中山大学考研数学分析2009年真题及答案
2009年考研数学三真题及答案解析

2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 函数()3sin x x f x xπ-=的可去间断点的个数为 ( )(A) 1.(B) 2. (C) 3.(D) 无穷多个.(2) 当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则 ( )(A) 11,6a b ==-. (B) 11,6a b ==. (C) 11,6a b =-=-. (D) 11,6a b =-=.(3) 使不等式1sin ln x tdt x t>⎰成立的x 的范围是 ( ) (A) (0,1).(B) (1,)2π. (C) (,)2ππ. (D) (,)π+∞.(4) 设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为 ( )(A) (B)(C) (D)(5) 设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3A B ==,则分块矩阵O A B O ⎛⎫ ⎪⎝⎭的伴随矩阵为 ( ) (A) **32O B A O ⎛⎫⎪⎝⎭. (B) **23O B AO ⎛⎫⎪⎝⎭. (C) **32O A BO ⎛⎫⎪⎝⎭.(D) **23OA BO ⎛⎫⎪⎝⎭. (6) 设,A P 均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭.若1231223(,,),(,,)P Q ααααααα==+,则TQ AQ 为 ( )(A) 210110002⎛⎫⎪ ⎪ ⎪⎝⎭.(B) 110120002⎛⎫⎪⎪ ⎪⎝⎭.(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭.(D) 100020002⎛⎫ ⎪⎪ ⎪⎝⎭.(7) 设事件A 与事件B 互不相容,则 ( )(A) ()0P AB =.(B) ()()()P AB P A P B =. (C) ()1()P A P B =-.(D) ()1P A B = .(8) 设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====.记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为 ( )(A) 0. (B) 1. (C) 2. (D) 3.二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9) cos 0x x →= .(10) 设()y x z x e =+,则(1,0)zx ∂=∂ _______ .(11) 幂级数21(1)n n nn e x n ∞=--∑的收敛半径为 ______. (12) 设某产品的需求函数为()Q Q p =,其对价格p 的弹性0.2p ε=,则当需求量为10000件时,价格增加1元会使产品收益增加 _______ 元.(13) 设(1,1,1)T α=,(1,0,)T k β=.若矩阵T αβ相似于300000000⎛⎫⎪⎪ ⎪⎝⎭,则k = ____ .(14) 设12,,,m X X X 为来自二项分布总体(,)B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差,记统计量2T X S =-,则ET = _____.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值.(16)(本题满分10 分)计算不定积分ln 1dx ⎛+ ⎝⎰ (0)x >. (17)(本题满分10 分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.(18)(本题满分11 分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-.(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(19)(本题满分10 分)设曲线()y f x =,其中()f x 是可导函数,且()0f x >.已知曲线()y f x =与直线0,1y x ==及(1)x t t =>所围成的曲边梯形绕x 轴旋转一周所得的立体体积值是该曲边梯形面积值的t π倍,求该曲线方程. (20)(本题满分11 分)设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ; (Ⅱ)对(Ⅰ)中的任意向量23,ξξ,证明:123,,ξξξ线性无关. (21)(本题满分11 分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值. (22)(本题满分11 分)设二维随机变量(,)X Y 的概率密度为,0,(,)0,x e y x f x y -⎧<<=⎨⎩其他. (I) 求条件概率密度()Y X f y x ; (II) 求条件概率{}11P X Y ≤≤.(23)(本题满分11分)袋中有1个红球,2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求{}10P X Z ==;(Ⅱ)求二维随机变量(),X Y 的概率分布.2009年全国硕士研究生入学统一考试数学三试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)【答案】(C)【解析】由于()3sin x x f x xπ-=,则当x 取任何整数时,()f x 均无意义,故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±.320032113211131lim lim ,sin cos 132lim lim ,sin cos 132lim lim .sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即1,2,30,1x =±. (2) 【答案】(A)【解析】()sin f x x ax =-与()()2ln 1g x x bx =-是0x →时的等价无穷小,则2200232000330()sin sin limlim lim ()ln(1)()sin 1cos sin lim lim lim 36sin lim 1,66x x x x x x x f x x ax x axg x x bx x bx x ax a ax a axbx bx bxa ax ab axb →→→→→→→--=-⋅---=---⎛⎫=-=-= ⎪⎝⎭等洛洛 即36a b =-,故排除B,C.另外,201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →,故1,a =排除D. 所以本题选A.(3) 【答案】(A)【解析】原问题可转化为求1sin ()ln 0xtf x dt x t=->⎰成立时x 的取值范围. 11111sin sin 1()ln sin 11sin 0.xx x x x tt f x dt x dt dt t tt t t dt dt t t =-=---==>⎰⎰⎰⎰⎰由()0,1t ∈时,1sin 0tt->,知当()0,1x ∈时,()0f x >.故应选(A). (4) 【答案】(D)【解析】此题为定积分的应用知识考核,由()y f x =的图形可以看出,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出下面几个方面的特征:① []1,0x ∈-时,()0F x ≤为线性函数,单调递增; ② []0,1x ∈时,()0F x ≤,且单调递减; ③ []1,2x ∈时,()F x 单调递增; ④ []2,3x ∈时,()F x 为常函数; ⑤ ()F x 为连续函数. 结合这些特点,可见正确选项为(D). (5) 【答案】(B) 【解析】分块矩阵O A B O ⎛⎫⎪⎝⎭的行列式221236O A A B B O⨯=-=⨯=(),即分块矩阵可逆,且1116112366.1132O A O A O A O B B O B O B O A O O B O B B O B A O A O A O A *---******⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭故答案为(B).(6)【答案】(A)【解析】1223123100100(,,)(,,)110110001001Q P ααααααα⎛⎫⎛⎫ ⎪ ⎪=+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,100100110110001001110100100210010010110110.001002001002TT Q AQ P A P ⎡⎤⎡⎤⎛⎫⎛⎫⎢⎥⎢⎥⎪ ⎪=⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪== ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(7) 【答案】(D)【解析】因为,A B 互不相容,所以()0P AB =.(A)()()1()P AB P A B P A B ==- ,因为()P A B 不一定等于1,所以(A)不正确; (B)当(),()P A P B 不为0时,()B 不成立,故排除; (C)只有当,A B 互为对立事件的时候才成立,故排除; (D)()()1()1P A B P AB P AB ==-= ,故()D 正确. (8) 【答案】(B) 【解析】(){}{0}{0}{1}{1}11{0}{1}2211{00}{1},22Z F z P XY z P XY z Y P Y P XY z Y P Y P XY z Y P XY z Y P X z Y P X z Y =≤=≤==+≤===≤=+≤==⋅≤=+≤=由于,X Y 相互独立,所以11(){0}{}22Z F z P X z P X z =⋅≤+≤. (1) 当0z <时,1()()2Z F z z =Φ;(2) 当0z ≥时,11()()22Z F z z =+Φ,因此,0z =为间断点,故选(B).二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上. (9) 【答案】32e 【解析】cos cos 10x x x x -→→= 200221(1cos )32lim lim 233x x e x e x e x x→→⋅-===.(10) 【答案】12ln 2+【解析】解法1:由于()xy z x e=+,故()(),01xz x x =+,()ln(1)ln(1)01ln(1)1x x x x x y z x x e e x xx ++=∂'⎡⎤'⎡⎤⎡⎤=+==++⎣⎦⎢⎥⎣⎦∂+⎣⎦,代入1x =,得ln 2(1,0)1ln 22ln 212z e x ∂⎛⎫=+=+ ⎪∂⎝⎭.解法2:由于ln()()()ln()yx x e y xy x y y e x e z x x e x e x x x x e +⎡⎤∂⎡⎤∂+∂⎡⎤⎣⎦⎣⎦===+⋅++⎢⎥∂∂∂+⎣⎦, 故000(1,0)1(1)ln(1)2ln 211z e e x e ∂⎡⎤=+⋅++=+⎢⎥∂+⎣⎦. (11) 【答案】1e -【解析】由题意知,()210nn n e a n --=>,()()()()1121211221lim lim 1111lim ,111n n n nn n n nn n n n n e a n a n e e e n e n e e +++→∞→∞++→∞--=⋅+--⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦=⋅=⎡⎤+⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦所以,该幂级数的收敛半径为1e -. (12) 【答案】8000【解析】所求即为()Qp Q p Q ''=+. 因为0.2p Q pQε'=-=,所以0.2Q p Q '=-,所以()0.20.8Qp Q Q Q '=-+=. 将10000Q =代入有()8000Qp '=. (13) 【答案】2【解析】T αβ相似于300000000⎛⎫ ⎪ ⎪ ⎪⎝⎭,根据相似矩阵有相同的特征值,得到Tαβ的特征值为3,0,0.而Tαβ为矩阵T αβ的对角元素之和,1300k ∴+=++,2k ∴=.(14) 【答案】2np【解析】222()(1)ET E X S EX ES np np p np =-=-=--=.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)【解析】 2(,)2(2)x f x y x y '=+,2(,)2ln 1y f x y x y y '=++.令(,)0,(,)0,x y f x y f x y ⎧'=⎪⎨'=⎪⎩解得唯一驻点1(0,)e .由于212(0,)1(0,)21(0,)11(0,)2(2)2(2),1(0,)40,11(0,)(2),xxexye yy eA f y e eB f xy eC f x e e y ''==+=+''===''==+= 所以 2212(2)0,B AC e e-=-+<且0A >. 从而1(0,)f e 是(,)f x y 的极小值,极小值为11(0,)f e e=-.(16)(本题满分10 分) 【解析】解法1t =,则21,1x t =-()()2221ln 1ln 11ln 111111dx t d t t dt t t t ⎛⎛⎫+=+ ⎪ -⎝⎭⎝+=-⋅--+⎰⎰⎰而()()()()()()2211112411111111ln 1ln 1,4421dt dt t t t t t t t C t ⎡⎤=--⎢⎥-+-++⎢⎥⎣⎦=--++++⎰⎰所以()()2ln1111ln1ln141211ln1ln41ln1ln211ln1ln.22t tdx Ct t tx Cx Cx x C ⎛+++=+-+--+⎝⎛=++⎝⎛=++⎝⎛=+++-⎝⎰解法21ln1ln11dx x x dx-'⎛⎛⎛=-⎝⎝⎝⎰⎰1ln112x dx⎛⎛⎫=+--⎪⎪⎝⎭⎰11ln122x x⎛=++-⎝⎰(2ln lnuduu C C=++=+分部即)11ln1ln1ln22dx x x C ⎛⎛+=++-+⎝⎝⎰1ln1ln211ln1ln.22x Cx x C⎛=++⎝⎛=++⎝(17)(本题满分10 分)【解析】解法1如右图所示,区域D的极坐标表示为302(sin cos),44rππθθθ≤≤+≤≤.132(sin cos )442(sin cos )33404334433443444()(cos sin )1(cos sin )38(cos sin )(sin cos )38(sin cos )(sin cos )3818(sin cos ).343Dr r x y dxdy d r r rdrr d d d θθππθθππππππππθθθθθθθθθθθθθθθθθ+=+=-=-⎡⎤=-⋅⎢⎥⎢⎥⎣⎦=-+=++=⨯+=-⎰⎰⎰⎰⎰⎰⎰解法2 将区域D 分成12,D D两部分(如右图),其中(){}(){}12,110,,12.D x y y x D x y x y x =-≤≤+-≤=≤≤+≤≤由二重积分的性质知()()()12DD D x y dxdy xy dxdy x y dxdy-=-+-⎰⎰⎰⎰⎰⎰,而()1111)D x y dxdyx y dy-=-⎰⎰⎰⎰103122,33x=-=-=-⎰()221020230)122(21242,23xD x y dxdy dx x y dyx dx -=-⎡=---⎣⎡⎤=-+=-⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰ 所以()()()1228233DD D x y dxdy x y dxdy x y dxdy -=-+-=--=-⎰⎰⎰⎰⎰⎰. (18)(本题满分11 分) 【解析】(Ⅰ)取()()()()()f b f a F x f x x a b a-=---,由题意知()F x 在[],a b 上连续,在(),a b 内可导,且()()()()()(),()()()()()().f b f a F a f a a a f a b af b f a F b f b b a f a b a -=--=--=--=-根据罗尔定理,存在(),a b ξ∈,使得()()()()0f b f a F f b aξξ-''=-=-,即()()()()f b f a f b a ξ'-=-.(Ⅱ)对于任意的(0,)t δ∈,函数()f x 在[]0,t 上连续,在()0,t 内可导,由右导数定义及拉格朗日中值定理()()000()0()0lim lim lim ()0t t t f t f f tf f t tξξ++++→→→-'''===-,其中()0,t ξ∈. 由于()0lim t f t A +→'=,且当0t +→时,0ξ+→,所以0lim ()t f A ξ+→'=,故(0)f +'存在,且(0)f A +'=.(19)(本题满分10 分) 【解析】解法1 由题意知211()()t tf x dx t f x dx ππ=⎰⎰,两边对t 求导得21()()()tf t f x dx tf t =+⎰,代入1t =得 (1)1f =或(1)0f = (舍去). 再求导得 2()()2()()f t f t f t tf t ''=+,记()f t y =,则112dt t dy y+=, 因此, 111222()()dydyy y t eedy C y C --⎰⎰=+=+⎰132222()33y y C y -=+=+.代入1,1t y ==得13C =,从而23t y =+故所求曲线方程为23x y =+解法2 同解法1,得2()()2()(),(1)1f t f t f t tf t f ''=+=.整理得22dy ydt y t=-. 令y u t =,则 dy du u t dt dt=+, 原方程变成 23221du u u t dt u -=-, 分离变量得211(32)u du dt u u t-=-,即 114332dtdu u u t -⎛⎫+=⎪-⎝⎭, 积分得 21ln (32)ln 3u u Ct --=, 即 1233(32)u u Ct ---=.代入1,1t u ==,得1C =,所以231(32)u u t -=. 代入y u t =化简得2(32)1y t y -=,即23t y =.故所求曲线方程为23x y =(20)(本题满分11 分)【解析】(Ⅰ)对矩阵1()A ξ 施以初等行变换()11110221111111111012204220000A ξ⎛⎫-- ⎪---⎛⎫ ⎪⎪⎪=-→ ⎪ ⎪ ⎪--- ⎪⎝⎭ ⎪ ⎪⎝⎭可求得 2122122k kk ξ⎛⎫-+ ⎪ ⎪ ⎪=- ⎪ ⎪⎪ ⎪⎝⎭,其中k 为任意常数.又2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,对矩阵21()A ξ 施以初等行变换()211110220122201000044020000A ξ⎛⎫-⎪-⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭,可求得 312a a b ξ⎛⎫-- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,其中,a b 为任意常数.(Ⅱ)解法1 由(Ⅰ)知12311122211,,102222ka ka kbξξξ--+--=-=-≠-, 所以123,,ξξξ线性无关.解法2 由题设可得10A ξ=.设存在数123,,k k k ,使得1122330k k k ξξξ++=, ①等式两端左乘A ,得22330k A k A ξξ+=,即21330k k A ξξ+=, ②等式两端再左乘A ,得2330k A ξ=,即310k ξ=.由于10ξ≠,于是30k =,代入②式,得210k ξ=,故20k =.将230k k ==代入①式,可得10k =,从而1,ξ23,ξξ线性无关.(21)(本题满分11 分) 【解析】(Ⅰ)二次型f 的矩阵101111a A a a ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭.由于01||01()((1))((2))111aE A aa a a a λλλλλλλ---=-=--+----+, 所以A 的特征值为123,1,2a a a λλλ==+=-.(Ⅱ)解法1 由于f 的规范形为2212y y +,所以A 合同于100010000⎛⎫ ⎪ ⎪ ⎪⎝⎭,其秩为2,故 1230A λλλ==,于是0a =或1a =-或2a =.当0a =时,1230,1,2λλλ===-,此时f 的规范形为2212y y -,不合题意. 当1a =-时,1231,0,3λλλ=-==-,此时f 的规范形为2212y y --,不合题意. 当2a =时,1232,3,0λλλ===,此时f 的规范形为2212y y +. 综上可知,2a =.解法2 由于f 的规范形为2212y y +,所以A 的特征值有2个为正数,1个为零. 又21a a a -<<+,所以2a =.(22)(本题满分11 分)【解析】(I)X 的概率密度0,0,,0,()(,)0,0.0,0xx x X e dy x xe x f x f x y dy x x --+∞-∞⎧⎧>>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰当0x >时,Y 的条件概率密度|1,0,(,)(|)()0,Y X X y x f x y f y x x f x ⎧<<⎪== ⎨⎪⎩其他.(II)Y 的概率密度,0,()(,)0,0.y Y e y f y f x y dx y -+∞-∞⎧>==⎨≤⎩⎰{}{}{}111111,11|11(,)2.11xx y P X Y P X Y P Y dx e dyf x y dxdye e e e dy--∞-∞--≤≤≤≤=≤-===--⎰⎰⎰⎰⎰(23)(本题满分11分)【解析】(Ⅰ) 12211{1,0}463(10)1{0}9()2C P X Z P X Z P Z ⋅========. (Ⅱ)由题意知X 与Y 的所有可能取值均为0,1,2.()()()()()()()()()1111332311116666111223111166661122116611221166110,0,1,0,461112,0,0,1,36311,1,2,10,910,2,91,20,2,20,C C C C P X Y P X Y C C C C C C C P X Y P X Y C C C C C C P X Y P X Y C C C C P X Y C C P X Y P X Y ⋅⋅========⋅⋅⋅⋅========⋅⋅⋅=======⋅⋅====⋅======故(,)X Y 的概率分布为。
中山大学历年考试试题总结

4.(20分)设 的线性变换在标准基下的矩阵A= .
(1).ቤተ መጻሕፍቲ ባይዱA的特征值和特征向量.(2).求 的一组标准正交基,使在此基下的矩阵为对角矩阵.
5.(20分)设 为n维欧氏空间V中一个单位向量,定义V的线性变换如下:
证明:
(1).为第二类的正交变换(称为镜面反射).
3.(16分)设 在[0,1]连续, 求 。
4.(16分)求极限 。
5.(16分)(1)证明级数 在 一致收敛;
(2)令 , ,证明 在 一致连续。
2009.1.11数据库(871)
2008.1.20数据库(879)
(2).V的正交变换是镜面反射的充要条件为1是的特征值,且对应的特征子空间的维数为n-1.
2009.1.15数学分析(650)
2008.1.20数学分析(636)
2007.1.21数学分析(752)
2006.1.15数学分析
2003年数学分析试题
1.(16分)求 在 上的极值;求方程 有两个正实根的条件。2.(16分)计算 ,S为V: 的表面外侧。
中山大学历年考研真题
2009.11.1线性代数(651)
2009.1.11 高等代数(870)
2008.1.20线性代数(651)
2008.1.20高等代数(851)
2007.1.21高等代数(441)
2006.1.25高等代数
2004年高等代数试题(70分)
1.(10分)计算下列n阶行列式:
2.(10分)设 是数域P上线性空间V中一线性无关向量组,讨论向量组 的线性相关性。
2009年中山大学高等代数考研真题答案精解

【育明教育】中国考研考博专业课辅导第一品牌育明教育官方网站:12009年中山大学高等代数考研真题答案精解2015考研英语写作七大误区【育明教育】中国考研考博专业课辅导第一品牌育明教育官方网站:2词汇与语法错误考研英语写作让很多同学都很头痛,有两点原因:一为词汇,二为语法。
因为英语与汉语的区别是一词多义,非常讲究用词准确而且正式。
同时,英语的词汇非常丰富,一个词语通常都有许多同义词和近义词。
考生如果平时注意积累并加以练习,就能够在考试中熟练地加以运用。
英文写作也同样非常讲究语法,尤其是考研作文作为正式文体,需要注意以下几点小细节:(1)尽量少用缩写形式。
如don't,can't,won't 应写为do not,cannot,will not 等。
(2)用更加正式的否定形式。
如not…any 应写为no,not…much 写为little,not many 写做few 等。
(3)尽量少用"etc.","and so on"等表达方式。
例如:Activities include dancing,singing,etc 。
Activities include dancing,singing,and other fun stuff 。
◎中文式思维模式很多考生在考试过程中把一些中文的成语、谚语翻译成英文,这种做法导致的结果就是文章不仅行文不符合英文的规律,读起来也让人觉得非常不舒服。
纠正中文思维习惯的关键依然在于培养英文语感,同时考生在平时的练习中也要尽量让自己用英文来思考。
如果考生需要用到谚语,名句等,最好的办法是直接掌握英文的谚语、名句,并灵活运用到文章中。
◎注意字数与标点考研英语作文一分钟平均7~8个字,字数多少算个够?自己目测一下,以大作文为例,中等大小一行15字,最起码写到12,13位置,因为阅卷人做的第一件事情就是看你的字数,就看你的位置到没有到。
2009考研数学(二)真题及参考答案

2009年研究生入学统一考试数学二试题与解析一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-.()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为1 ()f x -2 0 2 3x-1O则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . (10)已知+1k xe dx ∞=-∞⎰,则k = .(11)1n lime sin x nxdx -→∞=⎰.(12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .(13)函数2x y x =在区间(]01,上的最小值为 .(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,则T =βα .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.(16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2z x y∂∂∂.(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式. (21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.2009年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C 【解析】()3s i n x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C . 另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排D .所以本题选A.(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.【答案】 D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂ 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂又在(0,0)处,0,0z zx y∂∂==∂∂ 210AC B -=>故(0,0)为函数(,)z f x y =的一个极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰【答案】C 【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-将其写成一块{}(,)12,14D x y y x y =≤≤≤≤- 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C.(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.【答案】 B【解析】由题意可知,()f x 是一个凸函数,即''()0f x <,且在点(1,1)处的曲率322|''|12(1('))y y ρ==+,而'(1)1f =-,由此可得,''(1)2f =-在[1,2] 上,'()'(1)10f x f ≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)'()1(1,2)f f f ζζ-=<- , ∈ , (拉格朗日中值定理)(2)0f ∴ <而 (1)10f =>由零点定理知,在[1,2] 上,()f x 有零点. 故应选(B ). (6)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为( )1 ()f x -2 0 2 3x-1O()A .()B .()C .()D .【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增. ③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增. ⑤由于F(x)为连续函数结合这些特点,可见正确选项为D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11【答案】 B【解析】根据CC C E *=若111,C C C CC C*--*==分块矩阵00A B ⎛⎫⎪⎝⎭的行列式22012360A AB B⨯=-=⨯=()即分块矩阵可逆 111100066000100B BA A AB B BBAA A**---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10023613002BB AA ****⎛⎫ ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭【答案】 A【解析】122312312312100(,,)(,,)110(,,)(1)001Q E αααααααααα⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦,即:12121212122112(1)[(1)][(1)](1)[](1)100(1)010(1)002110100100210010010110110001002001002T T TT T Q PE Q AQ PE A PE E P AP E E E ===⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . 【答案】2y x =【解析】221222ln(2)22t dy t t t t dt t ==--⋅=--2(1)1(1)1t t dxe dt --==⋅-=- 所以 2dy dx= 所以 切线方程为2y x =.(10)已知+1k xe dx ∞=-∞⎰,则k = .【答案】2-【解析】1122lim bk xkxkxb e dx e dx e k +∞+∞-∞→+∞===⎰⎰因为极限存在所以0k <210k=-2k =-(11)1n lime sin x nxdx -→∞=⎰.【答案】0【解析】令sin sin cos x x xn I e nxdx e nx n e nxdx ---==-+⎰⎰2sin cos x xn e nx nenx n I --=---所以2cos sin 1xn n nx nx I e C n -+=-++即11020cos sin lim sin lim()1xx n n n nx nx e nxdx e n --→∞→∞+=-+⎰ 122cos sin lim()110n n n n ne n n -→∞+=-+++= (12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .【答案】3-【解析】对方程xy 1y e x +=+两边关于x 求导有''1y y xy y e ++=,得'1yyy x e -=+ 对''1y y xy y e ++=再次求导可得''''''22()0y y y xy y e y e +++=,得''2''2()yyy y e y x e +=-+ (*)当0x =时,0y =,'(0)0101y e -==,代入(*)得 ''20''032(0)((0))(0)(21)3(0)y y e y e +=-=-+=-+(13)函数2x y x =在区间(]01,上的最小值为 . 【答案】2ee-【解析】因为()22ln 2xy xx '=+,令0y '=得驻点为1x e =.又()22222ln 2xxy x x x x ''=++⋅,得21120e y e e -+⎛⎫''=> ⎪⎝⎭,故1x e=为2xy x =的极小值点,此时2e y e -=,又当10,x e ⎛⎫∈ ⎪⎝⎭时,()0y x '<;1,1x e ⎛⎤∈ ⎥⎝⎦时,()0y x '>,故y 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,1e ⎛⎫ ⎪⎝⎭上递增.而()11y =,()()002022ln limlim11lim 222ln 00lim lim 1x x x xx x xx xxx x x y x e eee++→→+→++--+→→======,所以2xy x =在区间(]01,上的最小值为21ey e e -⎛⎫= ⎪⎝⎭.(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫ ⎪⎪ ⎪⎝⎭,则T =βα .【答案】2【解析】因为T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,根据相似矩阵有相同的特征值,得到T αβ得特征值是2,0,0而T βα是一个常数,是矩阵T αβ的对角元素之和,则T 2002βα=++=三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.【解析】()[][]244001ln(1tan )1cos ln(1tan )2lim limsin sin x x x x x x x x x x→→-+--+= 22201ln(1tan )lim 2sin sin x x x x x x→-+=201ln(1tan )1lim 2sin 4x x x x →-+== (16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. 【解析】 令1x t x+=得22212,1(1)tdtx dx t t -= =-- 22211ln(1)ln(1)1ln(1)11111x dx t d x t t dt t t t ++=+-+=---+⎰⎰⎰而22111112()11411(1)111ln(1)ln(1)2441dt dtt t t t t t t C t =---+-++--++++⎰⎰所以221ln(1)111ln(1)ln 1412(1)111ln(1)ln(1)2211111ln(1)ln(1)222x t t dx C x t t t x xx x x C x x x x x x x x x x C x ++++=+-+--++=++++-++++=+++++-++⎰ (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2zx y∂∂∂.【解析】123123zf f yf x zf f xf y∂'''=++∂∂'''=-+∂1231232111213212223331323331122331323()()1(1)1(1)[1(1)]()()z z dz dx dy x yf f yf dx f f xf dyzf f f x f f f x f y f f f x x yf f f xyf x y f x y f ∂∂∴=+∂∂''''''=+++-+∂'''''''''''''''''''=⋅+⋅-+⋅+⋅+⋅-+⋅++⋅+⋅-+⋅∂∂'''''''''''=+-++++-(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. 【解析】解微分方程20xy y '''-+=得其通解212122,y C x C x C C =++其中,为任意常数又因为()y y x =通过原点时与直线1x =及0y =围成平面区域的面积为2,于是可得10C =1112232220002()(2)()133C C y x dx x C x dx x x ==+=+=+⎰⎰从而23C =于是,所求非负函数223(0)y x x x =+ ≥又由223y x x =+ 可得,在第一象限曲线()y f x =表示为1131)3x y =+-(于是D 围绕y 轴旋转所得旋转体的体积为15V V π=-,其中552210051(131)9(23213)93918V x dy y dyy y dy ππππ==⋅+-=+-+=⎰⎰⎰395117518186V ππππ=-==. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.【解析】由22(1)(1)2x y -+-≤得2(sin cos )r θθ≤+,32(sin cos )4()(cos sin )04Dx y dxdy d r r rdr πθθθθθπ+∴-=-⎰⎰⎰⎰332(sin cos )14(cos sin )034r d πθθθθθπ⎡+⎤=-⋅⎢⎥⎣⎦⎰ 2384(cos sin )(sin cos )(sin cos )34d πθθθθθθθπ=-⋅+⋅+⎰ 3384(cos sin )(sin cos )34d πθθθθθπ=-⋅+⎰3344438814(sin cos )(sin cos )(sin cos )3344d πππθθθθθθπ=++=⨯+⎰83=-.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式.【解析】由题意,当0x π-<<时,'xy y =-,即ydy xdx =-,得22y x c =-+, 又()22y ππ-=代入22y x c =-+得2c π=,从而有222x y π+=当0x π≤<时,''0y y x ++=得 ''0y y += 的通解为*12cos sin y c x c x =+ 令解为1y Ax b =+,则有00Ax b x +++=,得1,0A b =-=, 故1y x =-,得''0y y x ++=的通解为12cos sin y c x c x x =+- 由于()y y x =是(,)ππ-内的光滑曲线,故y 在0x =处连续于是由1(0),(0)y y c π-=± += ,故1c π=±时,()y y x =在0x =处连续 又当 0x π-<<时,有22'0x y y +⋅=,得'(0)0xy y-=-=, 当0x π≤<时,有12'sin cos 1y c x c x =-+-,得2'(0)1y c +=- 由'(0)'(0)y y -+=得210c -=,即 21c =故 ()y y x =的表达式为22,0cos sin ,0x x y x x x x ππππ⎧⎪-- -<<=⎨-+-≤<⎪⎩或22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩,又过点,22ππ⎛⎫- ⎪⎝⎭,所以22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩.(21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aϕ-=----,易验证()x ϕ满足:()()a b ϕϕ=;()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aϕ-=--.根据罗尔定理,可得在(),a b 内至少有一点ξ,使'()0ϕξ=,即'()f ξ'()()0,()()()()f b f a f b f a f b a b aξ--=∴-=--(Ⅱ)任取0(0,)x δ∈,则函数()f x 满足;在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x ξδ∈⊂,使得()0'()(0)x f x f fx ξ-=-……()* 又由于()'lim x f x A +→=,对上式(*式)两边取00x +→时的极限可得:()()000000'''0000()00lim lim ()lim ()0x x x x x f x f f f f A x ξξξ++++→→→-====- 故'(0)f +存在,且'(0)f A +=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关. 【解析】(Ⅰ)解方程21A ξξ=()1111111111111,111100000211042202110000A ξ---------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k ξ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1k 为任意常数解方程231A ξξ=2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()21111022012,2201000044020000A ξ-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200η⎛⎫ ⎪ ⎪= ⎪ ⎪⎪⎝⎭故 321121000k ξ⎛⎫⎪⎛⎫ ⎪⎪=-+ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭ ,其中2k 为任意常数.(Ⅱ)证明:由于12121212122111121112(21)()2()(21)222210k k k k k k k k k k k k k -+--=+++-+-+-+102=≠ 故123,,ξξξ 线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+- (Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值. 【解析】(Ⅰ) 0101111a A aa ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭0110||01()1111111aaaE A aa a a λλλλλλλλ-----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a λλλλλλλλλλλλλλλλ=---+--+-=---+-=--++--=-+--=--+--123,2,1a a a λλλ∴==-=+(Ⅱ) 若规范形为2212y y +,说明有两个特征值为正,一个为0.则 1) 若10a λ==,则 220λ=-< ,31λ= ,不符题意2) 若20λ= ,即2a =,则120λ=>,330λ=>,符合3) 若30λ= ,即1a =-,则110λ=-< ,230λ=-<,不符题意 综上所述,故2a =.。
2009年考研数学试题详解及评分参考

=
lim
n®0
an2
|
bn
|=
0
,
2009 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2009 年数学试题详解及评分参考
¥
å 于是根据正项级数比较判别法的极限形式,知 an2bn2 收敛,因此应选 (C) .
n=1
注:取 an = bn = (-1)n
1 n
,可排除(A)和(D);取 an
F ¢(x) = 0 ,即 F (x) 恒为常数. 再结合 F (x) 的连续性,即知选项(D)是正确的.
(4)
设有两个数列 {an } , {bn } ,
若
lim
n®¥
an
= 0 ,则
¥
¥
å å (A) 当 bn 收敛时, anbn 收敛.
n=1
n=1
¥
¥
å å (B) 当 bn 发散时, anbn 发散.
a)x
+
a3 6
x3
- o(x3)
,
g(x) = x2 ln(1- bx) = x2[(-bx) + o(x)] = -bx3 + o(x3) ,
因此有 lim x®0
(1 -
a)x
+
a3 6
x3
- o(x3)
-bx3 + o(x3 )
=
1 ,于是1-
a
=
0
,且
1 6
a3
=
-b
,即
a
=
1 ,b
=
-
1 6
= 6A-1
=
6
A* A
= 3A*, X4
=
(NEW)中山大学数据科学与计算机学院数学分析(A)历年考研真题汇编

2008年中山大学636数学分析考研 真题
2009年中山大学650数学分析考研 真题
2010年中山大学651数学分析考研 真题
2011年中山大学657数学分析考研 真题
2012年中山大学657数学分析考研 真题
2013年中山大学662数学分析考研 真题
2014年中山大学668数学分析考研 真题
2015年中山大学668数学分析考研 真题
2016年中山大学663数学分析考研 真题
2017年中山大学681数学分析 (A)考研真题
2018年中山大学680数学分析 (A)考研真题
2019年中山大学682数学分析 (A)考研真题
目 录
2008年中山大学636数学分析考研真题 2009年中山大学650数学分析考研真题 2010年中山大学651数学分析考研真题 2011年中山大学657数学分析考研真题 2012年中山大学657数学分析考研真题 2013年中山大学662数学分析考研真题 2014年中山大学668数学分析考研真题 2015年中山大学668数学分析考研真题 2016年中山大学663数学分析考研真题 2017年中山大学681数学分析(A)考研真题 2018年中山大学680数学分析(A)考研真题 2019年中山大学682数学分析(A)考研真题
2009考研数学(一)试题及详细答案解析

2 B 0
(7)设随机变量 X 的分布函数为 F x 0.3 x 0.7 态分布函数,则 EX
x 1 ,其中 x 为标准正 2
A 0 .
【答案】 C
B 0.3 .
C 0.7 .
D 1.
n
A 当 bn 收敛时, anbn 收敛.
n 1 n 1
B 当 bn 发散时, anbn 发散.
n 1 n 1
C 当 bn
n 1
收敛时,
a b
n 1
2 2 n n
收敛.
D 当 bn
n 1
发散时,
a b
n 1
【答案】A 【解析】因为 1 ,2 , 的过渡矩阵。
1 2 0 B 0 2 3 . 1 0 3
1 6 1 . 6 1 6 1 2 1 D 4 1 6 1 2 1 4 1 6 1 2 1 . 4 1 6
① x 0,1 时, F ( x) 0 ,且单调递减。 ② x 1, 2 时, F ( x) 单调递增。
考研学子网倾情提供,更多免费资料在:
③ x 2,3 时, F ( x) 为常函数。 ④ x 1,0 时, F ( x) 0 为线性函数,单调递增。 ⑤由于 F(x)为连续函数 结合这些特点,可见正确选项为 D 。 (4)设有两个数列 an , bn ,若 lim an 0 ,则
(2)如图,正方形
x, y x 1, y 1 被其对角线划分为
1
四个区域 Dk k 1, 2,3, 4 , I k 则 max I k
考研数学一真题解析 2009

2009年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当时,与等价无穷小,则(A) (B)(C)(D) 【考点分析】:等价无穷小,洛必达法则,泰勒公式 【求解过程】:⏹ 方法一:利用洛必达法则和等价无穷小0x →时,ln(1)~bx bx --2320000()sin sin 1cos limlim lim lim 1()ln(1)3x x x x f x x ax x ax a axJ g x x bx bx bx→→→→---=====--- 1a ⇒=否则,J =∞⇒2220011cos 12lim lim 1336x x x x J bx bx b→→-====---16b ⇒=-。
选A ⏹ 方法二:利用泰勒公式或者三角函数的幂级数展开式 由三角函数的幂级数展开式:357111sin 3!5!7x x x x x =-+-+ 所以,3331sin ()(0)6ax ax a x o x x =-+→ 由泰勒公式:3331sin ()(0)6ax ax a x o x x =-+→332301(1)()sin 6lim 1ln(1)x a x x o x x ax J x bx bx →-++-⇒===-- 1a ⇒=,否则J =∞⇒116J b ==-16b ⇒=-。
选A(2)如图,正方形{(,)|1,1}x y x y ≤≤被其对角线划分为四个区域(1,2,3,4)k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=(A)(B)(C)(D)0x →()sin f x x ax =-()()2ln 1g x x bx =-11,6a b ==-11,6a b ==11,6a b =-=-11,6a b =-=1I 2I 3I 4I【考点分析】:利用对称性化简二重积分,二重积分的估值 【求解过程】:1234111222331444(,)cos ,cos ,(,)0,0cos ,(,)0,cos ,(,)0,0cos ,(,)0,A D D D D f x y y x I y xdxdy D f x y I I y xdxdy D x f x y y I I y xdxdy D f x y I I y xdxdy D x f x y y I ==≥≥===≤≤==⎰⎰⎰⎰⎰⎰⎰⎰记在上则,关于轴对称,且关于为奇函数,则在上则,关于轴对称,且关于为奇函数,则所以选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中山大学2009年数学分析真题
题目
一、(每小题6分,共48分) (1) 求lim x→∞
(x −x 2ln (1+1
x ));
(2)
求∫
1−lnx ln 2x
dx ;
(3) {
x =cos(t 2)y =
∫sinu
u du t 20,求dy
dx
; (4) 求∫|x −a |e x dx 1
−1,|a |<1;
(5) 设z =uv +sint,u =e t ,v =cost,求dz
dt ;
(6) u =φ(x +ψ(y )), 其中φ,ψ二阶可微,x,y 为自变量,求d 2u ;
(7) 求级数∑cos n
x ∞n=1在收敛域上的和函数;
(8)
判断级数∑1n
1+1
n
∞n=1
的敛散性.
二、将区间[1,2]做n 等分。
分点为1=x 0<⋯<x n =2,求lim n→∞
√x 1x 2…x n n 。
三、计算I =∫(x+y )dx+(y−x)dy
x 2+y 2
L
,其中L 是从点A (-1,0)到点B (1,0)的一条不经过原点
的光滑曲线:y =f (x ),x =[−1,1],且当xϵ(−1,1)时,f(x)>0。
四、计算∬x 2dydz +y 2dzdx +z 2dxdy S ,其中S 为曲面x 2+y 2=z 2介于平面z =0和z =h(h >0)之间的部分取下侧。
五、设f (x)在(1,+∞)上连续,f ′′(x)≤0,f (1)=2,f ′(1)=−3,证明f (x)=0在(1,+∞)上有
且仅有一个实根。
六、设函数f (x)在(−∞,+∞)上连续,试证:对一切x 满足f (2x )=f(x)e x 的充要条件是
f (x )=f(0)e x 。
七、求椭球面x 2a 2+y 2b 2+z 2
c 2=1在第一卦限部分的切平面与三坐标平面围成的四面体的最小
体积。
八、讨论级数∑cos(π
2
lnn)
n
∞n=1
的敛散性。
参考答案
一、 (1) lim x→∞
(x −x 2ln (1+1x ))=lim x→∞
x 2[1x −ln (1+1x )]=1
2
lim
x→∞
x 2x 2
=1
2
.
(2)
∫
1−lnx ln 2x
dx =∫
1−y y 2
de y
=∫
e y (1−y)y 2
dy =∫e y (
y −1)d 1
y =
(y−1)e y
y
−∫
d (y−1)
e y
y
=
−e y y +C =−
x lnx
+C .
(3) dy dx =
dy dt dx dt
=
2t
sint 2
t 2
−2tsint 2=−1
t
2.
(4)
∫|x −a |e x dx 1
−1=∫(a −x)e x dx a −1+∫(x −a )e x dx =(a +1−x)e x |−1a 1
a +(x −a −
1)e x |a 1=2e a −(a +2)e
−1−ae . (5) z =uv +sint,u =e t ,v =cost ,故z =e t cost +sint,dz dt
=e t (cost −sint )+cost .
(6)
u =φ(x +ψ(y )),φ,ψ二阶可微,故
du =φ′(x +ψ(y ))[dx +ψ′
(y)dy]
d 2u =dφ′(x +ψ(y ))[dx +ψ′(y )dy]+φ′(x +ψ(y ))d [dx +ψ′
(y )dy]
=φ′′(x +ψ(y ))[dx +ψ′(y )dy]2+φ′(x +ψ(y ))ψ′′
(y )(dy)2
(7) ∑cos n x ∞n=1=cosx 1−cosx ,其收敛域为{x ||cosx |<1}={x|x ≠kπ,kϵZ}。
(8)
1
n 1+1
n
~1
n
,∑1
n
∞n=1发散,故∑1n
1+1n
∞
n=1是发散的。
二、lim n→∞
√x 1x 2…x n n =lim n→∞1
n ∑lnx i n i=0=∫lnxdx 2
1
=(xlnx −x )|12
=2ln2−1, 故lim n→∞
√x 1x 2…x n n =4
e 。
三、令P (x,y )=
x+y x 2+y
2,Q (x,y )=
Y−X x 2+y
2,则P,Q 具有连续性的一阶偏导数,且
ðP ðy
=
ðQ ðx
=
x 2−2xy−y 2(x 2+y 2)2
,故在不含原点的区域内,积分与路径无关。
记L 1为从A (-1,0)到B (1,
0)的上半圆周,则
I =∫(x +y )dx +(y −x)dy x 2+y 2L =I =∫
(x +y )dx +(y −x)dy
x 2+y 2L 1
=∫(x +y )dx +(y −x)dy L 1
记BA
̅̅̅̅为B 到A 的直线段,D 为L 1和L 围成的半圆域,则
∫(x +y )dx +(y −x)dy BA
̅̅̅̅=∫xdx =0−1
1
由格林公式
∫(x +y )dx +(y −x)dy L 1
=(∫
−L 1∪BA
̅̅̅̅∫)(x +y )dx +(y −x)dy
BA
̅̅̅̅=−∬[ððx (y −x )−ððy (x +y )]dxdy =2∬dxdy D
D =2×π
2=π 四、∬x 2dydz +y 2dzdx +z 2dxdy S =−∬(−x 2z x −y 2z y +z 2)dxdy =x 2+y 2≤ℎ2
−∬(−x 22
−y 22+x 2+y 2)dxdy x 2+y 2≤ℎ2=∬322
x 2+y 2≤ℎ+
∬3
22x 2+y 2≤ℎ−∬(x 2+y 2)dxdy x 2+y 2≤ℎ2=0+0−1
2πℎ4=−1
2
πℎ4 五、f ′′(x)≤0,f ′(1)=−3,故f ′(x )≤f ′(1)=−3<0,故f(x)为严格单调递减函数。
f (x )=f (1)+f ′(δ)(x −1)<2−3(x −1)→−∞,x →+∞
又f (1)=2>0,故f (x)=0在(1,+∞)上有且只有一个实根。
六、 充分性 假设f (x )=f(0)e x ,则f (2x )=f (0)e 2x =e x f(x) 必要性 f (2x )=e x f(x),故f (2x )e −2x =f (x )e −x ,记g (x )=f (x )e −x ,则g (2x )=g(x) 由于f (x )是连续函数,故g(x)也是连续函数。
对任意x ,有:
g (x )=g (x 2)=g (x 4)=⋯=g (x
2
n )=⋯
故g (x )=lim n→∞
g (x
2
n )=g (0)=f (0),故f (x )e −x =f(0),即f (x )=f (0)e x 。
七、任取椭球面在第一卦限的一点(x 0,y 0,z 0),则该点处的切平面方程为
x 0x a 2
+
y 0y b 2
+
z 0z c 2
=1,
其在三个坐标轴上的截距分别为a 2x 0
,b 2y 0
,c 2
z 0
,故其与三个坐标平面所围成的四面体的体积为
V =16a 2x 0b 2y 0c 2z 0
=
6√02a 20
2b 202c 2
≥6√(
x 02a 2
+
y 02b 2
+z 02c
23
)
3
=6√(13
)
3=
√3
2
abc
当且仅当x 0
2a 2=y 02b 2=z 0
2
c 2=13,即x 0=
√
3
y 0=√
3
z 0=√3
,取得等号,故所求的最小体
积为√3
2abc 。
八、任取正整数N ,令正整数n 使得2Nπ<π
2lnn <(2N +1
4)π,即e
4N
<n <e
4N+
1
2
,于是,
∑cos (π2lnn)n [e 4N +1
2
]
k=[e 4N ]+1
>[e
4N+12]−[e 4N ]√2[e 4N+12
] lim
N→∞
[e
4N+
12]−
[e 4N ]
√2[e
4N+12
]
=√2
−
√2lim
[e 4N ]
√2[e 4N+1
2]
=
√2
√2lim
e 4N
e 4N+1
2
=
√2
√2
−1
2>0
故级数∑cos(π2
lnn)
n
∞n=1
是发散的。