)ÒѾ-¾ß±¸ÁËÈý¸ö»ù±¾ÒªËص¶¾ß(带刃部的工具)被加工对象(生产或生活用品)切削运动(人用手握持住刀具与被加工对象 刀具的发明和切削加工的应用历史学家认为它是人类登上历史舞台的重要标志(1) 砍砸器(约为原大的1/2) (2) 刮削器(约为原大的2倍) (3) 尖状器(约为原大的2倍)图1 砍砸器图2 新石器时代的石刀图3 新石器时代的石刃骨刀(甘肃永昌鸳鸯池出土)从青铜器时代开始早在齐家文化时期已用天然铜制造器具已经有了相当发达的青铜冶铸业图4所示为商代的青铜钻锯这些刀锉的结构和形状似于现代的切削工具而包括了金铜等金属材料当时这些切削工具发挥了多么大的作用图4 商代的青铜钻(郑州二里冈出土)图5 春秋时代的青铜刀锉(河南汲县山彪镇出土)商代还会制作过铁刃铜钺(图6)ÏâǶÔÚÍ-ÖÊîáÌåÉÏÈпڵĻùÌåΪÌú含镍1.76%ÎýîܹèËùÒÔÈв¿²ÄÁÏʵ¼ÊÉÏÊÇÒ»ÖÖº¬ÓжàÖֺϽðÔªËØµÄ¸Ö²Ä图6 商代的铁刃铜钺(河北藁城出土)石刃骨刀和铁刃铜钺说明当时已经认识到刀具刃部的重要作用刀刃取稀缺刀体取价值较低但韧性较好的材料青铜器时代的大量出土文物表明生产工具和生活用品磨削加工或研磨实质上也是一种切削加工我国发明了生铁冶铸技术渗碳为制造坚硬锋利的工具提供了有利的条件使切削加工进入了一个新阶段分工比较细致出现了用金属刀具刻镂的纹饰和钻孔的痕迹有一部手工艺专著上面记载了各种兵器介绍了关于战车的制造工艺金工等30个专业的技术知识材美工巧所谓指采用优良的材质工巧是指采取合理由此可见包括一部分切削加工当时的实战兵器很多矛钺镞制作十分精致光亮无锈经化验含锡21.38%锌0.041%º¬Îý11.10%锌0.098%解放后在河北满城一号汉墓(中山靖王之墓)中出土的五铢钱(图7)µ¶»¨¾ùÔÈÍÖÔ²¶ÈºÜСȻºó×°¼ÐÔÚľ֯µÄ³µ´²ÉÏÐýתͬĹ³öÍÁµÄÆ÷ÎïÖÐÌúÔä¾-¹ýÉøÌ¼´¦ÀíµÄÌú½£ºÍÊéµ¶ÆäÖе«¼Ó¹¤¾«¶ÈºÍ±íÃæÖÊÁ¿ºÜ¸ß˵Ã÷µ±Ê±µÄÇÐÏ÷¼Ó¹¤¼¼ÊõÒѾ-´ïµ½ÁËÒ»¶¨µÄˮƽ图7 西汉时代的五铁钱(河北满城一号汉墓出土)(1)青铜弩机(2)青铜箭头图8 西汉时代的青铜弩机和箭头(河北满城一号汉墓出土)在西安出土的唐代文物中银制造的盘在这些器具上有明显的车削痕迹刀痕细密体现出当时较高的加工精度我国最晚在8世纪时已有原始的切削车床北宋在一百年内先后制造了五座浑仪分度读数能精确到四分之一度明制造精度进一步提高仪器上直径达两米多的大铜环内孔上刻度的加工精度和表面质量都已达到了相当高的水平大铜环的端面是用图9和图10所示的方法[1,9]½øÐÐϳÏ÷ºÍÄ¥Ï÷¶øÖƳɵÄ图12为大铜环制造过程中划线在长期的实践中明代张自烈著[2] (图13)中对刃挤都写出了明确的含义刃为用古谓之芒又说刃从坚则钝古人十分强调刃部的重要性利坚对切削原理已有了一些朴素的唯物辩证的认识图9 清代天文仪器上大铜环的加工(铣削)图10 清代天文仪器上大铜环的加工(磨制)图11 清代铣刀的刃磨图12 清代天文仪器上大铜环的加工(划线和检测)图13 明代上有关刀及刃的论述从以上资料可以看出有着光辉的成就特别是铁器时代2 近代的切削加工机械工程迅猛发展成为一个独立的工程和学科1847年而美国则到1880年才成立了机械工程师协会是和从英国开始的工业革命密切相关的蒸汽机的出现和纺织工业军事工业的兴起每一种新产品的发明和设计才能付诸实现推动着机械制造(包括切削加工)技术迅速提高最早的蒸汽机在很大的程度上是用手工方法加工出来的英国有一位叫理查德它的内孔直径为28È»ºóÇëÀ´Ò»Î»Ç¦½³ËûÓÃľ°åºÍÄàɰµ²×¡Æû¸×µÄÁ½¶ËÕâÑù¾Í¼Ó¿ìÁËÄ¥¹âÆû¸×µÄ¹¤×÷ÌúÌõÉÏϵÉÏÉþ×ÓÀ-סÉþ×ÓÔÚÆû¸×ÌåÄÚÍ¿ÉϽð¸ÖɰºÍ¾¨ÓÍǦ¿éÏÂÃæµÄÆû¸×Äڿ׾ͱ»Ä¥¹âÁËÄÚ¿×µÄÁíÒ»²¿·ÖҲѸËÙ±»Ä¥¹â¾-¹ý¼è¿àµÄŬÁ¦ºÍ·±ÖصÄÀͶ¯Ö®ºó¼´ËüµÄ×î´óÖ±¾¶Óë×îСֱ¾¶Ö®²î²»´óÓÚÎÒµÄСÊÖÖ¸µÄºñ¶ÈÒòΪÕâÊÇÆù½ñËùÖªµÀµÄ×îºÃµÄ¼Ó¹¤·½·¨¸ù¾ÝÕâÒ»¶ÎÈÕ¼ÇÈçͼ14所示图14 1760年英国加工汽缸内孔的情形由此可知铸铁但由于缺少先进的机床和工具因而工作效率很低1776年詹姆斯遇到的最大困难是由于镗孔加工方法落后漏汽严重皮革或油脂也无济于事威尔金森(John Wilkinson)帮助瓦特解决了汽缸加工的问题可以加工直径达1.8 m的内孔它的刀杆有4.5 m长可以加工蒸汽机的汽缸并满足精度要求瓦特的蒸汽机才得以顺利制成他为瓦特铸造和加工汽缸达20年之久提高工艺水平和加工技术在18世纪中叶以前当时切削加工所用的机床多数是木制的由于工业革命的推动大约经过一百年的努力解决了各种各样加工问题西奥(Antoine Thiout)在车床上装了一个刀架比过去用手握持车刀进给前进了一大步英国工程师杰西1818年用单齿铣刀进行工作苏格兰詹姆斯1836年1835年)设计了第一次由丝杠同时驱动纵向和横向进给的车床美国的罗宾斯和劳伦斯(Robbins & Lawrence)公司制造出转塔车床轮流进行8道工序的加工在巴黎举行的国际博览会上标志着机床和切削加工已经发展到一个崭新的历史阶段1892年美国诺顿(Norton W. P.)发明了用手柄换档的变速箱这种变速机构很快被应用到各种机床上1887年美国格兰特(Grant G)发明滚齿机1895年发明伞齿刨床泰勒(Taylor F)发明齿轮磨床万能铣床已经基本完善制成座标镗床世界上各主要工业国家的机床工业已具有相当规模工作母机又被称为业的发展 自从切削加工技术发展到一定水平后研究切削理论研究工作主要是从19世纪最早研究切削加工机理的人要数英国的罗姆福德(Rumford)1851年)直接测量了钻削时切除单位体积金属所需的功德国的哈蒂格(Hartig E1770年俄国的基麦(Tème и)和1873年法国的特雷沙(Tresca H1881年)正确指出还强调刀具前刀面上摩擦作用的重要性腐蚀进行观察刀刃锋利性对切削过程的影响以及切削过程中引起颤振的原因)于1900年提出在刀具的刃前区工件材料存在一个裂纹这种认识是错误的19世纪后斯至20世纪初期W1856 ̄1915)对金属切削加工的规律1906年他发表了一篇著名的科学论文1941年and Merchant M)发表了关于金属切削过程力学的著名论文 前苏联很重视科学技术史的研究经常写入一些名人的传略1870至1877年A但未考虑摩擦和塑性变形的影响俄国科学家慈伏雷金(3âîðûêèн K )在切削力的主要问题上作了许多研究工作制作了直接测定切削力的测力仪在实验基础上只知道切削力与切削面积的大小有关当然是一件了不起的事情彼得堡工业学院主任技师乌沙乔夫(Óñà÷åâ ß)进行了很多研究工作创造了用热电偶测量切削温度的方法用金相方法研究切削过程寻求切削规律的方法契留斯金(×åлþñòêèí A )进一步建立了多因素的切削力公式0.7525.0z )(sin 1 60ts øäk P = 式中 k 常数δ 切削角ϕ 主偏角t 切削深度s 进给量 俄国和苏联的科学家们虽然有过很多贡献做过多方面深入研究还应首推美国工程师泰勒世纪末到20世纪初美国机械制造行业的发明家和科学管理家(1) 研究了切削条件和刀具材料对于刀具寿命的影响规律从而优选切削条件得到T¼´Ëùν»òm与刀具材料至今还在应用刀具上的切削温度控制着刀具磨损的速率)于1898年研制成功了高速钢系统的切削试验他们确定的高速钢最佳成分为W18.91%Mn0.11%Fe余量高速钢可用30m/min的速度切削钢材合金工具钢提高了好几倍引起了切削加工的重大变革当时伯利恒钢铁公司的机械加工车间使用了高速钢曾使生产提高了5倍美国机械制造行业从而增加了80亿美元的产值高速钢的成分和性能有了很多变化但当今用得较多的一种钨系高速钢W18Cr4V的化学成分仍然同泰勒(4)泰勒首创(Time Study)和(Motion Study)1911年他发表了(Principle of Scienitific Management)一书泰勒把身体最健壮精确地计算出该工人每一动作所花费的时间找出时间最省资本家曾使之成为一种固定制度这种制度后来被称为泰勒制曾有过各种不同观点的评论泰勒制被资产阶级所利用列宁对泰勒制有过全面的论述[6]Ò»·½ÃæÊÇ×ʲú½×¼¶°þÏ÷µÄ×îÇÉÃîµÄ²Ð¿áÊÖ¶ÎÁíÒ»·½ÃæÊÇһϵÁеÄ×î·á¸»µÄ¿ÆÑ§³É¾Íʡȥ¶àÓàµÄ±¿×¾µÄ¶¯×÷ʵÐÐ×îÍêÉÆµÄ¼ÆËãºÍ¼à¶½ÖƵȵÈÁÐÄþÓÖÖ¸³öÔÚÕâ·½ÃæÎÞÂÛÈçºÎ¶¼Òª²ÉÓÿÆÑ§ºÍ¼¼ÊõÉÏÒ»Çб¦¹óµÄ³É¾ÍÒò´ËÓ¦¸ÃÔÚ¶í¹úÑо¿Óë´«ÊÚÌ©ÀÕÖÆ²¢ÇÒʹËüÊÊÓ¦ÏÂÀ´Óɴ˿ɼû¶øÊÇ×÷Á˿͹۵Ä总之是不容抹煞的惠特沃思泰勒等人见诸历史的教授在历史长河中如工人也曾对切削加工技术作出过重要贡献但是应该同样地怀着崇敬的心情来纪念他们自19世纪中叶起由三方面组成外国人经营的船舶修造厂和铁路工厂等清朝政府兴办的机械工业金陵机器局天津机器局等民族资本家经营的机器制造厂值得写记的有由江南制造局发展而成的江南造船所于1921~1922年间曾为美国建造过4艘万吨运输船1916年上海王岳记机器厂造出我国第一台3号万能铣床抗日战争前自成体系战争作准备实力很弱七事变后国民党在大后方(主要在重庆成都解放区为了抗战需要从事军械修理炮等武器到1947年职工10.7万人年用电量1.4 亿多度有少数的机床修造厂和工具厂能自制一些普通车床铣床丝锥等简单刀具和量具旧中国的切削加工技术是非常落后的中国约比欧美先进国家落后了近一百年3 解放后中国切削加工与刀具技术大发展1949年机械工业迅速发展在前苏联援建的156项重点企业中如汽车制造厂飞机制造厂硬质合金制造厂等又改建新建了许多制造工厂文革特别是国民经济改革开放以后加强对外交流在数量和质量水平上都步入了国际先进行列全国机床有300余万台唯数控机床所占的比例尚低于工业先进国家中工具厂遍布全国刀具结构加工效率大幅度增长铣床的切削速度由解放初的10 m/min提高到现在500~1000 m/min(切削普通钢铝合金)半个世纪以来目前如硬质合金年产7 000~10 000 t均为世界第一铣刀已采用了先进的机夹可转位结构内外排屑的深孔钻及改进结构后的麻花钻也得到普遍应用数控机床和加工中心上所用的刀具系统也实现了完善与进步热加工)者达200所以上很多学校对切削加工和刀具的理论与实践进行科学研究如华南理工大学在已加工表面质量哈尔滨工业大学在超精密切削哈尔滨理工大学在断屑方面西安交通大学在齿轮刀具方面新型刀具材料及机械加工发展史方面华侨大学在石材加工方面华中科技大学在极薄层切削北京航空航天大学在并联机床及钻头刃磨方面车铣机床与超高速铣床的研制(主轴达3 000~6 000 r/min)方面合肥工业大学在绿色制造方面河北理工学院在切削液方面南京航空航天大学在难加工材料高速切削及CVD金刚石镀膜刀具方面等等成果丰硕实用在解放初期做出了很大贡献北京永定机械厂的倪志福上海锅炉厂的李福祥北京人民机器厂的桂育鹏使用了强力切削车刀可转位铣刀长春第一汽车制造厂的张国良创造了超细长杆的车削工作法哈尔滨的孙茂松创造了高速挑蜗杆先进工作法沈阳全福长对强力车刀等等带动和培养了大量现场工作人员全国劳动模范在20世纪50年代就建立起来的机床研究所兵器55所等均为有关切削加工的专业研究单位做出了很大贡献积累了丰富的经验例如高锰钢的切削方面航天工厂在高温合金电子行业在有色金属的切削方面冶金行业在高硬度钢与铸铁轧辊的切削方面高校与工厂还实践了多种新型切削加工方法等离子体加热)Õæ¿Õ»·¾³ÏÂÇÐÏ÷Ê©¼Ó¸÷ÖÖÇÐÏ÷ÒºµÄÇÐÏ÷Ê©¼ÓÅçÎíÀäÈ´µÄÇÐÏ÷µÈµÈÓеÄÒѸ¶ÖîÓ¦ÓÃĿǰÖйúÒÑÓµÓÐÇ¿´óµÄ»úÐµÖÆÔì¹¤ÒµÒ²ÕÆÎÕÁËÏȽøµÄÇÐÏ÷Óëµ¶¾ß¼¼ÊõÄÜÖÆÔìÎÀÐÇÄܽ¨ÉèÈýÏ¿¹¤³ÌºÍ´óÐ͵çÕ¾ÄÜÖÆÔìËùÓеij£¹æÓëÏȽøµÄ±øÆ÷»¯¹¤ÄÜÖÆÔìËùÓеÄÏȽø»ú´²ºÍµ¶¾ßÖйúÒѳÉΪ»úÐµÖÆÔìµÄ´ó¹úºÍÇ¿¹úÒÙÁ¢ÓÚå¾Çò¼¼ÊõÂäºóµÄ¾ÉÖйúÒѾ-һȥ²»¸´·µÁ˵¶¾ßË«·½½»Ìæ·¢Õ¹µ¶¾ßÓ빤¼þÓÐ×ŶÔÁ¢ºÍͳһµÄ¹ØÏµ¾-³£Íƶ¯ÁíÒ»·½·¢Õ¹Ç°½øÓÉÓÚÉú»î¹¤¼þÒ»·½µÄÇé¿ö¾-³£·¢Éú±ä»¯¹¤¼þ²ÄÁϵĻúеÐÔÄÜ(如强度产品的品种和批量逐渐增多工件的结构等等就不断向刀具提出更新当刀具不能满足这些要求时提高其性能刀具性能提高了接着工件又推动刀具继续前进工件材料多为灰铸铁它们较易加工19世纪中叶以后钢的产量迅速增加熟铁等钢的加工要难一些只能采有5~10 m/min的切削速度于是高碳工具钢已不能适应新的加工要求英国的罗伯特使切削速度提高到8~12 m/minÈÔÊǺÜÓкܵÄÇÐÏ÷ÆÕͨ¸Ö²ÄʱËÙ¶ÈÒ»ÏÂ×ÓÌá¸ßµ½30 m/min³ÉΪÇÐÏ÷¼¼ÊõÀúÊ·ÉϵÄÒ»´ÎÖØ´ó±ä¸ïµ¶¾ß²ÄÁ϶ÔÓÚµ±Ê±¼Ó¹¤µÄÐèÒª´óÌåÉÏÊÇÊÊÓ¦µÄ½øÈë20世纪以来其机械性能日益提高各种高强度钢高硬耐磨铸铁钛合金等难加工材料相继出现或者根本切不动人们又改进高速钢的化学成分与热处理方法出现了很多新型高速钢高钒超硬高速钢等20世纪20年代至30年代初并逐步用于生产可比高速钢提高4~10倍可以切削高速钢所加工不了的材料硬质合金脆性较大因此只能在部分加工范围内代替高速钢使用又出现了陶瓷人造金刚石等更为先进的刀具材料然而加上价昂直到最近它们的使用面均尚受到局限切削加工仍处在大量使用高速钢与硬质合金的时代硬质合金约占50%~60%ÌմɵÈÏȽøµ¶¾ß²ÄÁÏ硬铸铁正因为如此而在19世纪或20世纪初是根本不可想象的维持切削性能的最高温度以及切削速度的大致比值可以预期加工效率要求进一步提高高速切削即所谓超精密切削数控技术主导的和环保要求的所有这些而刀具材料更是关键是既有高的硬度和耐磨性刀具对于被加工工件和工作条件再适应交替发展这就是切削加工与刀具技术发展的历史规律17131665ɽ¶«¿ÆÑ§¼¼Êõ³ö°æÉçÐìºëɽÒë. 北京19805 Taylor F, W. On tne art of cutting metals. Trans. ASME, 1906, 28:13~206 [苏]列宁. 列宁选集. 中文译本第三卷. 北京19727 于启勋. 论现代刀具材料的新进展. 中国高校切削与先进制造技术研究会第六届年会论文集. 北京1999Öйú´ó°Ù¿ÆÈ«Êé³ö°æÉç¸ßµÈ½ÌÓý³ö°æÉç。
先进制造工艺--高速切削技术

第三讲1.高速切削技术高速切削的产生背景和发展史高速切削(HSM或HSC)通常指高主轴转速和高进给速度下的立铣,它是20世纪90年代迅速走向实际应用的先进加工技术,在航空航天制造业、模具加工业、汽车零件加工、以及精密零件加工等得到广泛的应用。
高速铣削技术既可用于铝合金、铜等易切削金属,也可用于淬火钢、钛合金、高温合金等难加工材料,以及碳纤维塑料等非金属材料。
例如,在铝合金等飞机零件加工中,曲面多且结构复杂,材料去除量达高达90%~95%,采用高速铣削可大大提高生产效率和加工精度;在模具加工中,高速铣削可加工淬火硬度大于HRC50的钢件,因此许多情况下可省去电火花加工和手工修磨,在热处理后采用高速铣削达到零件尺寸、形状和表面粗糙度要求。
高速切削概念始于1931年德国所罗门博士的研究成果:“当以适当高的切削速度(约为常规速度的5~10倍)加工时,切削刃上的温度会降低,因此有可能通过高速切削提高加工生产率”。
60多年来,人们一直在探索有效、适用、可靠的高速切削技术,但直到20世纪90年代该技术才逐渐在工业实际中推广应用。
高速切削最早在飞机制造业和模具制造l受到很大的重视。
为使飞机的零部件满足很高的可靠性要求,大部分重要零件都是在整块铝合金坯件卜铣削而成,既可减少焊缝,又可提高零件的强度和抗振性。
但常规铣削效率很低,从而导致了高的生产成本和长的交货时间。
高速切削是克服这方面问题的最好解决方案。
汽车工业中,模具制造是产品更新换代的关键。
新车型定型后,模具制造周期的长短直接影响到产品的上市时间,也关系到市场竞争的成败。
所以在80年代美国、欧洲和日本的政府都出巨资推动高速切削在模具制造中的应用研究,90年代初高速切削已进入工业化应用。
图16 高速切削在生产应用中的发展历程图17 采用高速切削后产品质量提高的历程a一硬质合金切钢 b一硬质合金切铸铁c—CBN切铸铁图16是德国宝马公司(BMW)采用高速切削的历程。
数控机床的发展历史和趋势

未来的数控机床
智能化、 3.智能化、网络化: 智能化 网络化:
追求加工效率的智能化,如自适应控制; 追求加工效率的智能化,如自适应控制;提高驱动性 能及使用连接方便的智能化,如电机参数的自适应运 能及使用连接方便的智能化, 算等;简化编程、简化操作的智能化, 算等;简化编程、简化操作的智能化,如智能化的自 动编程、智能诊断等。 动编程、智能诊断等。 数控装备的网络化实现了新的制造模式如敏捷制造、 数控装备的网络化实现了新的制造模式如敏捷制造、 虚拟企业等。 虚拟企业等。
数控机床的发展先后 经历了电子管( 经历了电子管(1952 )、晶体管 晶体管( 年)、晶体管(1959 )、小规摸集成电 年)、小规摸集成电 路(1965年)、大规 年)、大规 模集成电路及小型计 算机( 算机(1970年)和微 年 处理机或微型机算机 (1974年)等五代数 年 控系统。 控系统。
高精度、高可靠性 高精度、高可靠性: 普通级数控机床的加工精度已由±10μm提高 普通级数控机床的加工精度已由±10μm提高 5μm; 到±5μm; 精密级加工中心的加工精度则从± 5μm, 精密级加工中心的加工精度则从±3~5μm, 提高到± 1.5μm。 提高到±1~1.5μm。 数控装置的平均无故障时间值已达6000小时 数控装置的平均无故障时间值已达6000小时 平均无故障时间值已达6000 以上,驱动装置达30000小时以上。 30000小时以上 以上,驱动装置达30000小时以上。
2.复合化、多轴化: 2.复合化、多轴化: 复合化 一次装夹,整体加工。 一次装夹,整体加工。 在加工自由曲面时, 在加工自由曲面时,5轴联动控制对球头 铣刀的数控编程比较简单, 铣刀的数控编程比较简单,并且能使球头铣 刀在铣削3 刀在铣削3维曲面的过程中始终保持合理的切 从而提高加工效率。 速,从而提高加工效率。
我国数控系统的发展史

我国数控系统的发展史1.我国从1958年起,由一批科研院所,高档黉舍和少数机床厂起步进行数控系统的研制和开辟。
由于遭到那时国产电子元器件程度低,部分经济等的制约,未能获得较大的发展。
2.正在鼎新开放后,我国数控技能才渐渐获得本色性的成长。
颠末"六五"(81--85年)的引进外洋手艺,"七五"(86--90年)的消化吸取战"八五"(91~一-95年)国家构造的科技攻闭,才使得我国的数控手艺有了量的奔腾,其时经由过程国家攻关验支和判定的产物包罗北京珠峰公司的中华I型,华中数控公司的华中I型和沈阳高级数控国度工程研讨中间的蓝天I型,和其余经由过程"国度机床品质监视测试中央"测试及格的国产数控体系如北京四开公司的产物。
3.我国数控机床制造业在80年月曾有太高速发展的阶段,很多机床厂从传统产品实现向数控化产品的转型。
但总的来说,技术程度不高,质量欠安,所以在90年月早期面对国家经济由打算性经济向市场经济转移调整,履历了几年最坚苦的冷落期间,当时生产本领降到50%,库存跨越4个月。
从1 99 5年"九五"今后国家从扩展内需启念头床市场,增强限制入口数控设备的审批,投资重点撑持环节数控系统、设备、技术攻关,对数控设备生产起到了很大的增进感化,特别是在1 99 9年当前,国家向国防产业及关头平易近用产业部分投入大批技改资金,使数控设备制造市场一派繁华。
三,数控车的工艺取工装削浏览:133数控车床加工的工艺与一般车床的加工工艺近似,但由于数控车床是一次装夹,持续自动加工完成全部车削工序,因此应注意以下几个方面。
1.公道挑选切削用量对付下服从的金属切削加工来讲,被加工质料、切削东西、切削条件是三大体素。
这些决议着加工时间、刀具寿命和加工质量。
经济有用的加工体式格局一定是公道的选择了切削前提。
切削前提的三因素:切削速度、进给量和切深间接引发刀具的毁伤。
先进制造技术 第2章 高速切削技术2-1

萨洛蒙在l924一1931年间,进行了一系列的高速切削实验: 在非黑色金属材料,如铝、铜和青铜上,用特大直径的刀 盘进行锯切,最高实验的切削速度曾达到14000m/min, 在各种进给速度下,使用了多达20齿的螺旋铣刀。l931年 申请了“超极限速度”专利,随后卖给了“Krupp钢与工 具制造厂”。 萨洛蒙和他的研究室实际上完成了大部分有色金属的切削 试验研究,并且推断出铸铁材料和钢材的相关曲线。 萨洛蒙理论提出了一个描述切削条件的区域或者是范围, 在这个区域内是不能进行切削的。萨洛蒙没有提出可靠的 理论解释,而且他的许多实验细节也没有人知道。
刀具磨损曲线
三、高速切削切屑形成
高速切削试验表明,工件材料及 性能对切屑形态 有决定性影响。
低硬度和高热物理性能的工件材料(铝合金、低碳钢、未 淬硬钢等)易形成连续带状切屑。 高硬度和低热物理性能的工件材料(钛合金钢、未淬硬钢 等)易形成锯齿状切屑。
切削速度对切屑形态有重要影响。对钛合金,在 (1.5~4800)m/min的切削速度范围内形成锯齿状 切屑,随切削速度的增加,锯齿程度(锯齿的齿 距)在增加,直至成为分离的单元切屑。
不同切削速度下车削45钢件的切削形态。
一方面,切削速度增加,应变速度加大,导致脆 性增加,易于形成锯齿状切屑;另一方面,切削 速度增加,切屑温度增加,导致脆性降低,不易 形成锯齿状切屑;
绝热剪切理论(Adiabatic Shear Theory) 周期脆性断裂理论(Periodic brittle fracture theoty)
萨洛蒙(Salomon)曲线
1600
切削温度/℃
钢
1200
青铜
铸铁 硬质合金980℃ Stelite合金850℃ 高速钢650℃ 碳素工具钢450℃
精密加工的发展史及趋势

精密加工的发展史及趋势
精密加工是指采用特殊的设备和技术,以非常高的精度对金属或非金
属物品进行加工的一种工艺。
它具有精度高、研磨精度高、重复精度高、
速度快、质量好、节约材料等优点,被广泛应用于航空航天、机械、能源、电子信息、医疗器械等领域,是现代高精尖的技术之一
精密加工的发展史可以追溯到20世纪50年代,1954年,美国宾夕
法尼亚州钢铁公司开发出一种全新的切削工艺,即精密冲剪。
这种冲剪工
艺能够制造出非常精确的金属零件,为当时的工业发展奠定了坚实的基础。
几年后,美国又开发出了精密切削机床,使得精密加工的范围进一步得以
扩大。
随着近代科学技术的发展,精密加工也不断得到进步提升。
20世纪
70年代,中国研制出精密数控车床,使精密加工可以以更快的速度、更
高的精度完成对金属零件的研磨、车削等操作。
此外,20世纪80年代,
激光雕刻技术也开始被应用到精密加工中,使得加工精度进一步得到提高。
随着近年来现代技术的高速发展,精密加工的范围也大大扩展,技术
水平也不断提高。
现如今,人们开发出的精密加工设备可以实现高精度、
高速度、高精确度的加工。
此外,新兴技术如3D打印、电火花等也被用
于精密加工,并显示出极大的潜力。