水电站电气主接线的设计

合集下载

某水电厂电气主接线设计

某水电厂电气主接线设计

某水电厂电气主接线设计某水电厂电气主接线设计一、背景介绍水电站作为能够提供可再生能源的设施被广泛应用,而水电站的电气接线则是保障发电能力的关键。

在某水电厂中,电气主接线设计是整个电气系统的关键设计要素之一。

二、电气系统概述某水电厂电气系统主要由发电机组、主变压站、配电房、线路、负载等组成。

发电机组的输出电压在经过主变压站的升压、降压后,按照不同的电压等级进入配电房,经过总开关和控制设备,流向各个用电负载点。

三、电气主接线的设计(一)电缆通道设计电缆通道的设计板块包含了整个电气系统电缆运行的通道,是实现调试和维护的重要路径。

设计时需要考虑耐热、耐腐蚀、抗压等特性,确保通道能够保持压力平衡,防止漏电和火灾。

(二)电气系统的接合板设计针对主接线处,为了确保电能传输的安全性和稳定性,需要使用接合板将不同线径、电压等级的电缆连接在一起。

设计接合板时需要考虑电缆规格、连接方式、电缆走向等因素,确保接合牢靠。

(三)安全措施设计在设计电气主接线时,需要考虑电气设备的运行安全,以及人员和设备的安全。

这包括安装漏电保护器、过载保护器、短路保护器等安全装置,以及设计合理的安全加固措施和避雷措施,确保电气系统的安全稳定运行。

(四)电气设备的选择选择合适的电气设备,是保证电气系统安全和运行稳定的重要因素。

设计中,需要根据实际需要选择合适的开关、控制设备、电缆等设备,并根据不同型号和规格安排合理的装配和安装位置,确保电气系统的高效运行。

四、结论电气主接线设计是整个电气系统的关键设计要素之一,涉及到电缆通道设计、接合板设计、安全措施设计和设备选择等多个方面。

设计时需要注重电气安全,同时也需要考虑线路布置的合理性和设备的高效使用。

因此,在电气主接线设计中,需要综合考虑各个方面,达到设计目的,为电气系统的正常运行提供有力保障。

水电站电气主接线的设计

水电站电气主接线的设计

目录➢概述➢电气主接线设计➢主接线方案的拟定与选择➢主变压器选择➢短路电流的计算➢电气设备选择与校验➢参考文献一概述1.1 课程设计的目的:1、复习巩固本课程及其他课程的有关内容,增强工程概念,培养电力工程规划设计的能力。

2、复习《水电站电气设备》相关知识,进一步巩固电气主接线及短路计算,电气设备选择等内容。

3、利用所给资料进行电厂接入系统设计,主接线和自用电方案选择,掌握短路电流计算,会进行电气设备的配置和选型设计。

1.2 课程设计内容:1发电厂主接线的设计2 短路电流的计算3 电气设备的选择1.3 电气主接线的基本要求1.可靠性:电气接线必须保证用户供电的可靠性,应分别按各类负荷的重要性程度安排相应可靠程度的接线方式。

保证电气接线可靠性可以用多种措施来实现。

2.灵活性:电气系统接线应能适应各式各样可能运行方式的要求。

并可以保证能将符合质量要求的电能送给用户。

3.安全性:电力网接线必须保证在任何可能的运行方式下及检修方式下运行人员的安全性与设备的安全性。

4.经济性:其中包括最少的投资与最低的年运行费。

5.应具有发展与扩建的方便性:在设计接线方时要考虑到5~10年的发展远景,要求在设备容量、安装空间以及接线形式上,为5~10年的最终容量留有余地。

二电气主接线设计2.1原始资料:1、待设计发电厂类型:水力发电厂;2、发电厂一次设计并建成,计划安装2×15 MW 的水力发电机组,利用小时数 4000 小时/年;3、待设计发电厂接入系统电压等级为110kV,距系统110kV发电厂45km;出线回路数为4回;4、电力系统的总装机容量为 600 MVA、归算后的电抗标幺值为 0.3,基准容量Sj=100MVA;5、发电厂在电力系统中所处的地理位置、供电范围示意图如下所示。

6、低压负荷:厂用负荷(厂用电率) 1.1 %;7、高压负荷: 110 kV 电压级,出线 4 回,为 I 级负荷,最大输送容量60 MW, cosφ = 0.8 ;8、环境条件:海拔 < 1000m;本地区污秽等级2 级;地震裂度< 7 级;最高气温 36°C;最低温度−2.1°C;年平均温度28°C;最热月平均地下温度20°C;年平均雷电日T=56 日/年;其他条件不限。

水电站电气主接线及厂用电接线设计实例

水电站电气主接线及厂用电接线设计实例

水电站电气主接线及厂用电接线设计案例第一部分电气主接线设计案例变电所电气主接线设计是依据变电所的最高电压等级和变电所的性质,选择出一种与变电所在系统中的地位和作用相适应的接线方式。

变电所的电气主接线是电力系统接线的重要组成部分。

它表明变电所内的变压器、各电压等级的线路、无功补偿设备最优化的接线方式与电力系统连接,同时也表明在变电所内各种电气设备之间的连接方式。

一个变电所的电气主接线包括高压侧、中压侧、低压侧以及变压器的接线。

因各侧所接的系统情况不同,进出线回路数不同,其接线方式也不同。

变电所的电气主接线设计是整个变电所设计的核心技术。

它对变电所内电气设备选择、布置、继电保护及自动装置的设计、变电所总平面布置的设计,都起着决定性作用。

变电所主接线直接影响变电所乃至相关电力系统安全、经济、稳定、灵活的运行。

电气主接线的设计与所在电力系统及所采用的设备密切相关。

随着电力系统的不断发展、新技术的采用、电气设备的可靠性不断提高,设计主接线的观念也应与时俱进、不断创新。

1电气主接线的基本要求主接线设计应满足可靠性、灵活性、经济性、发展性等四方面的要求。

1)可靠性。

为了向用户供应持续、优质的电力,主接线首先必须满足这一可靠性要求。

2)灵活性。

电气主接线的设计,应当适应在运行、热备用、冷备用和检修等各种方式下的运行要求。

3)经济性。

即:投资省、占地面积小、电能损耗小。

4)发展性。

主接线设计可以容易地从初期接线方式过渡到最终接线。

变电所电气主接线的可靠性、灵活性、经济性和发展性是一个综合概念,不能单独强调其中的某一种特性,也不能忽略其中的某一特性。

2主接线选择的主要原则1)变电所主接线要与变电所在系统中的地位、作用相适应。

根据变电所在系统中的地位,作用确定对主接线的可靠性、灵活性、经济性和发展性的要求。

2)变电所主接线的选择应考虑电网安全稳定运行的要求,还应满足电网出故障时应处理的要求。

3)各种配置接线的选择,要考虑该配置所在的变电所性质,电压等级、进出线回路数、采用的设备情况,供电负荷的重要性和本地区的运行习惯等因素。

浅析小型水电站电气主接线的设计型式

浅析小型水电站电气主接线的设计型式

浅析小型水电站电气主接线的设计型式摘要:主接线是每个电站设计的重要组成部分,本文主要根据小型水电站电气主接线设计的特点、电气主接线的主要形式,对小型水电站电气主接线的接线方式进行简单分析。

关键词:小型水电站电气主接线接线方式一、小型水电站电气主接线设计的特点电气主接线是水电站电气设计的中心环节,它与电力系统、电站规模、枢纽布置、地形条件、动能参数及电站运行方式等因素密切相关,而且对电气设备布置、设备选择、继电保护和控制方式都有较大的影响。

电气主接线设计的合理与否关系到电站长期安全、可靠、经济运行,因此电气主接线的设计是水电站总体设计的一个重要组成部分。

小型水电站电气主接线设计的特点是:水电站接入系统接线较为简单、回路数较少,电压等级一般为35KV、10KV,极少数为110KV,离负荷中心较近。

电气主接线一般比较简单明了,容易实现自动化。

二、小型水电站电气主接线的主要形式2.1 发电机电压接线与发电机——变压器的组合方式一般小型水电站的主变压器数量多为一台,有的采用二台,因此,发电机电压侧接线较为简单,常分为三种形式:2.1.1单母线与单母线分段接线这种接线方式简单明显,运行方便,配电装置投资少,便于扩建,并且可采用成套配电装置,简化电气布;由于接线清晰,对应性强,各操作单元之间互不影响,易于实现自动化,适用于装机容量小,对供电可靠性要求不高的水电站。

单母线接线在母线检修或故障时,将造成全厂停机。

因此,有的电站采用单母线分段的接线方式,可靠性比单母线高,当一段母线检修或故障时,能保持另一段母线的发电机向系统供电,但是单母线分段接线方式的继电保护较为复杂。

2.1.2 单元接线方式发电机和主变器容量相匹配(有时容量相同),接线最清晰,故障影响范围最小,运行可靠、灵活、电气布置和继电保护均较简单。

但主变压器和高压断器的数量比单母线多,投资大。

在我区水电站主接中有极少数电站采用。

2.1.3 扩大单元接线小型水电站,尤其是容量较小的电站,若有二台发电机,往往优先采用扩大单元接线方式,只有1台主变压器。

水电站电气主接线优化设计探讨

水电站电气主接线优化设计探讨

水电站电气主接线优化设计探讨摘要:水电作为一种绿色能源,在国民经济与社会建设中扮演着十分重要的角色,为了保障水电站可以安全可靠地运行,选择技术可靠、经济合理的电气主接线方案就显得尤为重要,而且在实际应用的过程中,技术工作者还需要对电气设备选用、配电装置布局和继电保护进行优化设计,这样才能全方位保障水电站的安全经济运行。

鉴于此,本文对水电站电气主接线的设计进行了分析探讨,仅供参考。

关键词:小水电站;电气主接线;设计1.水电站电气主接线设计原则1.1灵活性水电站电气主接线设计在满足电力调度和扩容灵活性要求的基础上,应满足以下要求:一是在调度过程中灵活投入,及时调整发电机、变压器和工作线,为了保证系统调度在运行或维护的基础上实现,只有这样才能减少和尽可能减少切换操作次数的增加。

其次,在维护状态下,维护人员可以随时设置断路器停机或调试其他继电保护装置,这样在安全维护过程中不会影响其他系统的运行。

1.2安全在水电站电气主接线的设计中,必须确保在任何运行状态或维护环节,都能最大限度地保证工人和电气设备的安全。

只有这样,才能在减少运营投资的基础上,有效地提高工作质量和效果。

1.3经济在保证水电站安全可靠运行和满足技术性能要求的前提下,主接线设计也应考虑经济性,尽量减少设备和占地面积,减少投资,最大化经济效益。

2水电站电气主接线设计方案2.1升高电压侧的接线模式通常情况下,水电站的主变压器使用两绕组变压器,这样的变压器有着较强的绝缘性能与耐高温能力,特别是在夏季,人们的用电量急剧上升,水电站承受的载荷较高,采用绕组变压器可以在很大程度上缓解水电站的运行压力。

在采用升高电压侧接线方式的过程中,按照接线的不同位置,又可以分为以下三种方式:首先,变压器线路组接线。

这样的接线方式有着简便的显著特点,主要是采用外加导流线路的方式来提升变压器的运转效率,相对变压器而言,连接导线的电阻基本上可以忽略不计,所以有可能出现变压器短路故障再加上主接线电气设计采用的是单线路连接,在具体维修的过程中就要全站进行停电,因此大部分水电站逐步不再采用变压器线路组接线的方式;其次,单母线和单母线分段接线。

浅析小型水电站电气主接线的设计型式

浅析小型水电站电气主接线的设计型式

浅析小型水电站电气主接线的设计型式引言水电站是利用水能转化为电能的重要能源设施,而电气主接线是水电站电气系统中的关键组成部分。

良好的电气主接线设计能够保证水电站的安全可靠运行,并提高能源利用效率。

本文将对小型水电站电气主接线的设计型式进行浅析,包括单回路式和多回路式两种设计形式。

单回路式电气主接线设计单回路式电气主接线是指水电站电气系统中只有一个主要的回路连接发电机和电网。

这种设计形式适用于小型水电站,具有以下特点:1.简单直接:单回路式接线只需要一条主要的电缆连接发电机和电网,结构简单直接,易于布局和维护。

2.电气连接简单:单回路式接线仅包含一套断路器和接地刀闸,电路连接简单明了,维护方便。

3.节省成本:相对于多回路式接线,单回路式接线的设计与施工成本更低。

然而,单回路式接线也存在一些缺点,例如:1.可靠性较低:单回路接线如果发生故障,将导致整个水电站停机,更高的可靠性要求可能需要多余的备用设备。

2.调节问题:单回路式接线无法实现进出发电机的同时调节电压和频率的功能。

因此,对于较大规模或更高可靠性要求的水电站,通常采用多回路式电气主接线设计。

多回路式电气主接线设计多回路式电气主接线是指水电站电气系统中采用多个独立回路连接发电机和电网。

这种设计形式适用于大型水电站,具有以下特点:1.高可靠性:多回路式接线能够实现冗余配置,一旦某一回路发生故障,其他回路仍然可以正常运行,提高了水电站的可靠性。

2.灵活性更强:多回路式接线可以灵活调节发电机的输出功率和电网的电压、频率,适应不同负荷需求和电网条件。

3.维护方便:多回路式接线可以对每个回路进行独立维护和检修,不会对整个水电站的运行产生太大影响。

然而,多回路式接线也存在一些挑战和问题,例如:1.复杂性增加:多回路式接线使得接线系统变得更加复杂,需要更多的设备和控制装置。

2.成本增加:多回路式接线的设计和施工成本相对较高,需要更多的电缆和电气设备。

总结对于小型水电站的电气主接线设计,可以根据实际情况选择单回路式或多回路式设计形式。

水电站电气主接线设计

水电站电气主接线设计

百龙滩水电站为低水头径流式水电站,无调节能力,只能按上游来水情况发电,电站在系统的基荷和腰荷区运行。

根据电力系统的要求,百龙滩水电站以220 kV和110 kV两级电压接入广西电网,220 kV出线三回,两回就近“π”接入大化至恶滩220 kV线路,一回备用;110 kV出线一回至都安。

2 灯泡贯流式机组的特点与常规机组相比,灯泡贯流式机组的最大特点是整个机组横卧在流道中,由于受水力条件的限制,发电机的外径比较小,因而具有以下特点:(1)机组单机容量小、电站机组台数多。

灯泡贯流式机组的单机容量较小,目前世界上单机容量最大的灯泡贯流式机组仅为65 MW。

在电站总装机容量一定的条件下,机组单机容量越小,电站机组台数越多。

(2)机组转动惯量小。

由于发电机的外径小,定子铁心内径受限制,转动惯量相应减少,因而机组在甩负荷后速率上升很快,容易发生飞逸,运行稳定性较差。

(3)发电机功率因数高。

发电机转子直径小,转子空间有限,机组转速低,因而发电机转子极距小,磁极铁心的高宽比大,使得铁心漏磁大,发电机的功率因数比常规机组高。

(4)机组自用电负荷大,对供电可靠性要求高。

由于发电机的外径小,转子铁芯长度较长,机组转速低,使得发电机的通风冷却比常规机组要困难得多,发电机冷却风机容量较大;另一方面为了防止调速装置失灵时机组发生飞逸,机组调速环的一侧悬挂有重约40 t的重锤,机组导叶的开启,需克服重锤的重力,使得发电机调速装置主电机容量较大。

机组自用电负荷对供电可靠性要求较高,没有厂用电机组无法启动;机组润滑油泵供电中断时间大于5 s时,保护装置将动作停机。

3 电气主接线设计3.1 发电机电压接线发电机电压接线分别比较过单元接线、两机一变和三机一变的扩大单元接线方案。

单元接线方案接线简明清晰,变压器故障或检修不影响其他发电机的运行,但由于电站机组台数多,若采用单元接线,电站的主变压器以及发电机电压母线竖井的数量较多,不利于厂房电气设备布置;三机一变扩大单元接线方案主变台数最少,可减少相应的高压出线回路数,但主变压器故障或检修,3台机组出力受阻,另一方面,发电机出口短路电流高达56.7 kA,发电机断路器选择困难;两机一变扩大单元接线方案主变容量大小适中,发电机出口短路电流较小(约36.9 kA),所有发电机配电装置可选成套开关柜,大大简化电气设备布置,因而发电机电压接线采用两机一变的扩大单元接线方案。

水电站电气一次系统设计

水电站电气一次系统设计

水电站电气一次系统设计一、电气主接线的设计1.概述电气接线分为一次接线(电气主接线)和二次接线。

发电厂主接线是指将发电机、变压器、断路器、隔离开关、母线、电流互感器和线路等相互连接,以保证电能的生产、变换和输送。

它们的连接方式对供电可靠性、运行灵活性、检修方便以及经济性等都起着决定性的作用。

主接线是发电厂的主体,它直接关系到发电厂的技术和经济指标。

由于本设计的水电站有三个电压等级,所以在设计中首先单独考虑各自的母线情况及各自的出线方向,根据负荷来决定变压器容量和台数,论证是否需要限制短路电流及采取什么措施,拟出几个把三个电压等级和变压器连接的方案,对选出来的方案进行技术和经济的综合比较,确定最佳主接线方案。

2.接线形式电气主接线根据电力系统和水电站的具体情况确定,它以电源和出线为主体,在进出线较多时(一般超过4回),为便于电流的汇集和分配,常设置母线作为中间环节,使接线简单清晰、运行方便,有利于安装和扩建。

10~110kV高压配电装置的接线形式分为如下两种。

有汇流母线的接线形式:包括单母线、单母线分段、双母线、增设旁路母线或旁路隔离开关等。

无汇流母线的接线形式:包括变压器—线路单元接线、桥形接线、多角形接线等。

接线方式取决于电压等级、出线回路数、输送功率和穿越功率。

根据原始资料,该水电站的设计将选择有汇流母线的接线。

(1)接线选择。

有汇流母线的接线形式在10kV、35kV、110kV中的选用情况如下。

①单母线接线。

配电装置的出线回路数不超过两回。

②单母线分段接线。

母线出现故障或检修时,不会导致全部停电。

短路器检修会造成回路停电。

但该接线方式接线简单,操作维修方便,设备较少,经济性好,广泛用于中小容量发电厂和变电站的6~10kV接线,且出线回路数较少的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录➢概述➢电气主接线设计➢主接线方案的拟定与选择➢主变压器选择➢短路电流的计算➢电气设备选择与校验➢参考文献一概述1.1 课程设计的目的:1、复习巩固本课程及其他课程的有关内容,增强工程概念,培养电力工程规划设计的能力。

2、复习《水电站电气设备》相关知识,进一步巩固电气主接线及短路计算,电气设备选择等内容。

3、利用所给资料进行电厂接入系统设计,主接线和自用电方案选择,掌握短路电流计算,会进行电气设备的配置和选型设计。

1.2 课程设计内容:1发电厂主接线的设计2 短路电流的计算3 电气设备的选择1.3 电气主接线的基本要求1.可靠性:电气接线必须保证用户供电的可靠性,应分别按各类负荷的重要性程度安排相应可靠程度的接线方式。

保证电气接线可靠性可以用多种措施来实现。

2.灵活性:电气系统接线应能适应各式各样可能运行方式的要求。

并可以保证能将符合质量要求的电能送给用户。

3.安全性:电力网接线必须保证在任何可能的运行方式下及检修方式下运行人员的安全性与设备的安全性。

4.经济性:其中包括最少的投资与最低的年运行费。

5.应具有发展与扩建的方便性:在设计接线方时要考虑到5~10年的发展远景,要求在设备容量、安装空间以及接线形式上,为5~10年的最终容量留有余地。

二电气主接线设计2.1原始资料:1、待设计发电厂类型:水力发电厂;2、发电厂一次设计并建成,计划安装2×15 MW 的水力发电机组,利用小时数 4000 小时/年;3、待设计发电厂接入系统电压等级为110kV,距系统110kV发电厂45km;出线回路数为4回;4、电力系统的总装机容量为 600 MVA、归算后的电抗标幺值为 0.3,基准容量Sj=100MVA;5、发电厂在电力系统中所处的地理位置、供电范围示意图如下所示。

6、低压负荷:厂用负荷(厂用电率) 1.1 %;7、高压负荷: 110 kV 电压级,出线 4 回,为 I 级负荷,最大输送容量60 MW, cosφ = 0.8 ;8、环境条件:海拔 < 1000m;本地区污秽等级2 级;地震裂度< 7 级;最高气温 36°C;最低温度−2.1°C;年平均温度28°C;最热月平均地下温度20°C;年平均雷电日T=56 日/年;其他条件不限。

2.2.对原始资料分析(1)工程情况:该电厂为一小型水电站。

目前,按发电厂的容量划分:总容量在1000MW 及以上,单机容量在200MW及以上的发电厂称为大型水电厂;总容量在200~1000MW,单机容量在50~200MW的发电厂称为中型水电厂;总容量在200MW及以下,单机容量在50MW及以下的发电厂称为小型水电厂。

设计电厂为2×15MW小型电厂。

又该电厂设备年利用小时数为4000h/a,在3000-5000范围之内,故该电厂主要承担腰荷。

(2)负荷情况:发电机出口侧电压为10.5KV,无近区负荷,经升压变压器后以110KV 电压等级4回路出线送至45km处电力系统。

(3)其他条件:环境条件和设备供货情况等没有具体要求,可按照常规条件设计。

三主接线方案的拟定与选择电器主接线的设计是发电厂或者变电所电气设计的主体。

它与电力系统、电厂动能参数、基本原始资料以及电厂运行可靠性、经济性的要求等密切相关,并对电气设备选择和布置、继电保护和控制方式等都有较大的影响。

因此,主接线设计,必须结合电力系统和发电厂或者变电站的具体情况,全面分析有关影响因素,正确处理他们之间的关系,经过技术、经济比较,合理选择主接线方案。

根据我国现行的规范和成熟的运行经验,满足可靠性、灵活性和经济性的前提下,发电机电压接线可采纳的接线方式有以下三种:1 单母线接线优点:1 接线简单,操作方便,设备少,经济性好。

2 母线便于向两端延伸,扩建方便。

缺点:1可靠性差。

母线或母线隔离开关检修或故障时,所有回路都要停止工作,也就是造成全厂或全站长期停电。

2 调度不方便。

电源只能并列运行,不能分列运行,并且线路侧发生短路时,有较大的短路电流。

一般适用范围:一般只用在出现回路少,并且没有重要负荷的发电厂。

单母线接线如图一所示单母线接线图一2 单元接线优点:1 发电机与主变压器容量相同,接线最简明清晰,故障影响范围最小,运行可靠、灵活。

2 发电机电压设备最少,布置最简单方便,维护工作量也最小;继电保护简单。

缺点:1 主变压器与高压断路器数量多。

2 主变压器高压侧出线回路多,布置复杂增加布置场地与设备的投资。

一般适用范围:单机容量一般在100MW及以上机组,且台数在6台及以下者;单机容量在45MW~80MW之间,经经济比较采用其它接线方式不合适时。

单元接线如图二所示单元接线图二3 扩大单元接线扩大单元接线图三优点:1 接线简单清晰,运行维护方便。

2 与单元接线比较,减少主变压器台数及其相应的高压设备,节省投资。

3 与单元接线比较,任一机组停机,不影响厂用电源供电,本单元两台机组停机,仍可继续有系统主变压器倒送。

4 减少主变压器高压侧出线,可简化布置和高压侧接线。

缺点:1 主变压器故障或检修时,两台机组容量不能送出。

2 增加两台低压侧断路器,且增大发电机电压短路容量。

一般适用范围:适应范围较广,能较好的适应水电站布置的特点,只要电力系统运行和水库调节性能允许,一般都可使用。

应注意避免在主变压器回路故障或检修时造成大量电能损失。

扩大单元接线如图三所示综上述分析,110Kv侧由于本电站是小水电,不承担主要负荷,没有重要机端负荷,从接线的可靠性、经济性和灵活性考虑,所以本电站,110Kv侧采用单元接线。

(一)根据以上三种主接线方式,并结合本设计水电站的实际,现拟定以下两种电气主接线方案:(1)发电机与变压器单元接线单母线分段电气主接线方案一(2)扩大单元接线单母线电气主接线(二)主接线方案初步比较:由以上三种接线方案的优缺点分析和接线示意图,本着可靠性、灵活性和经济性的原则,结合电厂实际综合分析,可以得出:单母线和扩大单元接线相比较,其可靠性和灵活性都很相近,厂用电都是在发电机10.5KV侧取得,然而本电站只有两台发电机,比较特殊,所以单母线和扩大单元接线形式相近。

单母线接线灵活性低。

所以可以明显淘汰单母线接线方案。

从而保留扩大单元接线和单元接线方案。

从供电的可靠性看:对于方案一,厂用电从两台发电机上取得,即使检修其中一台变压器和两机组停机电厂也不会停电,然而两台变压器同时故障的可能性非常小。

对于方案二,若检修变压器电厂就会停电,否则要另外接入厂用电源,这样投资就增加了。

这样,方案一的可靠性相对高些。

四 变压器选择1 主变压器的选择MW COS K S S S C N N G 34.20%1108.0%1.11515110=⨯⨯-=⨯⨯-=α 由于该厂是小型水电厂,可以用来调相调压,所以主变压器的型号可以选择为SFZ7-25000/110,有关参数如表一所示。

SFZ7-25000/110变压器有关参数表一2 厂用变压器的选择 选择原则:为满足厂内各种负荷的要求,装设两台厂用变压器,厂用电容量得确定,一般考虑厂用负荷为发电厂总负荷的1%~2%,此发电厂的厂用负荷为总负荷的1.1%。

S =1.1%×30000KVA =330KVA根据选择原则,并通过查找《电力工程电气设备手册,电气一次部分》选出厂用的两台变型号都为S=400KVA 。

有关技术参数如表二所示。

通过对比两台厂用变压器的型号定为SZ6—400/10双绕组有载调压电力变压器,两台厂用变分别接于主变低压侧,互为暗备用,平时半载运行,当一台故障时,另一台能够承但变电所的全部负荷。

3 相数的选择主变采用三相或单相,主要考虑变压器的可靠性要求及运输条件等因素。

根据设计手册有关规定,当运输条件不受限制时,在330KV及以下的电厂及变电所均选用三相变压器。

因为三相变压器比相同容量的单相变压器具有节省投资,占地面积小,运行过程损耗小的优点,同时本电厂的运输地理条件不受限制,因而选用三相变压器。

4 绕组数量和连接方式的选择(1)绕组数量选择:根据《电力工程电气设计手册》规定:“最大机组容量为125MW及以下的发电厂,当有两种升高电压向用户供电与或与系统相连接时,宜采用三绕组变压器。

结合本电厂实际,因而采用双绕组变压器。

(2)绕组连接方式选择:变压器绕组的连接方式必须和系统电压相位一致,否则不能并列运行。

电力系统采用的绕组连接方式只有Y和∆。

Y连接。

35KV采用Y连接,我国110KV及以上的电压,变压器绕组都采用其中性点多采用消弧线圈接地。

35KV以下电压,变压器绕组都采用∆连接。

因而该电厂主变压器接线方式采用YN,d11。

综上所述,在比较的两个方案中,需要两台同容量的110KV双绕组有载调压电力变压器。

结合本电厂实际,从经济性的角度出发,选择型式为:双绕组有载调压电力变压器。

五短路电流的计算1 等值电路2 计算各元件的标幺值 取 d S =100MVA 从表三可得d X =0.21各类同步发电机*''kX 的平均值序号 类型*''kX1 无阻尼绕组的水轮发电机 0.292 有阻尼绕组的水轮发电机 0.21 3容量为50MW 及以下的汽轮发电机0.145发电机电抗: 121000.21 1.12150.8d dnS X XX S===⨯= 变压器电抗:34%10010.50.710010015kdNU S X X S⨯====⨯电力线路每相的单位长度电抗平均值 (单位: Ω/km )从上表可知道00.4/km X =Ω 线路电抗:22501000.4450.148110d cLS X X U==⨯⨯= 线路总电抗 : 5s+0.148+0.3=0.448XX X ==总3 短路电流的计算 d1点短路时: 电源总额定容量:KVA S S S N S N 5.637cos 2=⨯+=∑α计算电抗:67670.910.448637.51.910.910.448100NJSdSX X XSXX ⨯⨯∑=⨯=⨯=++查发电厂电气部分课程设计水轮发电机运算曲线可得表五。

所以94.111035.63758.01103''=⨯⨯=⨯∑⨯=SI INk kKA 短路冲击电流:KA IK i ksh M 07.594.185.12''2=⨯⨯== 冲击系数K sh 如表六所示。

不同短路点间各冲击系数K sh 的取值短路电流的有效值计算: 1.94 3.03M KA I === 由表五可知,t=1、2时,短路冲击电流和有效值和t=0时刻相同。

d2点短路电流计算: 部分电抗:248324+0.448++=+0.7=1.06++0.448+1.12+0.7X X X X X X X X ⨯⨯=总总()(1.120.7)总电抗:819811.06 1.12===0.54+ 1.06+1.12X X X X X⨯⨯计算电抗:9d637.5'=0.54=3.44>3js 100=XX SNS ∑⨯⨯按无限大容量电源计算,则 短路电流:11''10.19'3.44N kjs I X === 冲击电流:'' 1.910.1927.38sh M kKA i I==⨯=短路电流有效值:10.1916.49M KA I === 经上面d1、d2点短路电流计算,可以得到如表七所示数据。

相关文档
最新文档