我总结(电场能量守恒与磁场)

我总结(电场能量守恒与磁场)
我总结(电场能量守恒与磁场)

电场

1.电荷周围存在电场.:库仑定律。

2.电场的大小:单位电量的电荷在电场中受到的电场力。检验电荷受到的力越大那

。电场线越密集电场越大。

3.场强是描述电场性质的物质的物理量,只由电场决定,与检验电荷无关.例如在

A

q的大小无关,

.不能理解为

,.

4.

场强是矢量.,

其方向为正电荷的受力方向为该点场强方向.

5.电场强度和电场力是两个不同的物理量,就像速度和位移是完全不同的两个

概念.最

根本不同的是:场强是表示电场的性质的物理量

,电场力是电荷在电场中受的电场的作用力.

注意

.而

.

6.场强可以合成分解,并遵守平行四边形法则,如图示2

所示.Q A与Q B在C处的场强分别为E A、E B,E即是E A与

E B的合成场强.若在C处放一个-q点电荷,所受电场力方

向应与E反方向.

7.电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。

8.

三.电场线

1.电场线是描述电场强度分布的一族曲线.描述方法:用曲线的疏密描述电场的强弱,用曲线某点的切线方向表示该点场强方向.

2.电场的特点:

(1).在静电场中,电场线从正电荷起,终于负电荷,不闭合曲线.

(2).电场线不能相交,否则一点将有两个场强方向.

(3).电场线不是电场里实际存在的线,是为使电场形象化的假想线.

3. 点电荷的电场线.

图3、图4为正、负点电荷电场线的分布,应熟悉.

从图5可看出,E 1为+Q 在A 处的场强,E 2为-Q 在A 处的场强,E 为E 1与E 2的

合场强,正好为电场线在A 的切线。两个点电荷形成的电场中,每条电场线上

每个点符合上述的关系。

4.匀强电场

(1) .定义:在电场的某一区域里,如果各点场强大小和方向都相同,这个区域的

电场叫匀强电场.

(2) .电场线如图6所示.电场线互相平行的直线,线间距离相等.

(3) .两块靠近、正对且等大平行的金属板,分别带等量

正负电荷时,它们之间的电场是匀强电场.边缘附近除

外.

5、公式

四.电场中的导体.

1. 导体的特征:导体内部有大量可以自由移动的电荷.金属导体可自由移动是自由电子.

2. 静电感应:导体内的自由电荷是电场的作用而重新分布的现象.

认真分析如图所示的物理过程:把金属导体置于匀强电

场中.金

属导体中自由电子在电场力作用向左运动,达到左外表面,而

右外表面带正电.金属导体外表面带的等量正负电荷称为感

应电荷,感应电荷形成电场E '的方向与电场E 方向相反向

左,E '随着感应电荷增加而变大,当E '=E 时,导体内场强为零,

自由电子不受电场力作用,停止定向运动.达到静电平衡.

静电平衡:导体中(包括表面)没有电荷走向移动的状态叫静电平衡.

3. 在导体处于静电平衡状态时有

(1) .在导体内部的场强处处为零

(2) .导体表面任何一点场强方向与该点表面垂直.

(3) .电荷只能分布在外表面上.

4. 利用处于静电平衡状态时,导体内部场强处处为零的特点,利用金属网罩(金

属包皮)把外

电场遮住,使内部不受电场影响即静电屏数.

3. 深刻理解电场的能的性质。

(1)电势φ:是描述电场能的性质的物理量。

①电势定义为φ=

规定:正电荷在电场中某点具有的电势能越大,该点电势越高。

②电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。

③当存在几个“场源”时,某处合电场的电势为各“场源”在此处电场的电势的代数和。

④电势差,A、B间电势差U AB=ΦA-ΦB;B、A间电势差U BA=ΦB-ΦA,显然U AB=-U BA,电势差的值与零电势的选取无关。

(2)电势能:电荷在电场中由电荷和电场的相对位置所决定的能,它具有相对性,即电势能的零点选取具有任意性;系统性,即电势能是电荷与电场所共有。

①电势能可用E=q△Ф计算。

②由于电荷有正、负,电势也有正、负(分别表示高于和低于零电势),故用E=qФ计算电势能时,需带符号运算。

4. 掌握电场力做功计算方法

(1)电场力做功与电荷电势能的变化的关系。

电场力对电荷做正功时,电荷电势能减少;电场力对电荷做负功时,电荷电势能增加,电势能增加或减少的数值等于电场力做功的数值。

(2)电场力做功的特点

电荷在电场中任意两点间移动时,它的电势能的变化量是确定的,因而移动电荷做功的值也是确定的,所以,电场力移动电荷所做的功,与移动的路径无关,仅与始末位置的电势差有关,这与重力做功十分相似。

(3)计算方法

①由功的定义式W=F·S来计算,但在中学阶段,限于数学基础,要求式中F为恒力才行,所以,这个方法有局限性,仅在匀强电场中使用。

②用结论“电场力做功等于电荷电势能增量的负值”来计算,即W=-,已知电荷电势能的值时求电场力的功比较方便。

③用W=qU AB来计算,此时,一般又有两个方案:一是严格带符号运算,q 和U AB均考虚正和负,所得W的正、负直接表明电场力做功的正、负;二是只取绝对值进行计算,所得W只是功的数值,至于做正功还是负功?可用力学知识判定。

6. 深刻理解电容器电容概念

电容器的电容C=Q/U=△Q/△U,此式为定义式,适用于任何电容器。平行板电容器的电容的决定式为c=。对平行板电容器有关的Q、E、U、C的讨论要熟记两种情况:(1)若两极保持与电源相连,则两极板间电压U不变;(2)若充电后断开电源,则带电量Q不变。

功率

电阻

(特别推介)2010高考物理专题复习――磁场

一、磁场

1、磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。

2、电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。

3、磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。

4、与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有力的作用实验。

1.地磁场

地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地

磁的北极在地球的南极附近。

2.地磁体周围的磁场分布

与条形磁铁周围的磁场分布情况相似。

3.指南针

放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。

4.磁偏角

地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。

二、磁场的方向

1、在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。

2、规定:

3、在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。

4、确定磁场方向的方法是:

5、将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N极的指向即为该点的磁场方向。

6、磁体磁场:

可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。

7、电流磁场:

利用安培定则(也叫右手螺旋定则)判定磁场方向。

三、磁感线

在磁场中画出有方向的曲线表示磁感线,在这些曲线上,每一点的切线方向都跟该点的磁场方向相同。

(1)磁感线上每一点切线方向跟该点磁场方向相同。

(2)磁感线特点

(1)磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。

(2)磁感线上每一点的切线方向就是该点的磁场方向。

(3)磁场中的任何一条磁感线都是闭合曲线,在磁体外部由N极到S极,在磁体内部由S极到N极。

以下各图分别为条形磁体、蹄形磁体、直线电流、环行电流的磁场

说明:

①磁感线是为了形象地描述磁场而在磁场中假想出来的一组有方向的曲线,并不是客观存在于磁场中的真实曲线。

②磁感线与电场线类似,在空间不能相交,不能相切,也不能中断。

四、几种常见磁场

1通电直导线周围的磁场

(1)安培定则:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向,这个规律也叫右手螺旋定则。

(2)磁感线分布如图所示:

说明:

①通电直导线周围的磁感线是以导线上各点为圆心的同心圆,实际上电流磁场应为空间图形。

②直线电流的磁场无磁极。

③磁场的强弱与距导线的距离有关,离导线越近磁场越强,离导线越远磁场越弱。

④图中的“×”号表示磁场方向垂直进入纸面,“·”表示磁场方向垂直离开纸面。

2.环形电流的磁场

(1)安培定则:让右手弯曲的四指与环形电流的方向一致,伸直的拇指的方向就是环形导线轴线上磁感线的方向。

(2)磁感线分布如图所示:

(3)几种常用的磁感线不同画法。

说明:

①环形电流的磁场类似于条形磁铁的磁场,其两侧分别是N极和S极。

②由于磁感线均为闭合曲线,所以环内、外磁感线条数相等,故环内磁场强,环外磁场弱。

③环形电流的磁场在微观上可看成无数根很短的直线电流的磁场的叠加。

3.通电螺线管的磁场

(1)安培定则:用右手握住螺线管,让弯曲时四指的方向跟电流方向一致,大拇指所指的方向就是螺线管中心轴线上的磁感线方向。

(2)磁感线分布:如图所示。

(3)几种常用的磁感线不同的画法。

说明:

①通电螺线管的磁场分布:外部与条形磁铁外部的磁场分布情况相同,两端分别为N 极和S极。管内(边缘除外)是匀强磁场,磁场分布由S极指向N极。

②环形电流宏观上其实就是只有一匝的通电螺线管,通电螺线管则是由许多匝环形电流串联而成的。因此,通电螺线管的磁场也就是这些环形电流磁场的叠加。

③不管是磁体的磁场还是电流的磁场,其分布都是在立体空间的,要熟练掌握其立体图、纵截面图、横横面图的画法及转换。

4.匀强磁场

(1)定义:在磁场的某个区域内,如果各点的磁感应强度大小和方向都相同,这个区域内的磁场叫做匀强磁场。

(2)磁感线分布特点:间距相同的平行直线。

(3)产生:距离很近的两个异名磁极之间的磁场除边缘部分外可以认为是匀强磁场;相隔一定距离的两个平行放置的线圈通电时,其中间区域的磁场也是匀强磁场,如图所示:

五、磁感应强度

1、磁感应强度

为了表征磁场的强弱和方向,我们引入一个新的物理量:磁感应强度。描述磁场强弱和方向的物理量,用符号“B”表示。

通过精确的实验可以知道,当通电直导线在匀强磁场中与磁场方向垂直时,受到磁场对它的力的作用。对于同一磁场,当电流加倍时,通电导线受到的磁场力也加倍,这说明通电导线受到的磁场力与通过它的电流强度成正比。而当通电导线长度加倍时,它受到的磁场力也加倍,这说明通电导线受到的磁场力与导线长也成正比。对于磁场中某处来说,通电导线在该处受的磁场力F与通电电流强度I与导线长度L乘积的比值是一个恒量,它与电流强度和导线长度的大小均无关。在磁场中不同位置,这个比值可能各不相同,因此,这个比值反映了磁场的强弱。

(1)磁感应强度的定义

电流元

①定义:物理学中把很短一段通电导线中的电流I与导线长度L的乘积IL叫做电流元。

②理解:孤立的电流元是不存在的,因为要使导线中有电流,就必须把它连到电源上。

(2)磁场对通电导线的作用力

①内容:通电导线与磁场方向垂直时,它受力的大小与I和L的乘积成正比。

②公式:。

说明:

①B为比例系数,与导线的长度和电流的大小都无关。

②不同的磁场中,B的值是不同的。

③B应为与电流垂直的值,即式子成立条件为:B与I垂直。

磁感应强度

定义:在磁场中垂直于磁场方向的通电直导线,受到的安培力的作用F,跟电流I和导线长度L的乘积IL的比值,叫做通电直导线所在处的磁场的磁感应强度。

公式:B=F / IL。

(2)磁感应强度的单位

在国际单位制中,B的单位是特斯拉(T),由B的定义式可知:

1特(T)=

(3)磁感应强度的方向

磁感应强度是矢量,不仅有大小,而且有方向,其方向即为该处磁场方向。小磁针静止时N极所指的方向规定为该点的磁感应强度的方向,简称为磁场的方向。

B是矢量,其方向就是磁场方向,即小磁针静止时N极所指的方向。

2、磁通量

为了定量地确定磁感线的条数跟磁感应强度大小的关系,规定:在垂直磁场方向每平方米面积的磁感线的条数与该处的磁感应强度大小(单位是特)数值相同。这里应注意的是一般画磁感线可以按上述规定的任意数来画图,这种画法只能帮助我们了解磁感应强度大小;方向的分布,不能通过每平方米的磁感线数来得出磁感应强度的数值。

(1)磁通量的定义

穿过某一面积的磁感线的条数,叫做穿过这个面积的磁通量,用符号φ表示。

物理意义:穿过某一面的磁感线条数。

(2)磁通量与磁感应强度的关系

按前面的规定,穿过垂直磁场方向单位面积的磁感线条数,等于磁感应强度B,所以在匀强磁场中,垂直于磁场方向的面积S上的磁通量φ=BS。

若平面S不跟磁场方向垂直,则应把S平面投影到垂直磁场方向上。

当平面S与磁场方向平行时,φ=0。

公式

(1)公式:Φ=BS。

(2)公式运用的条件:

a.匀强磁场;b.磁感线与平面垂直。

(3)在匀强磁场B中,若磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁感线方向上的投影面积。

此时,式中即为面积S在垂直于磁感线方向的投影,我们称为“有效面积”。

(3)磁通量的单位

在国际单位中,磁通量的单位是韦伯(Wb),简称韦。磁通量是标量,只有大小没有方向。

(4)磁通密度

磁感线越密的地方,穿过垂直单位面积的磁感线条数越多,反之越少,因此穿过单位面积的磁通量——磁通密度,它反映了磁感应强度的大小,在数值上等于磁感应强度的大小,

B =Φ/S。

六、磁场对电流的作用

1.安培分子电流假说的内容

安培认为,在原子、分子等物质微粒的内部存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,分子的两侧相当于两个磁极。

2.安培假说对有关磁现象的解释

(1)磁化现象:一根软铁棒,在未被磁化时,内部各分子电流的取向杂乱无章,它们的磁场互相抵消,对外不显磁性;当软磁棒受到外界磁场的作用时,各分子电流取向变得大致相同时,两端显示较强的磁性作用,形成磁极,软铁棒就被磁化了。

(2)磁体的消磁:磁体的高温或猛烈敲击,即在激烈的热运动或机械运动影响下,分子电流取向又变得杂乱无章,磁体磁性消失。

磁现象的电本质

磁铁的磁场和电流的磁场一样,都是由运动的电荷产生的。

说明:

①根据物质的微观结构理论,原子由原子核和核外电子组成,原子核带正电,核外电子带负电,核外电子在库仑引力作用下绕核高速旋转,形成分子电流。在安培生活的时代,由于人们对物质的微观结构尚不清楚,所以称为“假说”。但是现在,“假设”已成为真理。

②分子电流假说揭示了电和磁的本质联系,指出了磁性的起源:一切磁现象都是

由运动的电荷产生的。

安培力

通电导线在磁场中受到的力称为安培力。

3.安培力的方向——左手定则

(1)左手定则

伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在同一平面内,把手放入磁场,

让磁感线穿过手心,让伸开的四指指向电流方向,那么大拇指所指方向即为安培力方向。

(2)安培力F、磁感应强度B、电流I三者的方向关系:

①,,即安培力垂直于电流和磁感线所在的平面,但B与I不一定垂直。

②判断通电导线在磁场中所受安培力时,注意一定要用左手,并注意各方向间的关系。

③若已知B、I方向,则方向确定;但若已知B(或I)和方向,则I(或B)方向不确定。

4.电流间的作用规律

同向电流相互吸引,异向电流相互排斥。

安培力大小的公式表述

(1)当B与I垂直时,F=BIL。

(2)当B与I成角时,,是B与I的夹角。

推导过程:如图所示,将B分解为垂直电流的和沿电流方向的

,B对I的作用可用B1、B2对电流的作用等效替代,

5.几点说明

(1)通电导线与磁场方向垂直时,F=BIL最大;平行时最小,F=0。

(2)B对放入的通电导线来说是外磁场的磁感应强度。

(3)导线L所处的磁场应为匀强磁场;在非匀强磁场中,公式仅适用于

很短的通电导线(我们可以把这样的直线电流称为直线电流元)。

(4)式中的L为导线垂直磁场方向的有效长度。如图所示,半径为r的半圆形导线与磁场B垂直放置,当导线中通以电流I时,导线的等效长度为2 r,故安培力F=2BIr。

生产运营分析报告风电

生产运营分析报告风电文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

2017年07月生产运营分析报告 一、本月主要生产指标完成情况 1、发电量: 当期风电计划为5833.34万kW·h,当期风电实际完成4586.93万kW·h,完成当期计划的78.63%,环比减少13.46%,同比增加59.00%,完成年计划的62.05% 。当期光伏计划为27万kW·h,当期光伏实际完成28.6万kW·h,完成当期计划的106.01%,环比减少6.15%,完成年计划的10.418%。 2、上网电量: 当期风电计划5646.59万kW·h,当期风电实际完成为4451.72万kW·h,完成当期计划的78.84%,环比减少13.35% ,同比增长58.95%,完成年计划62.03%。当期光伏计划25.5万kW·h,当期光伏实际完成28.16万kW·h,完成当期计划的110.42%,环比减少6.15%,完成年计划的10.94%。 本月实际完成发电量与当期计划发电量差值原因: 风电方面: 1)拉马风电场本期可研风速为6.9m/s,同期风速为5.28m/s,上期平均风速为5.52m/s,本期实际测得风速为4.93m/s。鲁南风电场本期可研风速为6m/s,同期风速为5.42m/s,上期平均风速为6.19m/s,而本期实际测得风速为5.21m/s。鲁北风电场本期可研风速为7.15m/s, ,上期平均风速为6.7m/s,而本期实际测得风速为5.1m/s。大面山一期可研平均风速4.6m/s,上期平均风速4.4 m/s 实际平均风速4.21m/s上。大面山二期

人教版高中物理选修知识点——第三章《磁场》

人教版高中物理选修3-1部分知识点 内部资料 第三章《磁场》 一、磁现象和磁场 1)磁体分为天然磁石和人造磁体。磁体吸引铁质物体的性质叫做磁性。磁体磁性最强的区域叫做磁极。同名磁极相互排斥;异名磁极相互吸引。 2)电流的磁效应 奥斯特发现,电流能使磁针偏转,因此,电流就等效成磁体。 3)磁场 ①磁场与电场一样,都是看不见摸不着,客观存在的物质。电流和磁体的周围都存在磁场。 ②磁体与磁体之间、磁体与电流之间,以及电流与电流之间的相互作用,是通过磁场发生的。 ③地球的磁场 地球的地理两极与地磁两极并不重合,其间有一个夹角,这就是地磁偏角。地理南极附近是地磁北极;地理北极附近是地磁南极。 二、磁感应强度B 1)物理意义:磁感应强度B 为矢量,它是描述磁场强弱的物理量。 2)方向:小磁针静止时N 极所指的方向或者小磁针N 极的受力方向规定为该点的磁感应强度的方向。 3)大小:IL F B ,单位:特斯拉(T ) 条件:磁场B 的方向与电流I 的方向垂直。 其中:IL 为电流元,F 为电流元受到的磁场力。 三、几种常见的磁场 1)磁感线 为了形象地描述磁场,曲线上每一点的切线方向都是该点的磁感应强度B 的方向。 2)安培定则(右手螺旋定则) ①第一种描述:对于直线电流,右手握住导线,1、拇指指向电流的方向;2、弯曲的四指指向磁感线的方向。直线电流的磁感线都是以电流为轴的同心圆,越远离电流磁场越弱。 ②第二种描述:对于环形电流,1、弯曲的四指指向环形电流的方向;2、拇指指向环内部的磁感线方向。环形电流内部的磁场恰好与外部的磁场反向。 3)安培分子电流假说

分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培分子电流假说揭示了磁的电本质。一条铁棒未被磁化的时候,内部分子电流的取向是杂乱无章的;当分子电流的取向一致时,铁棒被磁化。磁体受到高温或猛烈撞击时会失去磁性。 4)磁通量Φ ①定义式:BS =φ,单位:韦伯(Wb ) 其中:S 为在磁场中的有效面积。 ②磁通量是标量,但有正负,正负不表示大小。 四、安培力 (1)大小:θsin BIL F = 其中:θ为磁场B 与电流I 的方向夹角。当B 与I 垂直时,0 90=θ,安培力最大F=BIL ;当B 与I 平行时,00=θ,安培力最小F=0。 (2)方向:左手定则 ①磁感线垂直穿过手心;②四指指向电流的方向;③拇指所指的方向就是安培力的方向。 注意:安培力不但垂直于磁场B 的方向,而且垂直于电流I 的方向。 五、洛伦兹力 (1)大小:θsin qvB f = 其中:θ为磁场B 与运动电荷的速度v 的方向夹角。当B 与v 垂直时,090=θ,安培力最大f=qvB ;当B 与v 平行时,00=θ,安培力最小f=0。 (2)方向:左手定则 ①磁感线垂直穿过手心;②四指指向正电荷运动的方向;③拇指所指的方向就是洛伦兹力的方向。 注意:洛伦兹力不但垂直于磁场B 的方向,而且垂直于运动电荷速度v 的方向。因此,洛伦兹力不做功。 六、带电粒子在电磁场中的运动 1、带电粒子的种类 ①带电粒子,如电子、质子、α粒子、粒子等,一般情况下,不考虑重力。 ②带电微粒,如液滴、尘埃、小球等,一般情况下,必须考虑重力。 2、带电粒子在场中的运动 (1)带电粒子在匀强磁场中的运动 ①当v 平行于磁场B 进入时,粒子做匀速直线运动。 ②当v 垂直于磁场B 进入时,粒子做匀速圆周运动,洛伦兹力提供向心力。 r v m qvB 2 = 所以,粒子的轨道半径qB mv r = ,粒子运动的角速度m qB r v ==ω,粒子运动的周期

高考物理磁场精讲精练组合场复合场叠加场典型习题

组合场复合场叠加场典型习题 1.如图所示,匀强电场方向水平向右,匀强磁场方向垂直纸面向里,将带正电的小球在场中静止释放,最后落到地面上.关于该过程,下述说法正确的是( ) A.小球做匀变速曲线运动 B.小球减少的电势能等于增加的动能 C.电场力和重力做的功等于小球增加的动能 D.若保持其他条件不变,只减小磁感应强度,小球着地时动能不变 解析:选C.重力和电场力是恒力,但洛伦兹力是变力,因此合外力是变化的,由牛顿第二定律知其加速度也是变化的,选项A错误;由动能定理和功能关系知,选项B错误,选项C正确;磁感应强度减小时,小球落地时的水平位移会发生变化,则电场力所做的功也会随之发生变化,选项D错误. 2.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( ) A.可能做直线运动 B.可能做匀减速运动 C.一定做曲线运动 D.可能做匀速圆周运动 解析:选C.带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C正确. 3.(多选)质量为m、电荷量为q的微粒以速度v与水平方向成θ角从O点进入方向如图所示的正交的匀强电场和匀强磁场组成的混合场区,该微粒在电场力、洛伦兹力和重力的共同作用下,恰好沿直线运动到A,下列说法中正确的是( ) A.该微粒一定带负电荷

B .微粒从O 到A 的运动可能是匀变速运动 C .该磁场的磁感应强度大小为mg qv cos θ D .该电场的场强为Bv cos θ 解析:选AC.若微粒带正电荷,它受竖直向下的重力mg 、水平向左的电场力qE 和斜向右下方的洛伦兹力qvB ,知微粒不能做直线运动,据此可知微粒应带负电荷,它受竖直向下的重力mg 、水平向右的电场力qE 和斜向左上方的洛伦兹力qvB ,又知微粒恰好沿着直线运动到A ,可知微粒应该做匀速直线运动,则选项A 正确,B 错误;由平衡条件有:qvB cos θ=mg ,qvB sin θ=qE ,得磁场的磁感应强度B =mg qv cos θ ,电场的场强E =Bv sin θ,故选 项C 正确,D 错误. 4.(多选)如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则( ) A .小球可能带正电 B .小球做匀速圆周运动的半径为r =1 B 2UE g C .小球做匀速圆周运动的周期为T =2πE Bg D .若电压U 增大,则小球做匀速圆周运动的周期增加 解析:选BC.小球在复合场中做匀速圆周运动,则小球受到的电场力和重力满足mg =Eq ,方向相反,则小球带负电,A 错误;因为小球做圆周运动的向心力由洛伦兹力提供,由牛顿 第二定律和动能定理可得:Bqv =mv 2r ,Uq =12 mv 2 ,联立两式可得:小球做匀速圆周运动的半 径r =1 B 2UE g ,由T =2πr v 可以得出T =2πE Bg ,与电压U 无关,所以B 、C 正确,D 错误. 5.(多选)如图所示,在第二象限中有水平向右的匀强电场,在第一象限内存在垂直纸面向外的匀强磁场.有一重力不计的带电粒子(电荷量为q ,质量为m )以垂直于x 轴的速度 v 0从x 轴上的P 点进入匀强电场,恰好与y 轴正方向成45°角射出电场,再经过一段时间 又恰好垂直于x 轴进入第四象限.已知OP 之间的距离为d ,则( )

风电场工程项目安全生产事故隐患排查治理制度正式样本

文件编号:TP-AR-L5093 There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 风电场工程项目安全生产事故隐患排查治理制度 正式样本

风电场工程项目安全生产事故隐患排查治理制度正式样本 使用注意:该管理制度资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 为了加强xxx风电场工程项目的安全生产管理, 确保xxx风电场安全生产工作的顺利进行,建立安全 生产事故隐患排查治理的长效机制,强化安全生产主 体责任,加强事故隐患监督管理,防止和减少事故, 保障职工群众生命财产安全,根据xxx风电场、x局 安监〔2008〕461号文件《水电x局有限公司安全生 产事故隐患排查治理暂行办法》精神,特制定本制度 如下: 一、安全生产事故隐患是指在施工生产过程中违 反安全生产法律、法规、规章、标准、规程和安全生

产管理制度的规定,或者因其他因素在施工生产活动中,存在可能导致事故发生的物的危险状态或人的不安全行为和管理上的缺陷。 二、事故隐患分为一般事故隐患和重大事故隐患。 一般事故隐患是指危害和整改难度较小,发现后能够立即整改排除的隐患。 重大事故隐患是指危害和整改难度较大,应当全部或者局部停产停业,并经过一定时间整改治理方能排除的隐患,或者因外部因素影响致使在施工生产过程中都难以排除的隐患。 三、发现一般事故隐患,项目部工程技术部门应立即制订切实可行的整改措施,并认真加以落实。同时安全监督管理部门建立事故隐患排查与整改治理台帐,按月上报安全生产隐患排查治理月报表。对短时

高一物理上第三章知识点总结

第三章相互作用 一.力 1.定义:力是物体之间的相互作用。力的作用效果有两个,一是使物体发生形变,二是改变物体的运动状态。在国际单位制中,力的单位是牛顿,简称牛,符号是N。力的大小用弹簧测力计测量。 2. 力的本质 (1)力的物质性:力是物体对物体的作用,力不能离开物体而独立存在。每个力的产生必然同事联系两个物体——施力物体和受力物体。 (2)力的相互性:物体之间力的作用是相互的,施力物体同时也是受力物体。力总是成对出现的,分别作用在两个物体上,作用效果不能抵消。 (3)力的矢量性:力既有大小又有方向。 (4)力作用的独立性:几个力作用在同一物体上,每个力对物体的作用效果均不会因其它力的存在而受到影响。 3.力的三要素包括力的大小、方向、作用点。 4. 力的图示:力可以用一条有向线段表示,线段的长度表示力的大小,它的指向表示力的方向,箭头或箭尾表示力的作用点,线段所在的直线叫做力的作用线。 5.力的分类 按性质命名的力,例如:重力、弹力、摩擦力、分子力、电磁力。按效果命名的力,例如:拉力、压力、支持力、动力、阻力。二.重力 1.定义:由于地球的吸引而使物体受到的力。它的施力物体是地球。

2.重力的大小G=mg,方向竖直向下。作用点叫物体的重心。重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定。 注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力.由于重力远大于向心力,一般情况下近似认为重力等于万有引力。 四种基本相互作用:万有引力、电磁相互作用、强相互作用和弱相互作用。这四种基本相互作用是不需要物体相互接触就能产生作用的,称为非接触力。 三.弹力 1.接触力:接触力按照性质可以分为弹力和摩擦力,他们在本质上都是由电磁力引起的。 2.形变:物体在力的作用下形状或者体积会发生改变,这种变化叫做 形变。有些物体在撤去力之后形变可以恢复,称为弹性形变。3.发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形 变的物体产生力的作用,这种力叫弹力。弹力产生的条件是与物体直接接触并且发生形变。但物体的形变不能超过弹性限度。弹力的方向和产生弹力的那个形变方向相反。 4.胡克定律弹簧发生形变时,弹力的大小F与弹簧的伸长量(或缩短 量)成正比,即F=Kx,其中K称作弹簧的劲度系数,单位是N/m,劲度系数由弹簧本身的结构决定。 四.摩擦力

(十二)电场,磁场,重力场的复合场,组合场问答

电场,磁场,重力场的复合场、组合场问题 一、复合场 1.一个质量m=0.1 g的小滑块,带有q=5×10-4 C的电荷量,放置在倾角α=30°的光滑斜面上(斜面绝缘),斜面置于B=0.5 T的匀强磁场中,磁场方向垂直纸 面向里,如图8-2-29所示,小滑块由静止开始沿斜面滑下,其斜面足 够长,小滑块滑至某一位置时,要离开斜面.求: (1)小滑块带何种电荷? (2)小滑块离开斜面的瞬时速度多大? (3)该斜面的长度至少多长?图8-2-29 2.如图8-3-6所示的平行板之间,存在着相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=0.20 T,方向垂直纸面向里,电场强度E1=1.0×105V/m,PQ为板间中线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有一边界线AO,与y轴的夹角∠AOy=45°,边界线的上方有垂直纸面向外的匀强磁场,磁感应强度B2=0.25 T,边界线的下方有水平向右的匀强电场,电场强度E2=5.0×105V/m,在x轴上固定一水平的荧光屏.一束带电荷量q=8.0×10-19 C、质量m=8.0×10-26 kg的正离子从P点射入平行板间,沿中线PQ 做直线运动,穿出平行板后从y轴上坐标为(0,0.4 m)的Q点垂直y轴射入磁场区,最后打到水平的荧光屏上的位置C.求: 图8-3-6 (1)离子在平行板间运动的速度大小; (2)离子打到荧光屏上的位置C的坐标;

(3)现只改变AOy 区域内磁场的磁感应强度大小,使离子都不能打到x 轴上,磁感应强度大小B 2′应满足什么条件? 3.(2012·重庆卷,24)有人设计了一种带电颗粒的速率分选装置,其原理如图8-3-7所示.两带电金属板间有匀强电场,方向竖直向上,其中PQNM 矩形区域内还有方向垂直纸面向外 的匀强磁场.一束比荷(电荷量与质量之比)均为1k 的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′进入两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板.重力加速度为g ,PQ =3d ,NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间相互作用.求:(1)电场强度E 的大小; (2)磁感应强度B 的大小; (3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的 距离. 图8-3-7 4.在如图8-3-9所示的空间里,存在垂直纸面向里的匀强磁场,磁感应强度为B =2πm q .在竖直方向存在交替变化的匀强电场如图(竖直向上为正),电场大小为E 0=mg q .一倾角为θ长 度足够长的光滑绝缘斜面放置在此空间.斜面上有一质量为m ,带电量为-q 的小球,从t =0时刻由静止开始沿斜面下滑,设第5秒内小球不会离开斜面,重力加速度为g .求: (1)第6秒内小球离开斜面的最大距离. (2)第19秒内小球未离开斜面,θ角的正切值应满足什么条件? 图8-3-9 总结:

高中物理复合场专题复习(有界磁场)

习题课一 带电粒子在匀强磁场中的运动 一、带电粒子在直线边界磁场中的运动 1.基本问题 【例题1】如图所示,一束电子(电量为e)以速度V 垂直射入磁感应强度为B 、宽度为d 的匀强磁场,穿透磁场时的速度与电子原来的入射方向的夹角为300 .求: (1)电子的质量m (2)电子在磁场中的运动时间t 【小结】处理带电粒子在匀强磁场中的运动的方法: 1、 找圆心、画轨迹(利用F ⊥v 或利用弦的中垂线); 2、 定半径(几何法求半径或向心力公式求半径) 3、 求时间(t= 0360θ ×T或t= v s ) 注意:带电粒子在匀强磁场中的圆周运动具有对称性。 ① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等; ② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 2.应用对称性可以快速地确定运动的轨迹。 【例题2】如图—所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电量和质量之比 m q 。 【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。 【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: R L s i n θ=1 2 ① 带电粒子在磁场中作圆周运动,由 qv B mv R 00 2 = 解得R mv qB = ② ①②联立解得 q m v LB =20sin θ 【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。 2qBd m v = 303603d t T v π= =

风电场事故预想汇总精选.

变电站事故预想 1、变压器轻瓦斯动作的处理 2、变压器重瓦斯动作的处理 3、变压器差动保护动作的处理 4、变压器后备保护动作的处理 6、变压器压力释放保护动作的处理 7、变压器有载调压开关调压操作时滑档怎样处理 8、有载调压操作输出电压不变化,怎样判断处理? 11、主变着火如何处理? 12、主变套管严重跑油如何处理?? 13、运行中发现液压机构压力降到零如何处理? 14、检查中发现液压机构储压筒或工作缸、高压油管向外喷油,如何处理? 16、液压机构油泵打压不能停止如何处理? 18、液压机构发出“油泵运转”、“压力降低”、“压力异常”预告信号,如何处理? 20、 35KV开关电磁机构合闸操作时,合闸接触器保持,如何处理?? 23、油开关严重漏油,看不见油位,如何处理? 27、 SF6断路器SF6低压力报警的判断处理 28、 SF6断路器SF6低压闭锁的判断处理 29、 SF6开关液压机构打压超时故障的判断处理

1、巡视检查中发现刀闸刀口发热、发红怎样处理? 2、手动操作机构刀闸拒分,拒合怎样处理? 1、电流互感器二次开路,如何处理? 2、浠1#、2#主变并列运行中若浠互31PT有一相套管严重破裂放电接地,如何处理? 3、本站35KVPT二次保险熔断有哪此现象?如何处理? 4.巡视检查发现浠互02PT严重漏油看不见油位如何处理? 5、巡视发现浠互30PT严重渗油,如何处理? 6、浠互01PT二次回路故障如何处理? 7、阀型避雷器故障如何分析判断处理 8、运行中发现浠互02避雷器瓷瓶有裂纹时怎样处理? 10.浠03开关出线耦合电容器A相爆炸怎样处理? 浠2#所变高压侧浠38开关故障跳闸,如何处理? 1、全站失压的判断处理 2、系统出现谐振过电压事故的处理 3、在进行110KV母线送电的操作中,当推上某一开关的两侧刀闸后,突然出现谐振现象,应如何判断处理? 1#主变保护动作,使全站失压,如何处理? 1、中央信号盘“直流母线接地”光字牌亮如何处理? 2、本站1#整流屏出现故障后怎样处理? 3、35KV单相接地的故障处理

人教版高中物理选修3-1 第三章 磁场知识点总结概括

选修3-1知识点 第三章磁场 3.1磁现象和磁场 一、磁现象,最初发现的磁体是被称为“天然磁石”的矿物,其中含有主要成分为Fe3O4。注意:天然磁石和人造磁铁都是永磁体。 ①磁性:能够吸引铁质物体的性质。 ②磁极:磁体上磁性最强的部分叫磁极。小磁针静止时指南的磁极叫做南极,又叫S极;指北的磁极叫做北极,又叫N极。 二、电流的磁效应 1、奥斯特通电直导线实验。 ①导线:要南北方向放置 ②磁针要平行的放置于导线的下方或者上方。 2、实验现象,当给导线通时,与导线平行放 置的小磁针发生转动。 3、实验结论,电可以生磁,即电流的磁效应。 三、磁场 1、定义:磁体和电流周围空间存在的一种特殊物质,客观存在。 2、基本性质:磁场对放入其中的磁体或通电导体会产生磁力作用。 四、地球的磁场 1、地球是一个巨大的磁体。(类似条形磁体) 2、地球周围空间存在的磁场叫地磁场。

3、磁偏角:地磁的北极在地理的南极附近,地磁的南极在地理的北极附近,但两者并不完全重合,它们之间的夹角称为磁偏角。 3.2磁感应强度 一、磁感应强度,为描述磁场强弱的物理量,用符号“B”表示。 二、磁感应强度的方向 1、物理学中把小磁针在磁场中静止时 N 极所指的方向规定为该点的磁感应强度的方向,简称为磁场的方向。 2、因为 N 极不能单独存在。小磁针静止时是所受的合力为零,因而不能用测量 N 极受力的大小来确定磁感应强度的大小。 三、磁感应强度的大小 1、电流元:很短的一段通电导线中的电流 I 与导线长度 L 的乘积IL。(也可以叫点电流) 2、通电指导线在磁场中受力大小为BIL F (1)式中B 是比例系数,它与导线长度和电流大小都没有关系。 B是反映磁场性质的物理量,是由磁场自身决定的,与是否引入电流元、引入的电流元是否受力及受力大小无关。(客观存在) (2)不同磁场中,B 一般不同。 3、磁感应强度的表达式: (1)定义:在导线与磁场垂直的情况下,所受的磁场力 F 跟电流 I

带电粒子在复合场中的运动问题是中电场磁场中的重点和难点问题4

带电粒子在复合场中的运动问题是中电场磁场中的重点和难点问题,也实际中应用的知识源头,所以要掌握好带点粒子在实际中的应用,一般是这几样是比较常见的。

【例1】 某带电粒子从图中速度选择器左端由中点O 以速度v 0 向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带___电;第二次射出时的速度为_____。 解:B 增大后向上偏,说明洛伦兹力向上,所以为带正电。由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。 2120 2222020212,2 1212121v v v mv mv mv mv -=∴-=- 【例2】 如图所示,一个带电粒子两次以同样的垂直于场线的初速度v 0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L 偏转角度均为α,求E ∶B 解:分别利用带电粒子的偏角公式。在电场中偏转: 2 0tan mv EqL = α,在磁场中偏转:0 sin mv LBq =α,由以上两式可得αcos 0v B E =。可以证明:当偏转角相同时,侧移必然不同(电场中侧移较大);当侧移相同时,偏转角必然不同(磁场中偏转角较大)。 【习题反馈】 1.(2008学年越秀区高三摸底调研测试)如图所示虚线所围的区域内(为真空环境),存在 电场强度为E 的匀强电场和磁感强度为B 的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转.设重力可忽略,则在这区域中的E 和B 的方向可能是( ) A 、E 和B 都沿水平方向,并与电子运动方向相同 a b c E,B

物理必修一第三章知识点总结

第三章相互作用 专题一:力的概念、重力和弹力 1.力的本质 (1)力的物质性:力是物体对物体的作用。提到力必然涉及到两个物体:施力物体和受力物体,力不能离开物体而独立存在,(不离开不是一定要接触)有力时物体不一定接触。 (2)力的相互性:力是成对出现的,作用力和反作用力同时存在。作用力和反作用力总是等大、反向、共线,分别作用在两个物体上,作用效果不能抵消. (3)力的矢量性:力有大小、方向,对于同一直线上力的矢量运算,同向相加,反向相减。 (4)力作用的独立性:几个力作用在同一物体上,每个力对物体的作用效果均不会因其它力的存在而受到影响。 2.力的作用效果 $ 力对物体作用有两种效果:一是使物体发生形变,二是改变物体的运动状态。这两种效果可各自独立产生,可同时产生。 3.力的三要素:大小、方向、作用点 完整表述一个力时,三要素缺一不可。当力 F1、F2的大小、方向均相同时,我们说F1=F2。 力的大小可用弹簧秤测量,也可通过定理、定律计算,力的单位是牛顿,符号是N。 4.力的图示和力的示意图 力的图示:用一条有向线段表示力的方法叫力的图示,用带有标度的线段长短表示大小,用箭头指向表示方向,作用点用线段的起点表示。 5.重力 (1).重力的产生: - 重力是由于地球的吸收而产生的,重力的施力物体是地球。 (2).重力的大小: ○由G=mg计算,g为重力加速度,通常g取米/秒方。 ○由弹簧秤测量:物体静止时弹簧秤的示数为重力大小。 (3).重力的方向: 重力的方向总是竖直向下的,不一定指向地心。 (4).重力的作用点——重心 ○物体的各部分都受重力作用,效果上,认为各部分受到的重力作用都集中于一点,叫做物体的重心。(假设的点) $ ○重心跟物体的质量分布、物体的形状有关,重心不一定在物体上。质量分布均匀、形状规则的物体其重心在物体的几何中心上。 (5).重力和万有引力 重力是地球对物体万有引力的一个分力,万有引力的另一个分力提供物体随地球自转的向心力,同一物体在地球上不同纬度处的向心力大小不同,但由此引起的重力变化不大,一般情况可近似认为重力等于万有引力,即:mg=GMm/R2。除两极和赤道外,重力的方向并不指向地心。 重力的大小及方向与物体的运动状态无关,在加速运动的系统中,例如:发生超重和失

电场和磁场 第11讲 带电粒子在组合场复合场中的运动

考题回访专题四电场和磁场第11讲带电粒子在组合场、复合场中的运动1.(多选)(2015·江苏高考)一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左。不计空气阻力,则小球( ) A.做直线运动 B.做曲线运动 C.速率先减小后增大 D.速率先增大后减小 【解析】选B、C。由题意知,小球受重力、电场力作用,合外力的方向与初速度的方向夹角为钝角,故小球做曲线运动,所以A项错误,B项正确;在运动的过程中合外力先做负功后做正功,所以C项正确,D项错误。 2.(2016·全国卷Ⅰ)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。此离子和质子的质量比约为( ) A.11 B.12 C.121 D.144 【解析】选D。离子在加速电场有qU=mv2,在磁场中偏转有qvB=m,联立解得R=,经匀强磁场 偏转后仍从同一出口离开磁场,即R相同,因此有=()2,离子和质子的质量比约为144,故选D。 3.(多选)(2015·山东高考)如图甲,两水平金属板间距为d,板间电场强度的变化规律如图乙所示。t=0时 刻,质量为m的带电微粒以初速度v0沿中线射入两板间,0~时间内微粒匀速运动,T时刻微粒恰好经金属板边缘飞出,微粒运动过程中未与金属板接触,重力加速度的大小为g。关于微粒在0~T时间内运动的描述,正确的是( )

A.末速度大小为v0 B.末速度沿水平方向 C.重力势能减少了mgd D.克服电场力做功为mgd 【解析】选B、C。因为中间与后面时间加速度等大反向,所以离开电容器时,竖直速度为零,只有水平速度v0,A错误,B正确;中间时间和后面时间竖直方向的平均速度相等,所以竖直位移也相等,因为竖直方向总位移是,所以后面时间内竖直位移是,克服电场力做功W=2qE0×=2mg×=mgd,D错误;重力 势能减少等于重力做功mg×,C正确。 4.(2016·北京高考)如图所示,质量为m,电荷量为q的带电粒子,以初速度v沿垂直磁场方向射入磁感应强度为B的匀强磁场,在磁场中做匀速圆周运动。不计带电粒子所受重力。 (1)求粒子做匀速圆周运动的半径R和周期T。 (2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E的大小。【解析】(1)粒子做匀速圆周运动,洛伦兹力提供向心力,有 f=qvB=m 解得粒子做匀速圆周运动的半径R=

高中物理专题:电场磁场与复合场

电场、磁场及复合场 【典型例题】 1.空间存在相互垂直的匀强电场E 和匀强磁场B ,其方向如图所示.一带电粒子+q 以初速度v 0垂直 于电场和磁场射入,则粒子在场中的运动情况可能是 ( ) A .沿初速度方向做匀速运动 B .在纸平面内沿逆时针方向做匀速圆周运动 C .在纸平面内做轨迹向下弯曲的匀变速曲线运动 D .初始一段在纸平面内做轨迹向下(向上)弯曲的非匀变速曲线运动 2.如图所示空间存在着竖直向上的匀强电场和垂直纸面向外的匀强磁场,一带电液滴从静止开始自A 沿曲线ACB 运动到B 点时,速度为零,C 是轨迹的最低点,以下说法中正确的是 ( ) A .液滴带负电 B .滴在C 点动能最大 C .若液滴所受空气阻力不计,则机械能守恒 D .液滴在C 点机械能最大 3.如图所示,一个带正电的滑环套在水平且足够长的粗糙绝缘杆上,整个装置处在与杆垂直的水平方向的匀强磁场中,现给滑环以水平向右的瞬时冲量,使滑环获得向右的初速,滑环在杆上的运动情况可能是 ( ) A .始终作匀速运动 B .先作加速运动,后作匀速运动 C .先作减速运动,后作匀速运动 D .先作减速运动,最后静止在杆上 4.如图所示,质量为m 、带电量为+q 的带电粒子,以初速度v 0垂直进入相互正交的匀强电场E 和匀 强磁场B 中,从P 点离开该区域,此时侧向位移为s (重力不计),则 ( ) A .粒子在P 点所受的磁场力可能比电场力大 B .粒子的加速度为(qE – qv 0B )/m C .粒子在P 点的速率为m qsE v 220 D .粒子在P 点的动能为mv 02 /2 – qsE 5.如图所示,质量为m ,电量为q 的正电物体,在磁感强度为B 、方向垂 直纸面向里的匀强磁场中,沿动摩擦因数为μ的水平面向左运动,物体运动初速度为v ,则 ( ) A .物体的运动由v 减小到零所用的时间等于mv /μ(mg+qvB ) B .物体的运动由v 减小到零所用的时间小于mv /μ(mg+qvB ) C .若另加一个电场强度为μ(mg+qvB )/q 、方向水平向左的匀强电场,物体做匀速运动 D .若另加一个电场强度为(mg+qvB )/q 、方向竖直向上的匀强电场,物体做匀速运动 6.如图所示,磁感强度为B 的匀强磁场,在竖直平面内匀速平移时,质量为m ,带电– q 的小球,用线悬挂着,静止在悬线与竖直方向成30°角的位置,则磁场的最小移动速度为 . 7.如图所示,质量为1g 的小环带4×10-4 C 正电,套在长直的绝缘杆上,两者间的动摩擦 因数μ = 0.2,将杆放入都是水平的互相垂直的匀强电场和匀强磁场中,杆所在的竖 直平面与磁场垂直,杆与电场夹角为37°,若E = 10N/C ,B = 0.5T ,小环从静止释放,求: ⑴ 当小环加速度最大时,环的速度和加速度; ⑵ 当小环速度最大时,环的速度和加速度. 8.如图所示,半径为R 的光滑绝缘竖直环上,套有一电量为q 的带正电的小球,在水平正交的匀强电场和匀强磁场中,已知小球所受的电场力与重力的大小相等.磁场的磁感强度为B ,求: ⑴ 在环顶端处无初速释放小球,小球运动过程中所受的最大磁场力; ⑵ 若要小球能在竖直圆环上做完整的圆周运动,在顶端释放时初速必须满足什么条件? 9.如图所示,匀强磁场沿水平方向,垂直纸面向里,磁感强度B =1T ,匀强电场方向水平向右,场强E = 103N/C .一带正电的微粒质量m = 2×10-6kg ,电量q = 2×10-6 C ,在此空间恰好作直线运动,问: ⑴ 带电微粒运动速度的大小和方向怎样? ⑵ 若微粒运动到P 点的时刻,突然将磁场撤去,那么经多少时间微粒到达Q 点?(设PQ 连线与电场方向平行) 10.如图所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面向里 的匀强磁场.一电子从两板左侧以速度v 0沿金属板方向射入,当两板间磁场的磁感强度为B 1时,电子从a 点射出两板,射出时的速度为2v 0.当两板间磁场的磁感强度为B 2时,电子从b 点射出时的侧移量仅为从a 点射出时侧移量的1/4,求电子从b 点射出的速率. 11.如图所示,在一个同时存在匀强磁场和匀强电场的空间,有一个质量为m 的带电微粒,系于长为 l 的细丝线的一端,细丝线另一端固定于O 点.带电微粒以角速度ω在水平面内作匀速圆周运动,此时细线与竖直方向成30°角,且细线中张力为零,电场强度为E ,方向竖直向上. ⑴ 求微粒所带电荷的种类和电量; ⑵ 问空间的磁场方向和磁感强度B 的大小多大? ⑶ 如突然撤去磁场,则带电粒子将作怎样的运动?线中的张力是多大?

最新风电场事故总结与分析

风电场事故及分析 2009年以来,我国一些风电公司在设备安装调试和运行过程中陆续发生了重大设备事故,造成风电机组完全损毁,并危及到调试人员的生命安全。通过分析这些事故,我们发现主要原因有三类: 1、风电场管理不严,对风电设备的保护参数监督失控; 2、风电机厂家管理混乱,调试人员培训不到位,产品设计中也存在安全链漏洞; 3、设备制造质量失控,存在不少隐患。 由于风电事故对厂家和风电开发商的负面影响较大,厂家和风电场业主往往严格保密,防止消息泄漏后有不良影响。我们只能通过互联网和各种渠道尽可能收集多的信息,供大家了解,引以为戒,避免今后发生类似事故。 1、大唐左云项目的风机倒塌事故 其事故报告如下:2010年1月20日,常轨维护人员进行“风机叶片主梁加强”工作,期间因风大不能正常进入轮毂工作,直到2010年1月27日工作结束。28日10:20分,常轨维护人员就地启动风机,到1月31日43#风机发出“桨叶1快速收桨太慢”等多个报警,2:27分发“震动频带11的震动值高”报警,并快速停机。8:00风机缺陷管理人员通知常轨维护负责人,18:00常轨维护人员处理缺陷完毕后就地复位并启动。直到2月1日3:18分,之前43#风机无任何报警信息,发生了倒塌事件。塔筒中段、上段、风机机舱、轮毂顺势平铺在地面上,塔筒上段在中间部分发生扭曲变形。风力发电机摔落在地,且全部摔碎,齿轮箱与轮毂主轴轴套连接处断裂,齿轮箱连轴器破碎,叶片从边缘破裂大量填充物散落在地面上。 事故发生后,风电场将二期风机全停,并进行外观、内部的全面检查。3月4日,左云风电公司检查发现二期61号风机中下塔筒法兰连接螺栓断裂48个(共125个),在螺栓未断裂部分的法兰与筒壁焊缝中有长度为1.67米的裂缝,其异常现象与倒塌的43号塔筒情况基本一致。事故原因很可能是塔架制造和螺栓质量不符合要求。

高中物理选修3-1第三章磁场知识点及经典例题

第三章磁场 第1 节磁现象和磁场 、磁现象磁性:能吸引铁质物体的性质叫磁性。 磁体:具有磁性的物体叫磁体磁极:磁体中磁性最强的区域叫磁极。 、磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引. (与电荷类比) 三、磁场 1.磁体的周围有磁场 2.奥斯特实验的启示:——电流能够产生磁场,运动电荷周围空间有磁场 导线南北放置 3.安培的研究:磁体能产生磁场,磁场对磁体有力的作用;电流能产生磁场,那么磁场对电流也 应该有力的作用 性质:①磁场对处于场中的磁体有力的作用。 ②磁场对处于场中的电流有力的作用。 第2 节磁感应强度 F 跟电流I 和导线长度L 的乘积IL 、定义:当通电导线与磁场方向垂直时,通电导线所受的安培力 的比值叫做磁感应强度. 对磁感应强度的理解 1.描述磁场的强弱 2.公式B=F/IL 是磁感应强度的定义式,是用比值定义的,磁感应强度B的大小只决定于 磁场本身的性质,与F、I、L 均无关. 3.单位:特,符号T 1T=1N/AM 4.定义式B=FIL 成立的条件是:通电导线必须垂直 于磁场方向放置.因为磁场中某点通电导线受力的大小,除 了与磁场强弱有关外,还与导线的方向有关.导线放入磁场 中的方向不同,所受磁场力也不相同.通电导线受力为零的 地方,磁感应强度B 的大小不一定为零,这可能是电流方 向与B 的方向在一条直线上的原因造成的. 5.磁感应强度的定义式也适用于非匀强磁场,这时L 应很短,IL 称作“电流元”,相当于静电场中的试探电 荷. 6.通电导线受力的方向不是磁场磁感应强度的方 向. 7. 磁感应强度与电场强度的区别磁感应强度B 是描述 磁场的性质的物理量,电场强度E 是描述电场的性质的物 理量,它们都是矢量,现把它们的区别列表如下: 磁感应强度是矢量,其方向为该处的磁场方向遵循平行四边形定则。如果空间同时存在两个或两个以上的磁场时,某点的磁感应强度B 是各磁感应强度的矢量和.

电场、磁场及复合场大题 高考复习

专题五 电场、磁场及复合场 1.如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E ,场区宽度为L ,在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,磁感应强度B 未知,圆形磁场区域半径为r 。一质量为m ,电荷量为q 的带正电的粒子从A 点由静止释放后,在M 点离开电场,并沿半径方向射入磁场区域,然后从N 点射出,O 为圆心,120MON ∠= ,粒子重力可忽略不计。求: (1)粒子在电场中加速的时间; (2)匀强磁场的磁感应强度B 的大小。 2.如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心O 在区域中心.一质量为m 、带电荷量为q (q >0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动.已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002T =.m qB π设小球在运动过程中电荷量保持不变,对原磁场的影响可忽略。[来源学科网Z|X|X|K] (1)在t =0到t =T 0这段时间内,小球不受细管侧壁的作用力,求小球的速度大小v 0; (2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.试求t =T 0到t =1.5T 0这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。 3.如图,直线MN 上方有平行于纸面且与MN 成45°的有界匀强电场,电场强度大小未知;MN 下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B 。今从MN 上的O 点向磁场中射入一个速度大小为v 、方向与MN 成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R 。若该粒子从O 点出发记为第一次经

风电场雷击事故的分析及防范措施

风电场雷击事故的分析及防范措施 摘要:风电场经常发生雷击跳闸事故,通过对事故的分析,提出在多雷山区应采取的一些防雷措施。 关键词:风电场雷击防雷分析防雷措施 一、引言 架空输电线路是电力网及电力系统的重要组成部分,由于它暴露在大自然中,易受到外界的影响和损害。而雷击是其中最主要的一个方面。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。雷击放电引起很高的雷电过电压,是造成线路跳闸事故的主要原因。据统计,雷击引起的跳闸事故占电力系统事故的50%~70%。 二、典型故障 就拿某风电场为例,某风电场地处丘陵地带,依山傍水,雷电活动较为活跃。当地气象部门统计资料表明该地区落雷较多且强度较大,是典型的多雷地带。进入春夏季节后,该风电场35kV集电线路发生多次雷击事故。最严重的一次雷击发生在六月中旬,四条35kV集电线路过流保护动作跳闸,两条线路35kV开关柜内过压保护器炸裂。巡线后发现线路杆塔及箱式变压器高压侧多处避雷器被击毁,多处瓷瓶炸裂。风机内多个交换机和网关损坏,严重影响了风电场的安全生产运行。 三、雷电事故的判别及特征 架空电力线路由雷电产生的过电压有2种:一种是雷击于线路或杆塔引起的直击雷过电压;另一种是雷电产生电磁感应所引起的感应雷过

电压。其中,感应雷过电压是引起线路故障的主要原因。经分析该风电场易遭受雷击的杆塔大都是: (1)山顶的高位杆塔或向阳半坡的高位杆塔。 (2)临水域地段的杆塔。 (3)山谷迎风口处杆塔。而雷电反击是引起箱式变压器内避雷器以 及风机内交换机和网关损坏的主要原因。 四、雷击故障产生的原因分析 (1) 该地区属于多雷区,气象统计数据表明其年均雷暴日在60d 以上,分布在此区段的35kV架空线路受雷击率较高。而该风场线路设计时没有考虑其环境特殊性,基本按常规设计。 (2) 35kV线路上没有安装避雷线,防雷主要靠安装在线路上的避雷器,而避雷器只安装在变电站的出线侧和配电变压器的终端杆,这样造成线路中间缺少保护。 (3) 杆塔及避雷器接地存在缺陷。部分杆塔接地电阻较大,致使泄流能力降低,雷击电流不能快速流入大地。另外接地引下线的截面为8mm 圆钢,不满足12mm的设计标准。 (4) 直线杆塔采用P- 20 针式绝缘子。此类绝缘子质量存在缺陷,曾多次发生雷击绝缘子引起的接地故障或短路故障。 五、防雷措施 根据以上分析,可采取如下防雷措施: (1) 35kV集电线路架设避雷线,虽然雷击于避雷线时,由于线路绝缘水平低会引起反击闪络,但避雷线对间接雷击感应过电压的幅值可以

高二物理下册第三章磁场知识点讲解

一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。电流和电流之间的相互作用也是通过磁场产生的。 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质 运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。 三、磁场的方向

规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点: (1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。 (2)磁感线是闭合曲线。 (3)磁感线不相交。 (4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。 3.几种典型磁场的磁感线: (1)条形磁铁。 (2)通电直导线。①安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;②其磁感线是内密外疏的同心圆。 (3)环形电流磁场:①安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。②所有磁感线都通过内部,内密外疏。 (4)通电螺线管:①安培定则:让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向;②通电螺线管的磁场相当于条形磁铁的磁场。 五、磁感应强度

相关文档
最新文档