5V-3.3V电平转换方案
3.3v 转5v三极管电平转换电路

【3.3V转5V电平转换电路】在现代电子产品中,我们常常会遇到不同电平之间的通信和连接问题。
在使用不同电压的设备进行通信时,就需要通过电平转换电路来确保信号的正常传输。
其中,3.3V和5V之间的电平转换是一个常见的问题。
为了解决这个问题,我们可以使用三极管电平转换电路来实现。
三极管是一种常用的电子元件,具有放大和开关功能。
在电平转换电路中,三极管起到了信号转换和匹配的作用。
下面,我将从浅入深地介绍3.3V转5V三极管电平转换电路的原理和实现方法。
1. 电平转换原理在进行电平转换时,我们需要将3.3V的信号转换为5V的信号,以适应不同设备之间的电平要求。
而三极管作为一种双向放大器,可以很好地满足这一需求。
通过控制三极管的基极电压,我们可以实现对输入信号的放大和匹配,从而实现3.3V到5V的电平转换。
2. 3.3V转5V三极管电平转换电路图接下来,我们可以通过以下电路图来实现3.3V转5V的电平转换:(这里应当插入电路图,或者描述电路连接方式)在这个电路中,我们使用了一个双极性三极管,例如2N2222。
当输入信号为3.3V时,通过控制基极电压,可以使输出信号达到5V;当输入信号为5V时,三极管处于饱和状态,输出信号同样为5V。
这样一来,我们就实现了从3.3V到5V的电平转换。
3. 实际应用和注意事项在实际应用中,我们需要注意一些电路参数的选择和匹配。
三极管的型号、输入输出电阻的匹配等都会影响到电路的性能和稳定性。
另外,对于高频信号和大电流信号的转换,也需要进一步优化电路设计。
4. 个人观点和总结3.3V转5V三极管电平转换电路是一种简单有效的电平转换方案。
通过合理设计电路参数和选择合适的元件,我们可以轻松实现不同电平之间信号的转换和匹配。
在实际应用中,我们需要根据具体情况进行电路设计和优化,以确保信号的稳定和可靠传输。
通过本文的介绍,希望能给大家带来一些关于3.3V转5V三极管电平转换电路的启发和帮助。
5V转3.3V电平的19种方法技巧

5V转3.3V电平的19种方法技巧技巧一:使用(LDO)稳压器,从5V(电源)向3.3V系统供电标准三端(线性稳压器)的压差通常是2.0-3.0V。
要把5V 可靠地转换为 3.3V,就不能使用它们。
压差为几百个毫伏的低压降(Low Dropout,LDO)稳压器,是此类应用的理想选择。
图1-1 是基本LDO 系统的框图,标注了相应的(电流)。
从图中可以看出,LDO 由四个主要部分组成:1. 导通(晶体管)2. 带隙参考源3. (运算放大器)4. 反馈电阻分压器在选择LDO 时,重要的是要知道如何区分各种LDO。
器件的静态电流、封装大小和型号是重要的器件参数。
根据具体应用来确定各种参数,将会得到最优的设计。
LDO的静态电流IQ是器件空载工作时器件的接地电流IGND。
IGND 是LDO 用来进行稳压的电流。
当IOUT>>IQ 时,LDO 的效率可用输出电压除以输入电压来近似地得到。
然而,轻载时,必须将IQ 计入效率计算中。
具有较低IQ 的LDO 其轻载效率较高。
轻载效率的提高对于LDO 性能有负面影响。
静态电流较高的LDO 对于线路和负载的突然变化有更快的响应。
技巧二:采用齐纳(二极管)的低成本供电系统这里详细说明了一个采用齐纳二极管的低成本稳压器方案。
可以用齐纳二极管和电阻做成简单的低成本3.3V稳压器,如图2-1 所示。
在很多应用中,该电路可以替代LDO 稳压器并具成本效益。
但是,这种稳压器对负载敏感的程度要高于LDO 稳压器。
另外,它的能效较低,因为R1 和D1 始终有功耗。
R1 限制流入D1 和(PI)Cmicro (MCU)的电流,从而使VDD 保持在允许范围内。
由于流经齐纳二极管的电流变化时,二极管的反向电压也将发生改变,所以需要仔细考虑R1 的值。
R1 的选择依据是:在最大负载时——通常是在PICmicro MCU 运行且驱动其输出为高电平时——R1上的电压降要足够低从而使PICmicro MCU有足以维持工作所需的电压。
电平转换方法

5V-3.3V电平转换方法在实际电路设计中,一个电路中会有不同的电平信号。
方案一:使用光耦进行电平转换首先要根据要处理的信号的频率来选择合适的光耦。
高频(20K~1MHz)可以用高速带放大整形的光藕,如6N137/TLP113/TLP2630/4N25等。
如果是20KHz以下可用TLP521。
然后搭建转换电路。
如将3.3V信号转换为5V信号。
电路如下图:CP是3.3V的高速信号,通过高速光耦6N137转换成5V信号。
如果CP接入的是5V 的信号VCC=3.3V,则该电路是将5V信号转换成3.3V信号。
优点:电路搭建简单,可以调制出良好的波形,另外光耦还有隔离作用。
缺点:对输入信号的频率有一定的限制。
方案二:使用三极管搭建转换电路三极管的开关频率很高,一般都是几百兆赫兹,但是与方案一相比,电路搭建相对麻烦,而且输出的波形也没有方案一的好。
电路如下图:其中C1为加速电容,R1为基极限流电阻,R2为集电极上拉电阻,R3将输入端下拉到地,保证在没有输入的情况下,输出端能稳定输出高电平。
同时在三极管截止时给基区过量的电荷提供泄放回路缩短三极管的退饱和时间。
优点:开关频率高,在不要求隔离,考虑性价比的情况下,此电路是很好的选择。
缺点:输出波形不是很良好。
方案三:电阻分压这里分析TTL电平和COMS电平的转换。
首先看一下TTL电平和CMOS电平的区别。
TTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2。
最小输入高电平>=2.0V,输入低电平<=0.8,噪声容限是0.4V。
CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且有很宽的噪声容限。
下面的电路是将5V的TTL电平转换成3V的TTL电平不考虑5V器件输出内阻以及3V器件输入内阻,VL=R2*VS/(R2+R1),选择合适的R1和R2,使得电压匹配。
优点:电路实现简单。
3.3V转5V 电平转换方法参考

3.3V转5V 电平转换方法参考2009-10-20 12:083.3V转5V 电平转换方法参考[转帖]电平转换晶体管+上拉电阻法就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) OC/OD 器件+上拉电阻法跟1) 类似。
适用于器件输出刚好为OC/OD 的场合。
(3) 74xHCT系列芯片升压(3.3V→5V)凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作3.3V→5V 电平转换。
——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。
廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母T 就表示TTL 兼容)。
(4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...)凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。
这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。
例如,74AHC/VHC 系列芯片,其datasheets 明确注明"输入电压范围为0~5.5V",如果采用3.3V 供电,就可以实现5V→3.3V 电平转换。
(5) 专用电平转换芯片最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。
这是最通用的电平转换方案,但是也是很昂贵的(俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。
(6) 电阻分压法最简单的降低电平的方法。
5V电平,经1.6k+3.3k电阻分压,就是3.3V。
(7) 限流电阻法如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。
某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如74HC 系列为20mA),仍然是安全的。
3.3V转5V 电平转换方法参考

电平转换
晶体管+上拉电阻法
就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) OC/OD 器件+上拉电阻法
跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。
(3) 74xHCT系列芯片升压 (3.3V→5V)
3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。
4:输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。
5:阀值电平(Vt): 数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平> Vih,输入低电平<Vil,而如果输入电平在阈值上下,也就是Vil~Vih这个区域,电路的输出会处于不稳定状态。
(3) 速度/频率
某些转换方式影响工作速度,所以必须注意。像方案(1)(2)(6)(7),由于电阻的存在,通过电阻给负载电容充电,必然会影响信号跳沿速度。为了提高速度,就必须减小电阻,这又会造成功耗上升。这种场合方案(3)(4)是比较理想的。
(4) 输出驱动能力
如果需要一定的电流驱动能力,方案(1)(2)(6)(7)就都成问题了。这一条跟上一条其实是一致的,因为速度问题的关键就是对负载电容的充电能力。
(9) 比较器法
运放法/比较器少用。
2. 电平转换的"五要素"
3.3v转5V电平转换

电平转换
晶体管+上拉电阻法
就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) OC/OD 器件+上拉电阻法
跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。
(3) 速度/频率
某些转换方式影响工作速度,所以必须注意。像方案(1)(2)(6)(7),由于电阻的存在,通过电阻给负载电容充电,必然会影响信号跳沿速度。为了提高速度,就必须减小电阻,这又会造成功耗上升。这种场合方案(3)(4)是比较理想的。
(4) 输出驱动能力
如果需要一定的电流驱动能力,方案(1)(2)(6)(7)就都成问题了。这一条跟上一条其实是一致的,因为速度问题的关键就是对负载电容的充电能力。
3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。
4:输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。
5:阀值电平(Vt): 数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平> Vih,输入低电平<Vil,而如果输入电平在阈值上下,也就是Vil~Vih这个区域,电路的输出会处于不稳定状态。
(5) 路数
某些方案元器件较多,或者布线不方便,路数多了就成问题了。例如总线地址和数据的转换,显然应该用方案(3)(4),采用总线缓冲器芯片(245,541,16245...),或者用方案(5)。
3.3V转5V电平转换方法参考

3.3V转5V 电平转换方法参考电平转换晶体管+上拉电阻法就是一个双极型三极管或 MO SFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) O C/OD器件+上拉电阻法跟 1)类似。
适用于器件输出刚好为OC/OD的场合。
(3) 74xH CT系列芯片升压(3.3V→5V) 凡是输入与 5VTTL 电平兼容的5V CM OS 器件都可以用作 3.3V→5V 电平转换。
——这是由于3.3V C MOS 的电平刚好和5V TT L电平兼容(巧合),而 CMO S 的输出电平总是接近电源电平的。
廉价的选择如 74x HCT(H CT/AH CT/VH CT/AH CT1G/VHCT1G/...) 系列(那个字母 T 就表示 TTL兼容)。
(4)超限输入降压法(5V→3.3V, 3.3V→1.8V,...)凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。
这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。
例如,74AHC/VHC 系列芯片,其 data sheet s 明确注明"输入电压范围为0~5.5V",如果采用 3.3V 供电,就可以实现5V→3.3V 电平转换。
(5)专用电平转换芯片最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。
这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。
单片机5V转3.3V电平的19种方法

单片机5V转3.3V电平的19种方法技巧一:使用LDO稳压器,从5V电源向3.3V系统供电标准三端线性稳压器的压差通常是 2.0-3.0V。
要把 5V 可靠地转换为 3.3V,就不能使用它们。
压差为几百个毫伏的低压降 (Low Dropout, LDO)稳压器,是此类应用的理想选择。
图 1-1 是基本LDO 系统的框图,标注了相应的电流。
从图中可以看出, LDO 由四个主要部分组成:1. 导通晶体管2. 带隙参考源3. 运算放大器4. 反馈电阻分压器在选择 LDO 时,重要的是要知道如何区分各种LDO。
器件的静态电流、封装大小和型号是重要的器件参数。
根据具体应用来确定各种参数,将会得到最优的设计。
LDO的静态电流IQ是器件空载工作时器件的接地电流 IGND。
IGND 是 LDO 用来进行稳压的电流。
当IOUT>>IQ 时, LDO 的效率可用输出电压除以输入电压来近似地得到。
然而,轻载时,必须将 IQ 计入效率计算中。
具有较低 IQ 的 LDO 其轻载效率较高。
轻载效率的提高对于 LDO 性能有负面影响。
静态电流较高的 LDO 对于线路和负载的突然变化有更快的响应。
技巧二:采用齐纳二极管的低成本供电系统这里详细说明了一个采用齐纳二极管的低成本稳压器方案。
可以用齐纳二极管和电阻做成简单的低成本 3.3V稳压器,如图 2-1 所示。
在很多应用中,该电路可以替代 LDO 稳压器并具成本效益。
但是,这种稳压器对负载敏感的程度要高于 LDO 稳压器。
另外,它的能效较低,因为 R1 和 D1 始终有功耗。
R1 限制流入D1 和 PICmicro® MCU的电流,从而使VDD 保持在允许范围内。
由于流经齐纳二极管的电流变化时,二极管的反向电压也将发生改变,所以需要仔细考虑 R1 的值。
R1 的选择依据是:在最大负载时——通常是在PICmicro MCU 运行且驱动其输出为高电平时——R1上的电压降要足够低从而使PICmicro MCU有足以维持工作所需的电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
74HCT244 8总线驱动器,输入为TTL电平,输出为COMS电平。可以转 换8路电平。
SN7cALVC164245转换芯片输入3.3V,输出5V。
方案五:使用放大器搭建电路
分区 参考文献摘要 的第 3 页
在实际电路设计中,一个电路中会有不同的电平信号。
方案一:使用光耦进行电平转换 首先要 根据要处理的信号的频率来选择 合适的光耦。高频(20K~1MHz)可以用高速带放大整形的光藕,如 6N137/TLP113/TLP2630/4N25等。如果是20KHz以下可用TLP521。然后搭建 转换电路。如将3.3V信号转换为5V信号。 电路如下图:
缺点:输出波形不是很良好。
方案三:电阻分压
这里分析TTL电平和COMS电平的转换。首先看一下TTL电平和CMOS电平
的区别。
TTL电平:
>2.4V,
<0.4V
分区 参考文献摘要 的第 2 页
输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是 3.5V,输出低电平是0.2。最小输入高电平>=2.0V,输入低电平<=0.8,噪声容 限是0.4V。
分区 参考文献摘要 的第 1 页
CP是3.3V的高速信号,通过高速光耦6N137转换成5V信号。 如果CP接入的 是5V的信号 VCC=3.3V,则该电路是将5V信号转换成3.3V信号。 优点:电 路搭建简单,可以调制出良好的波形,另外光耦还有隔离作用。 缺点:对 输入信号的频率有一定的限制。
方案二:使用三极管搭建转换电路 三极管的开关频率很高,一般都是几百兆赫兹,但是与方案一
相比,电路搭建相对麻烦,而且输出的波形也没有方案一的好。 电路如下图:
其中C1为加速电容,R1为基极限流电阻,R2为集电极上拉电阻,R3 将输入端下拉到地,保证在没有输入的情况下,输出端能稳定输出高电 平。同时在三极管截止时给基区过量的电荷提供泄放回路缩短三极管的退 饱和时间。
优点:开关频率高,在不要求隔离,考虑性价比的情况下,此电路 是很好的选择。
CMOS电平: 1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且有很宽 的噪声容限。 下面的电路是将5V的TTL电平转换成3V的TTL电平
不考虑5V器件输出内阻以及3V器件输入内阻, VL=R2*VS/(R2+R1) ,选 择合适的R1和R2,使得电压匹配 。
优点:电路实现简单。 缺点:电路不稳定,容易受负载的影响。 方案四:使用集成芯片
2013年1月8日 15:17
源文档 </icview-344784-1-1.html> 整理By caowent@
近年来,半导体制造工艺的不断进步发展,为便携式电子工业产品的广泛 应用提供了动力和保证,便携式设备要求使用体积小,功耗低,电池耗电 小的器件,因低电压器件的成本比传统5V器件更低,功耗更小,性能更 优,加上多数器件的I/O脚可以兼容5V/3.3vTTL电平,可以直接使用在原有 的系统中,所以各大半导体公司都将3.3,2.5v等低电平集成电路作为推广 重点。但是,目前市场上仍有许多5V电源的逻辑器件和数字器件,因此在 许多设计中3.3V(含3V)逻辑系统和5V逻辑系统共存,而且不同的电源电压在 同一电路板中混用,随着更低电压标准的引进,不同电源电压和不同逻辑电 平器件间的接口问题将在很长一段时间内存在.MSP430系列单片机的供电 电压在1.8~3.6V这间,因此在使用它的过程中不可避免要碰到不同电压,电平 的接口问题. 在混合电压系统中,不同的电源电压的逻辑器件相互连接时会存在以下三 个主要问题: 1:加到输入和输出引脚上的最大允许电压限制问题; 器件对加到输入或者输出脚上的电压通常是有限制的.这些引脚有二极管 或者分离元件接到Vcc。如果接入的电压过高,则电流将会通过二极管或 者分离元件流向电源。例如在3.3V器件的输入端加上5V的信号,则5V电源 会向3.3V电源充电,持续的电流将会损坏二极管和其他电路元件. 2:两个电源间电流的互串问题 在等待或者掉电方式时,3.3V电源降落到0V,大电流将流通到地,这使得总线 上的高电压被下拉到地,这些情况将引起数据丢失和元件损坏.必须注意:不 管在3.3V的工作状态还是在0V的等待状态下都不允许电流流向Vcc. 3:必须满足输入转换门限电平的问题. 用5V的器器件来驱动3.3V的器件有很多不同的情况,同样TTL和CMOS间的转 换电平也存在着不同的情况.驱动器必须满足接收器的输入转换电平,并且 要有足够的容限以保证不损坏电路元件.