全日制普通高级中学数学教学大纲-中华人民共和国教育部制订

合集下载

世纪中国中学数学课程的发展

世纪中国中学数学课程的发展
● 初中实行综合数学课程(混合教授法),高中实行分科教 学。高中(普通科)文理分科。
◆中学校的数学教科书
●主要为按照课程纲要编写的自编教科书。 如:
《新学制混合数学教科书》(商务印书馆,段育华编)(6 册) 《混合法算学》(中华书局,张鹏飞编)(6册) 《混合数学》(中华书局,程廷熙、傅仲孙编)(6册) 现代初中教科书《算术》,《代数》,《平面几何》, 《平面三角》。
日本菊池大麓《平面几何学》 (Plane Geometry)
日本长泽龟之助《新几何教科书(平面)》 (New Geometry, Plane)
英国Hall和Knight合著《初等三角学》 (Elementary Trigonometry)
英国伦敦大学Loney《平面三角学》 (Plane Trigonometry)
◆有全国统一的数学教学大纲和数学教科书。 教科书采用过国定制。
◆将苏联十年制数学课程用于中国的十二年制, 高中没有解析几何,数学教学质量有所下降。
1957—1965
◆ 1958年,教育部根据中小学数学课程“知识范围窄, 内容浅”的状况,决定调整中小学数学课程和教学 内容。
决定到1961年暑假前,初中算术下放到小学,到1962年 暑假前,高中的平面几何下放到初中,1962年下半年,高中 增加平面解析几何。
1957—1965 (探索中国数学教育体系时期)
1966—1976 文化革命时期 1977—1987 (恢复时期) 1988—2000 (发展时期)
1902前40年的回顾(1862—1902)
◆中国兴办学堂始于1862年(清同治元年)
● 兴办的学堂有:
专门学堂 普通学堂 中学堂 小学堂
● 一些学堂教授数学课
●修订过程中形成了数学课程标准文本的框架:教学目标,教学时间安排, 教学内容,实施方法。

教学大纲与课程标准

教学大纲与课程标准

统一,从而使1978年的大纲正式定名为《小学数学教学大 纲》,这充分反映了时代发展的要求.
• 今天,为适应新的教育形势的需要,更名为《义务教育阶段
数学课程标准》.
从教学大纲到课程标准
1.什么是“教学大纲”
• 我国过去的课程方案包括课程计划和教学大纲两部分.教 学大纲是我国学习苏联教育模式的一个重要表现. • 教学大纲实际上是规定教学工作的一个纲要性文件.大纲
2.2.从借鉴到具有中国特色
• 1952、1956年的两个教学大纲基本上是仿照前苏联的. • 1963年的大纲是贯彻“调整、充实、提高”的方针,总结了 全面学习前苏联和群众性教育革命经验教训的基础上,根据
中国的实际情况制定的.
• 1978年,我国实行改革开放,国家要实现四个现代化,邓小平 同志提出教育要面向未来、面向世界、面向现代化. • 因此,1978年的大纲从精简传统的算术内容,增加代数、几
教学大纲与课程标准
ቤተ መጻሕፍቲ ባይዱ
我国数学教学大纲(课程标准)的历史演变
新中国成立后,我国的数学教学经历了全面学习苏联的 创建阶段,总结经验的调整阶段,受到“文革”冲击的破坏 阶段,逐步提高的复兴阶段和深化改革的繁荣阶段.先后颁 布的小学数学教学大纲或课程标准主要有:
时间 1950
名称 《小学算术课程暂行 标准(草案)》
• 但是,课程标准是教材、教学和评价的灵魂,并不等于课程
标准是对教材、教学和评价方方面面的具体规定.
• 课程标准对某方面或某领域基本素质要求的规定,主要体 现为在课程标准中所确定的课程目标和课程内容,因此,课
程标准的指导作用主要体现在它规定了各科教材、教学所 要实现的课程目标和各科教材教学中所要学习的课程内容, 规定了评价哪些基本素质以及评价的基本标准. • 但是,课程标准对教材编制、教学设计和评价过程中的具 体问题(如教材编写体系、教学顺序安排及课时分配、评 价的具体方法等),则不做硬性的规定.

解析几何《点到直线的距离》说课稿

解析几何《点到直线的距离》说课稿

解析几何《点到直线的距离》说课稿解析几何《点到直线的距离》说课稿范文解析几何《点到直线的距离》说课稿1一、教材分析:1、地位与作用:解析几何第一章主要研究的是点线、线线的位置关系和度量关系,其中以点点距离、点线距离、线线位置关系为重点,点到直线的距离是其中最重要的环节之一,它是解决其它解析几何问题的基础。

本节是在研究了两条直线的位置关系的判定方法的基础上,研究两条平行线间距离的一个重要公式。

推导此公式不仅完善了两条直线的位置关系这一知识体系,而且也为将来用代数方法研究曲线的几何性质奠定了基础。

而更为重要的是:通过认真设计这一节教学,能使学生在探索过程中深刻地领悟到蕴涵于公式推导中的重要的数学思想和方法,学会利用化归思想和分类方法,由浅入深,由特殊到一般地研究数学问题,同时培养学生浓厚的数学兴趣和良好的学习品质。

2、重点、难点及关键:重点是“公式的推导和应用”,难点是“公式的推导”,关键是“怎样自然地想到利用坐标系中的x轴或y 轴构造Rt△,从而推出公式”。

对于这个问题,教材中的处理方法是:没有说明原因直接作辅助线(呈现教材)。

这样做,无法展现为什么会想到要构造Rt△这一最需要学生探索的过程,不利于学生完整地理解公式的推导和掌握与之相应的丰富的数学思想方法。

如果照本宣科,则不能摆脱在客观上对学生进行灌注式教学。

事实上,为了真正实现以学生为主体的教学,让学生真正地参与进来,起关键作用的是设计出有利于学生参与教学的内容组织形式。

因此,我没有像教材中那样直接作辅助线,而是对教学内容进行剪裁、重组和铺垫,构建出在探索结论过程中侧重于学生能力培养的一系列教学环节,采用将一般转化到特殊的方法,引导学生通过对特殊的直观图形的观察、研究,自己发现隐藏其中的Rt△,从而解出|PQ|。

在此基础上进一步将特殊问题还原到一般,学生便十分自然地想在坐标系中探寻含PQ的Rt△,找不到,自然想到构造,此时再过P点作x轴或y轴的平行线就显得“瓜熟蒂落,水到渠成”了。

教育部关于印发《全日制普通高级中学课程计划》的通知-教基[2002]7号

教育部关于印发《全日制普通高级中学课程计划》的通知-教基[2002]7号

教育部关于印发《全日制普通高级中学课程计划》的通知
正文:
---------------------------------------------------------------------------------------------------------------------------------------------------- 教育部关于印发《全日制普通高级中学课程计划》的通知
(教基[2002]7号2002年4月26日)
为贯彻《国务院关于基础教育改革与发展的决定》,落实《基础教育课程改革纲要(试行)》,配合从2003年起高考时间提前一个月的改革举措,我部组织部分专家对普通高中课程计划进行了调整,重新修订了《全日制普通高级中学课程计划(试验(试验修订版)》,调整了课时。

现将《全日制普通高级中学课程计划》印发给你们,请遵照执行。

希望各地认真组织对《全日制普通高级中学课程计划》的学习、研究,全面落实课程计划精神。

同时结合实际情况,加强管理,深化教学改革,做好师资培训、教学仪器设备的配备等工作,全面提高普通高中的教育质量。

《全日制普通高级中学课程计划》将由人民教育出版社印发单行本,供各地订购、使用。

附件:全日制普通高级中学课程计划((略)
——结束——。

普通高中数学课程标准细目表

普通高中数学课程标准细目表

普通高中数学课程标准细目表
《普通高中数学课程标准》是教育部编写,人民教育出版社出版发行的一本数学教程。

该标准对高中数学课程进行了详细的规定,包括课程目标、课程内容、课程实施等方面的要求。

具体来说,该标准将高中数学课程分为必修课程、选择性必修课程和选修课程三个部分。

必修课程是所有高中学生都必须学习的数学内容,包括数学1、数学2、数学3、数学4、数学5等五个模块。

选择性必修课程是部分学生
可以根据自己的兴趣和未来专业需求选择的数学内容,包括数学6、数学7、数学8等三个模块。

选修课程则是更加灵活的数学课程,学生可以根据自己的兴趣和需求选择,包括数学A、数学B、数学C等三个模块。

在课程内容方面,该标准对每个模块的内容都进行了详细的列举和规定,包括知识点、能力要求、教学建议等方面的内容。

同时,该标准也强调了数学的应用和实践,提倡学生通过数学实验、课题探究等方式来加深对数学的理解和运用。

在课程实施方面,该标准要求教师根据学生的实际情况和教学要求,选择合适的教学方法和手段,注重培养学生的数学思维能力和解决问题的能力。


时,该标准也提倡教师采用信息技术手段,如数学软件、计算机模拟等,来辅助教学和提高教学效果。

总之,《普通高中数学课程标准》对高中数学课程进行了全面而详细的规定,旨在提高学生的数学素养和应用能力,为学生未来的学习和工作打下坚实的基础。

(完整版)全日制普通高级中学数学教学大纲(试验修订版)

(完整版)全日制普通高级中学数学教学大纲(试验修订版)

全日制普通高级中学数学教学大纲(试验修订版)中华人民共和国教育部制订数学是研究空间形式和数量关系的科学。

数学能够处理数据、观测资料,进行计算、推理和证明,可提供自然现象、社会系统的数学模型。

随着社会的发展,数学的应用越来越广泛。

它是人们参加社会生活、从事生产劳动和学习、研究现代科学技术的基础;它在培养和提高思维能力方面发挥着特有的作用;它的内容、思想、方法和语言已成为现代文化的重要组成部分。

高中数学是义务教育后普通高级中学的一门主要课程。

它是学习物理、化学、计算机等学科以及参加社会生产、日常生活和进一步学习的必要基础,对形成良好的思想品质和辩证唯物主义世界观有积极作用。

因此,使学生在高中阶段继续受到数学教育,提高数学素养,对于提高全民族素质,为培养社会主义现代化建设所需要的人才打好基础是十分必要的。

一、教学目的高中数学的教学目的是:使学生学好从事社会主义现代化建设和进一步学习所必需的代数、几何的基础知识和概率统计、微积分的初步知识,并形成基本技能;进一步培养学生的思维能力、运算能力、空间想象能力、解决实际问题的能力,以及创新意识;进一步培养良好的个性品质和辩证唯物主义观点。

基础知识是指:高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。

基本技能是指:按照一定的程序与步骤进行运算、处理数据(包括使用计算器)、简单的推理、画图以及绘制图表等技能。

思维能力主要是指:会观察、比较、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质。

运算能力是指:会根据法则、公式正确地进行运算、处理数据,并理解算理;能够根据问题的情景,寻求与设计合理、简捷的运算途径。

空间想象能力主要是指:能够由实物形状想象出几何图形,由几何图形想象出实物形状、位置和大小;能够想象几何图形的运动和变化;能够从复杂的图形中区分出基本图形,并能分析其中的基本元素及其关系;能够根据条件作出或画出图形;会运用图形与图表等手段形象地揭示问题本质。

全日制普通高级中学课程计划

全日制普通高级中学课程计划

全日制普通高级中学课程计划全日制普通高级中学(以下简称普通高中)课程计划依据《中华人民共和国教育法》、《中共中央国务院关于深化教育改革全面推进素质教育的决定》及《面向21世纪教育振兴行动计划》制订,与《九年义务教育全日制小学、初级中学课程计划(试行)》相衔接,适用于三年制普通高中。

本课程计划体现国家对普通高中教育的基本要求,是编订各科教学大纲和编写教材的基本依据,是课程实施评价和管理的基本准则。

本课程计划以马克思主义、毛泽东思想和邓小平理论为指导,遵循教育要面向现代化、面向世界、面向未来的战略思想,贯彻教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体、美等方面全面发展的社会主义事业的建设者和接班人的方针,以全面推进素质教育为宗旨,全面提高普通高中教育质量。

本课程计划按照普通高中教育的培养目标和学生身心发展规律,适应社会发展需要和各地学校实际,合理安排课程,发挥课程体系的整体教育功能,既有统一的基本要求,又具有较大的灵活性;坚持面向全体学生,因材施教,充分发挥学生学习的自主性,促进学生生动活泼主动地发展。

一、培养目标普通高中教育是与九年义务教育相衔接的高一层次基础教育。

普通高中教育要进一步提高学生的思想道德、文化科学、劳动技能、审美情趣和身体心理素质,培养学生创新精神、实践能力、终身学习的能力和适应社会生活的能力,促进学生个性的健康发展,为高等学校和社会各行各业输送素质良好的普通高中毕业生。

在九年义务教育基础上,普通高中教育的培养目标特别强调:1.热爱社会主义祖国,拥护中国共产党,了解中国历史和国情,对国家和民族具有责任感,初步形成正确的世界观、人生观和价值观。

具有民主和法制精神,学习行使公民权利和履行公民义务;积极参与社会公益活动;具有自觉保护环境的意识和行为;具有集体意识和合作精神;具有参与国际活动和国际竞争的意识;具有独立生活的能力;形成健全的人格。

2.具有适应学习化社会所需要的文化科学知识;形成独立思考、自主学习的能力;具有科学精神,形成科学态度,学会科学方法;能够利用现代信息技术手段进行学习,解决问题;进一步发展创新精神和实践能力,逐步形成适应学习化社会需要进行终身学习的能力。

全日制普通高级中学数学教学大纲2000

全日制普通高级中学数学教学大纲2000

全日制普通高级中学数学教学大纲(最新版)数学是研究空间形式和数量关系的科学。

数学能够处理数据、观测资料,进行计算、推理和证明,可提供自然现象、社会系统的数学模型。

随着社会的发展,数学的应用越来越广泛。

它已经成为人们参加社会生活、从事生产劳动的需要。

它是学习和研究现代科学技术的基础;它在培养和提高思维能力方面发挥着特有的作用;它的内容、思想、方法和语言已成为现代文化的重要组成部分。

高中数学是义务教育后普通高级中学的一门主要课程。

它是学习物理、化学、计算机和进一步学习的必要基础,也是参加社会生产、日常生活的基础,对于培养学生的创新意识和应用意识,认识数学的科学和文化价值,形成理性思维有积极作用。

因此,使学生在高中阶段继续受到数学教育,提高数学素养,对于提高全民族素质,为培养社会主义现代化建设所需要的人才打好基础是十分必要的。

一、教学目的高中数学教学应该在9年义务教育数学课程的基础上进一步做到:使学生学好从事社会主义现代化建设和进一步学习所必需的代数、几何、概率统计、微积分初步的基础知识、基本技能,以及其中的数学思想方法。

在数学教学过程中注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,提高学生数学探究能力、数学建模能力和数学交流能力,进一步发展学生的数学实践能力。

努力培养学生数学思维能力,包括:空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等诸多方面,能够对客观事物中的数量关系和数学模式作出思考和判断。

激发学生学习数学的兴趣,使学生树立学好数学的信心,形成实事求是的科学态度和锲而不舍的钻研精神,认识数学的科学价值和人文价值,从而进一步树立辩证唯物主义的世界观。

二、教学内容的确定和安排高中数学教学内容应精选那些在现代社会生活、生产和科学技术中有着广泛应用的,为进一步学习所必需的,在理论上、方法上、思想上是最基本的,同时又是学生所能接受的知识。

在内容安排上,既要注意各部分知识的系统性,注意与其他学科的相互配合,更要注意符合学生的认识规律,还要注意与义务教育初中数学内容相衔接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全日制普通高级中学数学教学大纲(试验修订版)中华人民共和国教育部制订数学是研究空间形式和数量关系的科学。

数学能够处理数据、观测资料,进行计算、推理和证明,可提供自然现象、社会系统的数学模型。

随着社会的发展,数学的应用越来越广泛。

它是人们参加社会生活、从事生产劳动和学习、研究现代科学技术的基础;它在培养和提高思维能力方面发挥着特有的作用;它的内容、思想、方法和语言已成为现代文化的重要组成部分。

高中数学是义务教育后普通高级中学的一门主要课程。

它是学习物理、化学、计算机等学科以及参加社会生产、日常生活和进一步学习的必要基础,对形成良好的思想品质和辩证唯物主义世界观有积极作用。

因此,使学生在高中阶段继续受到数学教育,提高数学素养,对于提高全民族素质,为培养社会主义现代化建设所需要的人才打好基础是十分必要的。

一、教学目的高中数学的教学目的是:使学生学好从事社会主义现代化建设和进一步学习所必需的代数、几何的基础知识和概率统计、微积分的初步知识,并形成基本技能;进一步培养学生的思维能力、运算能力、空间想象能力、解决实际问题的能力,以及创新意识;进一步培养良好的个性品质和辩证唯物主义观点。

基础知识是指:高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。

基本技能是指:按照一定的程序与步骤进行运算、处理数据(包括使用计算器)、简单的推理、画图以及绘制图表等技能。

思维能力主要是指:会观察、比较、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质。

运算能力是指:会根据法则、公式正确地进行运算、处理数据,并理解算理;能够根据问题的情景,寻求与设计合理、简捷的运算途径。

空间想象能力主要是指:能够由实物形状想象出几何图形,由几何图形想象出实物形状、位置和大小;能够想象几何图形的运动和变化;能够从复杂的图形中区分出基本图形,并能分析其中的基本元素及其关系;能够根据条件作出或画出图形;会运用图形与图表等手段形象地揭示问题本质。

解决实际问题的能力是指:会提出、分析和解决带有实际意义的或在相关学科、生产和生活中的数学问题;会使用数学语言表达问题、进行交流,形成用数学的意识。

创新意识主要是指:对自然界和社会中的数学现象具有好奇心,不断追求新知,独立思考,会从数学的角度发现和提出问题,进行探索和研究。

良好的个性品质主要是指:正确的学习目的,学习数学的兴趣、信心和毅力,实事求是的科学态度,勇于探索创新的精神,欣赏数学的美学价值。

高中数学中所培养的辩证唯物主义观点主要是指:数学来源于实践又反过来作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。

二教学内容的确定和安排高中数学教学内容应精选那些在现代社会生活、生产和科学技术中有着广泛应用的,为进一步学习所必需的,在理论上、方法上、思想上是最基本的,同时又是学生所能接受的知识。

在内容安排上,既要注意各部分知识的系统性,注意与其他学科的相互配合,更要注意符合学生的认识规律,还要注意与义务教育初中数学内容相衔接。

高中数学分必修课、选修课,选修课包括选修Ⅰ和选修Ⅱ。

必修课总计280课时,选修Ⅰ总计52课时,选修Ⅱ总计104课时。

学校根据教学实际自行安排必修课、选修课的开设。

每学期至少安排一个研究性课题。

三教学内容和教学目标必修课1.集合、简易逻辑(14课时)集合。

子集。

补集。

交集。

并集。

逻辑联结词。

四种命题。

充要条件。

教学目标(1)理解①集合、子集、补集、交集、并集的概念;了解②空集和全集的意义;了解属于、包含、相等关系的意义;掌握③有关的术语和符号,并会用它们正确表示一些简单的集合。

(2)理解逻辑联结词"或"、"且"、"非"的含义;理解四种命题及其相互关系;掌握充要条件的意义。

2.函数(30课时)映射。

函数。

函数的单调性。

函数的奇偶性。

反函数。

互为反函数的函数图象间的关系。

指数概念的扩充。

有理指数幂的运算性质。

指数函数。

对数。

对数的运算性质。

对数函数。

函数的应用举例。

实习作业。

教学目标(1)了解映射的概念,在此基础上加深对函数概念的理解。

(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程。

(3)了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。

(4)理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。

(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。

(6)能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。

(7)实习作业以函数应用为内容,培养学生应用函数知识解决实际问题的能力。

3.不等式(22课时)不等式。

不等式的基本性质。

不等式的证明。

不等式的解法。

含绝对值的不等式。

教学目标(1)理解不等式的性质及其证明。

(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

(3)掌握分析法、综合法、比较法证明简单的不等式。

(4)掌握某些简单不等式的解法。

(5)理解不等式|a|-|b|≤|a+b|≤|a|+|b|。

4.平面向量(12课时)向量。

向量的加法与减法。

实数与向量的积。

平面向量的坐标表示。

线段的定比分点。

平面向量的数量积。

平面两点间的距离。

平移。

教学目标(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

(2)掌握向量的加法与减法。

(3)掌握实数与向量的积,理解两个向量共线的充要条件。

(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

(6)掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。

5.三角函数(46课时)角的概念的推广。

弧度制。

任意角的三角函数。

单位圆中的三角函数线。

同角三角函数的基本关系式。

正弦、余弦的诱导公式。

两角和与差的正弦、余弦、正切。

二倍角的正弦、余弦、正切。

正弦函数、余弦函数的图象和性质。

周期函数。

函数y=Asin(ωx+φ)的图象。

正切函数的图象和性质。

已知三角函数值求角。

正弦定理。

余弦定理。

斜三角形解法举例。

实习作业。

教学目标(1)理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。

(2)掌握任意角的正弦、余弦、正切的定义,并会利用单位圆中的三角函数线表示正弦、余弦和正切。

了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式:sin2α+cos2α=1,=tanα,tanαcotα=1;掌握正弦、余弦的诱导公式。

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。

(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。

(5)会用单位圆中的三角函数线画出正弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;理解周期函数与最小正周期的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。

(6)会由已知三角函数值求角,并会用符号arcsin x、arccos x、arctan x表示。

(7)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。

(8)通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。

(9)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。

6.数列(12课时)数列。

等差数列及其通项公式。

等差数列前n 项和公式。

等比数列及其通项公式。

等比数列前n 项和公式。

教学目标(1)理解数列的概念,了解数列通项公式的意义;了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(2)理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用公式解决简单的问题。

(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能运用公式解决简单的问题。

7.直线和圆的方程(22课时)直线的倾斜角和斜率。

直线方程的点斜式和两点式。

直线方程的一般式。

两条直线平行与垂直的条件。

两条直线的交角。

点到直线的距离。

用二元一次不等式表示平面区域。

简单的线性规划问题。

实习作业。

曲线与方程的概念。

由已知条件列出曲线方程。

圆的标准方程和一般方程。

圆的参数方程。

教学目标(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握由一点和斜率导出直线方程的方法;掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。

(2)掌握两条直线平行与垂直的条件,掌握两条直线所成的角和点到直线的距离公式;能够根据直线的方程判断两条直线的位置关系。

(3)会用二元一次不等式表示平面区域。

(4)了解简单的线性规划问题,了解线性规划的意义,并会简单应用。

(5)了解解析几何的基本思想,了解用坐标法研究几何问题的方法。

(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。

(7)结合教学内容进行对立统一观点的教育。

(8)实习作业以线性规划为内容,培养解决实际问题的能力。

8.圆锥曲线方程(18课时)椭圆及其标准方程。

椭圆的简单几何性质。

椭圆的参数方程。

双曲线及其标准方程。

双曲线的简单几何性质。

抛物线及其标准方程。

抛物线的简单几何性质。

教学目标(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质;理解椭圆的参数方程。

(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。

(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。

(4)能够利用工具画圆锥曲线的图形,了解圆锥曲线的简单应用。

(5)结合教学内容,继续进行运动、变化观点的教育。

9(A)直线、平面、简单几何体(36课时)直线、平面、简单几何体的教学内容和教学目标在9(A)和9(B)两个方案中只选一个执行。

平面及其基本性质。

平面图形直观图的画法。

平行直线。

对应边分别平行的角。

异面直线所成的角。

异面直线的公垂线。

异面直线的距离。

直线和平面平行的判定与性质。

直线和平面垂直的判定与性质。

点到平面的距离。

斜线在平面上的射影。

直线和平面所成的角。

三垂线定理及其逆定理。

相关文档
最新文档