数量关系公式大全

合集下载

常见的数量关系公式大全

常见的数量关系公式大全

常见的数量关系公式大全
常见的数量关系公式包括:
每份数×份数=总数。

总数÷每份数=份数。

总数÷份数=每份数。

单价×数量=总价。

总价÷单价=数量。

总价÷数量=单价。

速度×时间=路程。

路程÷速度=时间。

路程÷时间=速度。

工效×时间=工作总量。

工作总量÷工效=时间。

工作总量÷时间=工效。

加数+加数=和。

和-一个加数=另一个加数。

被减数-减数=差。

被减数-差=减数。

差+减数=被减数。

因数×因数=积。

积÷一个因数=另一个因数。

被除数÷除数=商。

被除数÷商=除数。

商×除数=被除数。

在有余数的除法中:(被除数-余数)÷除数=商。

利息=本金×利率×时间。

收入-支出=结余。

单产量×数量=总产量。

总路程÷速度和=相遇时间。

相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间。

相遇时间=相遇路程÷速度和。

速度和=相遇路程÷相遇时间。

数量关系式大全

数量关系式大全

数量关系式大全数量关系式是数学中非常重要的一个概念,用于描述变量之间的关系。

本文将为您介绍数量关系式大全,主要包括以下几个方面:一、基本的数量关系式1. 平均数公式设有 n 个数:x1、x2、……、xn,平均数为 A,则平均数公式为:A = (x1 + x2 + …… + xn) / n2. 中位数公式设有 n 个数:x1、x2、……、xn,中位数为 M,则中位数公式为:①当 n 为奇数时:M = xn/2②当 n 为偶数时:M = (xn/2 + (xn/2 + 1)) / 23. 众数公式设有 n 个数:x1、x2、……、xn,出现次数最多的数为众数,则众数公式为:出现次数最多的数即为众数。

4. 极差公式设有 n 个数:x1、x2、……、xn,最大值为 max,最小值为min,则极差公式为:极差 = max - min二、分布型数量关系式1. 频率分布表设有一组 n 个数据,i 表示第 i 个数据,fi 表示第 i 个数据出现的频率,则频率分布表如下:2. 分组频数分布表设有一组 n 个数据,i 表示第 i 个数据,pi 表示 i 排列成类别的频数,则分组频数分布表如下:3. 相对频率分布设有一组 n 个数据,i 表示第 i 个数据,ri 表示第 i 个数据出现的相对频率,则相对频率分布如下:4. 累计频率分布表设有一组 n 个数据,i 表示第 i 个数据,Fi 表示第 i 个数据出现的累计频率,则累计频率分布表如下:三、函数型数量关系式1. 线性关系式若两个变量 x 和 y 之间存在线性关系,则函数关系式为:y = ax + b其中 a 为斜率,b 为截距。

2. 反比例关系式若两个变量 x 和 y 之间存在反比例关系,则函数关系式为:y = a / x其中 a 为比例常数。

3. 指数关系式若两个变量 x 和 y 之间存在指数关系,则函数关系式为:y = axb其中 a 和 b 为常数,且 b 为指数。

数量关系公式大全

数量关系公式大全

数量关系公式大全1.百分数公式:-百分数=(所占数量/总数量)×100%2.比例公式:-比例=已知数量/未知数量3.增长率公式:-增长率=增加的数量/原始数量4.直线方程:- y = mx + c,其中m是斜率,c是y轴截距5.平均值公式:-平均值=(所有数据之和)/(数据个数)6.学生t分布公式(用于计算样本平均值的置信度):-t=(平均值-总体平均值)/标准误差7.标准差公式(用于计算数据集的离散程度):- 标准差 = sqrt((每个数据值 - 平均值)^ 2的总和 / 数据个数)8.四分位数公式(用于描述数据集分布):-第一四分位数=(n+1)/4个数据点-第二四分位数(中位数)=(n+1)/2个数据点-第三四分位数=3(n+1)/4个数据点9.正态分布公式:-正态分布=(1/根号(2πσ^2))×e^(-(x-μ)^2/2σ^2)10.欧拉公式(描述复数和三角函数之间的关系):- e^(ix) = cos(x) + i × sin(x)11.斐波那契数列公式(描述费波那契数列中的数量关系):-Fn=Fn-1+Fn-2,其中F0=0,F1=112.二项式系数公式(描述二项式展开中的系数):-nCk=n!/(k!×(n-k)!),其中n为整数,k为介于0和n之间的整数13.反比例公式:-两个量A和B成反比例关系,即A×B=k(k为常数)14.几何级数公式(描述几何级数中的数量关系):-S=a/(1-r),其中a是首项,r是公比15.面积公式:-矩形面积=长×宽-三角形面积=(底边长×高)/2-圆面积=π×半径^2以上是一些常见的数量关系公式,它们在数学和科学中经常被使用。

通过掌握这些公式,我们可以更好地理解和解决各种与数量关系相关的问题。

小学数学数量关系式大全_公式总结

小学数学数量关系式大全_公式总结

小学数学数量关系式大全_公式总结
数量关系式大全
1,每份数份数=总数总数每份数=份数总数份数=每份数
2,1倍数倍数=几倍数几倍数1倍数=倍数几倍数倍数=1倍数
3,速度时间=路程路程速度=时间路程时间=速度
4,单价数量=总价总价单价=数量总价数量=单价
5,工作效率工作时间=工作总量工作总量工作效率=工作时间工作总量工作时间=工作效率
6,加数+加数=和和-一个加数=另一个加数
7,被减数-减数=差被减数-差=减数差+减数=被减数
8,因数因数=积积一个因数=另一个因数
9,小学数学数量关系式大全:被除数除数=商被除数商=除数商除数=被除数。

数量关系计算公式方面

数量关系计算公式方面
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
第一章数和数的运算
一 概念
2 .自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3.计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

完整版数量关系公式

完整版数量关系公式

数量关系常用公式总结:1.行程问题基础公式:路程=速度*时间一、相遇追及型追及问题:追及距离=(大速度-小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背离问题:背离距离=(大速度+小速度)×背离时间二、环形运动型反向运动:第N次相遇路程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第N次相遇路程差为N个周长,环形周长=(大速度-小速度)×相遇时间三、流水行船型顺流路程=(船速+水速)×顺流时间逆流路程=(船速-水速)×逆流时间静水速度=(顺水速度+逆水速度)÷2水流速度=(顺水速度-逆水速度)÷2四、扶梯上下型扶梯总长=人走的阶数×[1±(V梯÷V人)],顺行用加法,逆行用减法,根据公式带入级,速度为v解析:设扶梯为s v=1 1) 解得×S=30×1(1+v÷S=20×2×(1+v÷2) s=60,所以选择B。

五、队伍行进型队头→队尾:队伍长度=(人速+队伍速度)×时间队尾→队头:队伍长度=(人速-队伍速度)×时间解析:假设通讯员和队伍的速度分别为v和u,所求时间为t,则: 600=(v-u)×3 解得 v=250600=v×(2+24÷60) u=50600=(v+u)×t t=2,所以选择D六、往返相遇型左右点出发:第N次迎面相遇,路程和=全程×(2N-1)第N次追上相遇,路程差=全程×(2N-1)同一点出发:第N次迎面相遇,路程和=全程×2N第N次追上相遇,路程差=全程×2N解析:a汽车第二次从甲地出发后与b汽车相遇,实际上是两辆车第3次迎面相遇,根据公式,路程和为5个全程,即5×210=1050(公里),使用的时间为1050÷(90+120)=5(小时),所以b汽车共行驶了120×5=600(公里),选择B七、典型行程模型等距离平均速度=(2速度1×速度2)÷(速度1+速度2)(调和平均数公式)(速度1和速度2分别代表往﹑返的速度)解析:代入公式v=2×60×120÷(60+120)=80等发车前后过车:发车间隔T=(2t1×t2) ÷(t1+t2);V车/V人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?解析:依据公式,发车间隔T=(2t1×t2) ÷(t1+t2)=2×12×4÷(12+4)=6(分钟)。

数量关系公式大全

数量关系公式大全

数量关系公式大全数量关系是指事物之间的数量大小关系。

在数学中,我们可以通过公式来表示数量关系。

以下是一些常见的数量关系公式。

1.平均数公式平均数是一组数据的总和除以数据的个数。

设有n个数x1, x2, ..., xn,则平均数为:平均数 = (x1 + x2 + ... + xn) / n2.比例公式比例是两个或多个量之间的数量关系。

设有两个比例为a:b和c:d,则可以得到以下公式:a/b = c/d 或 ad = bc3.百分比公式百分比是一个数与100的乘积。

设有一个数x,它的百分比表示为p%,则可以得到以下公式:x=p/1004.线性关系公式线性关系是指两个变量之间的关系可以用直线表示。

设有两个变量x和y,它们之间的线性关系可以用y = mx + c来表示,其中m是斜率,c是截距。

5.比率公式比率是两个不同单位的数量之比。

设有两个量x和y,它们的比率表示为x:y,则可以得到以下公式:x/y=a/b6.百分数增减公式百分数增加或减少是指一个数在另一个数基础上增加或减少百分比。

设有一个数x,在它的基础上增加或减少p%后得到y,则可以得到以下公式:y=(100±p)x/1007.百分数增长率公式百分数增长率是指一些数在一段时间内的增长百分比。

设有一个数x,在一段时间t后增长p%,则可以得到以下公式:y=x(1+p/100)^t8.利息公式利息是指通过投资或贷款而得到的额外收入或支付的费用。

设有一个本金P,投资或贷款时间为t,年利率为r,则可以得到以下公式:利息=P*r*t9.积分和微分公式积分和微分是微积分学中的重要概念。

积分是一个函数在一些区间上的总体积,微分是函数在一些点上的斜率。

积分和微分有一些重要的公式,如牛顿-莱布尼茨公式和对数微分法则等。

以上是一些常见的数量关系公式,它们在数学和实际生活中都有着重要的应用。

通过了解和应用这些公式,我们可以更好地理解数量之间的关系,并进行相关的计算和分析。

数量关系计算公式方面

数量关系计算公式方面

数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:x×y = k( k一定)或k / x = y16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。

(或几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做最大公约数。

)17、互质数:公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课数字特性及数列相关一、整除特性1、能被常见数字整除的数字特性(1)被2整除特性:偶数(2)能被3整除特性:一个数字每位数字相加能被3整除。

可以把被三整除的个别数字直接消掉,以减少计算量被4和25整除特性:只看一个数字的末两位能不能被4(2(3)5)整除(4)被5整除特性:末尾是0或5(5)被6整除特性:兼被2和3整除的特性(6)被7整除特性:划分出末尾3位,大数减小数除以7,能整除说明这个数能被7整除(7)被8和125整除特性:看一个数的末3位,能被8(125)整除(8)被9整除特性:一个数字每位数字相加能被9整除。

可以把被三整除的个别数字直接消掉,以减少算量计(9)被11整除:奇数位的和-偶数位的和,能被11除整2、关于整除的其他注意事项(1)被合数整除的数字,也能被其因数整除(2)三个连续的自然数之和(积)能被3整除(3)四个连续自然数之和是偶数,但不能被4整除(4)平方数的尾数只能是0、1、4、5、6、9。

二、奇、偶、质、合性1、奇偶性奇数:不能被2整除的整数偶数:能被2整除的整数(0是偶数)2、奇数和偶数的运算规律奇数±奇数=偶数;偶数±偶数=偶数奇数±偶数=奇数;奇数×奇数=奇数偶数×偶数=偶数;奇数×偶数=偶数3、质合性质数:一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称为素数),如2、5、7、11、13合数:一个正整数除了能被1和它本身整除外,还能被其他的正整数整除,这样的正整数叫做合数1既不是质数也不是合数4、方法技巧及规律(1)两个连续的自然数之和(或差)必为奇数。

(2)两个连续自然数之积必为偶数。

(3)乘方运算后,数字的奇偶性不变。

(4)2是唯一一个为偶数的质数如果两个质数的和(或差)是奇数,那么其中必有一个是2如果两个质数的积是偶数,那么其中必有一个是2三、公倍数、公约数(往往考察周期性问题)四、余数问题基本形式:被除数=除数×商+余数(都是正整数)1、同余定义两个整数a、b除以自然数m(m>1),所得余数相同,则称整数a、b对自然数m 同余。

2、四种常考形式:余同取余、和同加和,差同减差,最小公倍数做周期。

(1)余同取余,公倍数做周期:一个数除以几个不同的数,余数相同,则这个数可以表示成这几个除数的最小公倍数的倍数与余数相加的形式。

(2)和同加和,公倍数做周期:一个数除以几个不同的数,除数与余数之和相同,则这个数可以表示成这几个除数的最小公倍数的倍数与该和相加的形式。

(3)差同减差,公倍数做周期:一个数除以几个不同的数,除数与余数之差相同,则这个数可以表示成这几个除数的最小公倍数的倍数与该差相减的形式。

(4)如果三个不符合口诀,先两个结合,再跟第三结合五、尾数乘方问题尾数变化规律:底数留个位,指数除4留余数,余数为0转成4六、数的拆分与重排数的拆分是将一个数拆分成几个因数相乘或者相加的形式,经常需要综合应用整除性质、奇偶性质、因式分解、同余理论等解答数字的重排问题时,经常需要借助于尾数法进行考虑、判断,同时可以利用列方程法、代入法、假设法等一些方法,进行快速求解。

七、不定方程未知数个数多于方程个数叫做不定方程。

通常只考虑他的整数解或正整数解。

常用解法有:综合利用整数的奇偶性,质合性、整除特性、尾数法、余数特性、特殊之法、代入排除法等多种数学知识得到答案。

八、数列(等差与等比)(1)等差数列:求和公式(上底+下底×高÷2)、中位数求和公式(重点)。

(2)等比数列:a n=a1q(n-1)第二课终极比例法比例就是数量之间的对比关系,或指一种事物在整体中所占的分量,运用比例法是将繁琐的数值简化为简单的数值进行分析。

比例问题的重点在于找出两种相关联的量,并明确两者间的比例关系。

比和比例的性质1.正比:a÷b=k(k=常数),则称a、b成正比2.反比:a×b=k(k=常数),则称a、b成反比采用比例法的一个重要条件是含有一个固定的乘除等式关系,及1、2所述的正反比例,实际应用中的路程=速度×时间,总量=效率×时间,溶剂=溶液×浓度,利润=成本×利润率。

需特别注意:三个量中必须有一个量是固定的,另外两个量才有相对关系。

差值比例:d dc-=bb-a一、常规比例 二、工程问题 工程问题是重点 一、工程问题的本质:将一般的工作问题分数化,就是研究工作总量、工作效率、工作时间三者之间的关系问题。

二、常用的数量关系式为: 工作总量=工作效率×工作时间 三、工程问题的两大利器 1、比例法 2、特殊值法四、核心要点:方程问题,用比例不用方程,用份数不用分数 五、题型分类:单人完成工程问题、全程合作问题、分阶工程问题、轮流合作型、水管问题、时间效率转化三、和差比例法四、三量比例法遇到三个量或者多个量,建立比例关系,需要通过某一个量的统一,比如①甲:乙=2:3,②乙:丙=4:5,需要对乙进行搭桥统一成12。

五、恒值比例法恒值比例法,在研究比例问题的时候,有一个量是恒定不变的,在题干所述的情况下,从头到尾没有发生变化,那么我们可以利用这样的一个对象所代表的比例点来求解。

一般情况下,这种恒量对象在不同的情况下代表的比例点不同,这个时候,需要把不同的比例点化为相同的数值来代替。

第三课 行程问题基础模型之一、相遇追击1.基本公式:距离=速度×时间2.相遇及追及问题:相遇距离=(大速度+小速度)×相遇时间…………………………………相向 追及距离=(大速度-小速度)×相遇时间…………………………………同向 3.核心方法:比例、公式、画图法4.解决要点:用比例不用方程、用份数不用分数 基础模型之二、顺流逆流1、基本行船问题:顺水速度=船速+水速 逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 2、顺水漂流问题:漂流速度=水速 漂流时间21122t t t t t -=基础模型之三、上下扶梯1、顺行扶梯长度=(人速+电梯速度)×顺行时间2、逆行扶梯长度=(人速-电梯速度)×逆行时间3、顺行扶梯级数=人走过的梯级数+扶梯运行梯级数4、逆行扶梯级数=人走过的梯级数-扶梯运行梯级数 基础模型之四、环形运动1、同向运动:环形周长=(大速度-小速度)×时间2、反向运动:环形周长=(大速度+小速度)×时间 基础模型之五、等距离平均速度公式 基础模型之六、公车模型(双向数车)1、题型特征:人按一定速度出行,每隔一段时间迎面遇到一辆公交车,每隔一段时间从背后超出一辆公交车,求发车间隔或撤人速度2、经典公式:发车间隔时间=21122t t t t t +=,211-2t t t t +=人速车速 基础模型之七、队首队尾1.队尾→队首:队伍长度=(人的速度-队伍速度)×时间2.队首→队尾:队伍长度=(人的速度+队伍速度)×时间3.从队尾赶到队首,可看做该人与队首的追击过程4.从队首赶到队尾,可看做该人与队尾的相遇过程 基础模型之八、火车过桥1、核心思维:火车本身长度也是路程的一部分,以火车的头或为作为运动点,按相遇或追击问题考虑 基础模型之九、往返相遇1、题目特征:题目表述为两个运动体从一条线段的两端或一端出发,在两端点之间不断往返,求一定时间后相遇次数或第N 次相遇时间等。

2、核心知识:(1)两运动体从两端同时出发,相向而行,不断往返: 第N 次迎面相遇,路程和=全程×(2n-1) 第N 次追上相遇,路程差=全程×(2n-1)(2)两运动体从一端同时出发,同向而行,不断往返: 第N 次迎面相遇,路程和=全程×2n 第N 次追上相遇,路程差=全程×2n (3)单人的路程第N 次迎面相遇,路程=第一次相遇时所走的路程×2n (或2n-1) 第N 次追上相遇,路程=第一次相遇时所走的路程×2n (或2n-1) 基础模型之十、二次相遇1、题型特征:两物体从两端点,相向而行,相遇后继续前行到达端点后折返至而次相遇。

题目给出的相遇点到端点的距离,带球两端点距离。

2、核心知识: 两边型:S=3S1-S2单边型:S=(3S1+S2)/2其中,S 表示两端点之间的距离,单边型两次距离都是相对于统一端点。

两边型指两次距离分别相对于两端点。

第四课 计数模型鸡兔同笼 1、列方程法2、假设法:先假设全部是某一种,然后求出的值与实际值的差值,除以它们单个的差值,得出来的是另一种。

植树问题关键在于理清间隔数与端点数之间的关系 1、两端植树:棵树=线路总长÷株距+1 2、一端植树:棵树=线路总长÷株距3、两端都不栽树:棵树=线路总长÷株距-14、双边植树需要在一条的基础上乘以25、封闭性植树,棵树=线路总长÷株距=总段数6、类似于两端不植树的还有“上楼梯问题”,则上每层用M/(N-1)分钟。

锯木头,剑圣自,锯成N 段需要锯N-1次;站成一列,相邻两人间隔M 米,队伍长M ×(N-1)米。

方阵问题1、方阵的核心是一个等差数列。

可以将方阵的每一层看做是一项。

每一层边长之差是2,每层周长之差为8,也就是方阵等差数列的所谓公差。

2、每一层,边长和周长的关系: (1)周长=(边长-1)×4 (2)边长=周长÷4+13、方阵总数:(1)实心方阵:m=a 2(a 为最外层每边人数,即边长) (2)空心方阵:m=(最外层每边人数-层数)×层数×4 4.增加或取消行列(1)增加m 行n 列,,人数增加=边长×(m+n )+mn (2)取消m 行n 列,,人数减少=边长×(m+n )-mn 剪绳问题1、题目表述:将一根绳子折成几段,然后在上面剪几刀,求分成段数。

2、经典公式:2N ×M +1(一根绳子连续对折N 次,剪M 刀,问绳子被剪成几段)3、实战秒杀:最后的段数一定是奇数,直接秒杀 过河问题1.题目表述:一只船只能运送N 个人,现在M 个人等待过河,求过河安排信息2.核心知识:共需:11--N M 次,如需N 个人划船,则1变成N ;过一次河指的是单程,往返一次指的是双程。

3.载人过河时,最后一次不需要返回。

空瓶换水1、题目特征:一定数量的空瓶子可以换到一瓶水,已有部分空瓶子,求可以换取水的瓶数。

2、经典公式:若M 个空瓶换一瓶水,相当于M-1个空瓶喝到一瓶水。

第五课星期、日期、钟表、年龄一、年月、星期问题1、星期推移口诀:平年就是1,闰年再加1,小月就是2,大月要补加1,7天一循环,28年一周期2、闰年判定口诀:四年一闰,百年不闰,四百年再闰。

相关文档
最新文档