惯性核聚变
惯性约束聚变

惯性约束聚变又称靶丸聚变,为实现受控核聚变的一种途径。
它是利用高功率的脉冲能束均匀照射微球靶丸,由靶面物质的消融喷离产生的反冲力使靶内氘氚燃料快速地爆聚至超高密度(塼103倍氘氚的液态密度)和热核温度(塼10keV),从而点燃的高效率释放聚变能的微型热核爆炸。
在惯性约束聚变中,约束由聚变物质的惯性所提供,聚变反应必须在等离子体以高速(约108cm/s)从反应区飞散前的短暂时间 (约10-10~10-11s)内完成。
所以是一种以短脉冲方式运行的受控核聚变。
通常是采用聚焦的强激光束或高能的带电粒子(电子、轻离子或重离子)束,作为加热与压缩燃料靶丸的驱动器。
所以,又可以将惯性约束聚变分为激光聚变和粒子束(电子、轻离子或重离子束)聚变。
惯性约束聚变研究的长远目标是建成聚变电站,探索受控热核新能源;因其能够产生与核武器中心相近的高能量密度状态,所以又有着较近期的军事上的应用目标,这是指在实验室中研究核武器物理并模拟核爆炸效应;另外,惯性约束聚变形成的高压、高温的物质状态,也能为这些极端条件下的物性研究提供可能。
早在1952年,就已成功地将惯性约束的方式应用于氢弹的热核爆炸;然而,利用激光或带电粒子束照射燃料靶丸而实现惯性约束聚变的建议,是到60年代初激光问世后才提出的。
随后,由于调Q脉冲激光器的出现,开始了激光聚变的研究。
在开始的前10年,还只是停留在简单地用激光提高物质的温度以达到产生核聚变反应的条件;1968年,苏联列别捷夫研究所的Η.Γ.巴索夫等首次报道从氘化锂平面型靶上获得了中子。
直到1972年,美国利弗莫尔国家实验室的J.纳科尔斯等公开发表了高密度爆聚的理论,重点于是转向多束激光辐照微球靶的高压缩爆聚实验;激光聚变研究的规模也相应有了相当大的扩充。
另外,在脉冲功率技术发展的基础上,70年代后又相继开始了相对论性电子束、轻离子束与重离子束聚变的研究。
不过,与激光聚变已达到的水平相比较,它们都还处在发展的初期。
惯性约束聚变(ICF)

这张图是X射线从辐射空 腔两端射向靶球的模拟图
NIF有世界上最大的光学仪器。这是KDP晶体(磷酸二氢 钾),重360kg。整个装置需要约600个这样的晶体。
• 这是粗切成块的激光放大器玻璃薄片,整 个装置需要3072块这样的钕磷酸盐玻璃。
NIF的主要任务
• 模拟核爆炸,研究核武器的性能情况,使 得美国在不进行核试验的情况下保持核武 器的先进性。
• 从这里我们看到,该技术的核心就是怎样获得 均匀的高能的射线作为点火装置。
美国国家点火装置(NIF)
• 这部激光器于2009年启 用,它可以将192束激光 的能量转换为X射线,聚
焦到一个胡椒粒大小的
燃料球上,在十亿分之 三秒内,以近5*1014W的 功率,输出约180万焦耳
的能量,产生一亿开的 高温和1016Pa的高压。
1990年,神光I获得国家科技进步奖一等奖。 1994年,神光-Ⅰ退役。神光-Ⅰ连续运行8年,在激 光惯性约束核聚变和X射线激光等前沿领域取得了一 批国际一流水平的物理成果。
神光Ⅱ 1993年,国家“863”计划确立了惯性约束聚变主题,进一步推动了 国家惯性约束聚变研究和高功率激光技术的发展。
1994年5月18日,神光Ⅱ装置立项,工程正式启动,规模比神光-Ⅰ装 置扩大4倍。
目前,神光-Ⅲ原型装置“十五”建设目标已圆满完成,达到“8束出光,脉 冲-万焦耳”的水平,标志着我国成为继美、法后世界上第三个系统掌握新一 代高功率激光驱动器总体技术的国家,使我国成为继美国之后世界上第二个具 备独立研究、建设新一代高功率激光驱动器能力的国家。
1964年,王淦昌提出了研究激光聚变的倡议。 1965年,上海光机所开始用高功率钕玻璃激光产生激光聚变 的研究。 1973年5月,上海光机所建成两台功率达到万兆瓦级的高功率 钕玻璃行波放大激光系统。 1974年,上海光机所研制成功毫微秒10万兆瓦级6路高功率钕 玻璃激光系统,激光输出功率提高了10倍。 1980年,王淦昌提出建造脉冲功率为1万亿瓦固体激光装置的 建议,称为激光12号实验装置。 1987年6月27日,神光I通过了国家级鉴定。 1994年,神光I退役,神光I连续运行8年。 1994年5月18日,神光Ⅱ装置立项,工程正式启动。 2001年8月,神光Ⅱ装置建成,总体性能达到国际同类装置的 先进水平。 2007年2月4日,中物院神光Ⅲ激光装置实验室工程举行了开 工奠基仪式。
惯性约束聚变

)
从经济观点出发,Pn/Pg值必须大于0.75; 中子反应因子M在1.05~1.25之间,热电转换效率ε在
0.3~0.4之间,可知ηG值必须在10~16之间, η取决于 驱动器的类型,G取决于靶的设计和射到靶上的能 量; 当 η=0.05 时 , 要 求 G=200~320 , 高 增 益 靶 , 达 到 η=0.05的只有氟化氪激光、半导体泵浦的固体激光 和轻重粒子束; 当η=0.25时,要求G=40~60,达到η=0.25的只有轻粒 子束和重离子束驱动器。
聚变靶丸
高z壁
泡沫塑料
吸收 辐射体
柱面高z腔壁
3、惯性聚变能电站中两个重要的循环
(1)功率循环
驱动效率η:电能转变成激光或粒子束的能量 增益G:激光或粒子束打在靶上发生聚变产生
热核反应 M因子:靶外物质与中子反应放出能量 热电转换效率ε:热核能量转变为热能,送到发
电机发电 Pg:总的输出功率 Pa:电站用电量,占总输出功率比例为fa(~5%) Pd:给激光和粒子束驱动器提供功率产生激光
将激光或粒子束的能量照射在黑洞靶的内壁(对 激光)、泡沫塑料(对轻离子束)和吸收辐射体 (对重粒子束),并加热这些物质到高温,发射出X 射线,靶丸放置在中间位置上,激光或粒子束在转 换体上产生很强的X射线,照射在靶丸上再引起靶丸 表面加热、压缩、点火和燃烧。
柱面高z腔壁 激光束
聚变靶丸
入口孔
重离子束
这两个成功的实验进一步激发了国际ICF界研究快 点火物理和相关PW激光技术的热情,增强了信心。
令人鼓舞的金锥管加CD壳靶快点火原理示范实验结果
一、获得惯性聚变能的基本原理
激光技术的出现,给人们带来了希望,1963年巴 索夫和道森首先提出了可以利用激光将等离子体 加热到引发热核聚变的温度。
核聚变的两种方式

核聚变的两种方式朋友!今天咱来唠唠核聚变这神奇的玩意儿,特别是它的两种方式。
你知道不,核聚变就像是宇宙中的超级魔法,能释放出巨大的能量。
那这核聚变的两种方式呢,就像是一对性格各异的双胞胎兄弟。
先说这第一种方式,叫做磁约束核聚变。
这就好比是把一群调皮的小怪兽关在一个超级大笼子里。
这个大笼子呢,其实就是磁场。
通过强大的磁场,把高温高密的等离子体约束在一个特定的空间里,让它们在里面乖乖地发生核聚变反应。
你想想,这等离子体就像一群精力超级旺盛的小家伙,要是没个笼子关着,那还不得到处乱跑啊!咱国家的“人造太阳”就是用的这种方式哦。
这“人造太阳”可厉害啦,要是真的成功了,那以后咱就再也不用担心没电用啦。
再说说第二种方式,惯性约束核聚变。
这就像是给一颗小鞭炮点上火,然后瞬间爆炸产生巨大的能量。
不过这可不是普通的小鞭炮,而是用激光或者粒子束等高强度的能量束,瞬间压缩和加热一个微小的燃料球,让它在极短的时间内发生核聚变反应。
你可以想象一下,这燃料球就像一个小小的能量宝库,被瞬间引爆,释放出惊人的力量。
就好像咱过年放的烟花,“砰”的一下,照亮整个天空。
这两种方式各有各的特点。
磁约束核聚变就像是一个沉稳的大哥,一步一个脚印地朝着目标前进。
虽然过程可能有点漫长,但胜在稳定可靠。
而惯性约束核聚变呢,就像一个勇敢的小弟,敢于冒险,瞬间爆发。
说不定哪天就能给我们带来一个大惊喜呢!那你可能会问啦,这两种方式哪个更好呢?嘿嘿,这可不好说。
就像问你苹果和橘子哪个更好吃一样,各有各的好嘛。
它们都在为了实现人类的能源梦想而努力奋斗着。
总之啊,核聚变的这两种方式都是人类探索未来能源的重要途径。
不管是磁约束还是惯性约束,都有着巨大的潜力。
让我们一起期待着它们能早日为我们带来无尽的清洁能源,让我们的生活变得更加美好吧!。
惯性约束核聚变

惯性约束核聚变核能的安全使用是缓解能源危机的有效途径。
相对于核裂变,核聚变具有无放射性,单位质量提供的能量多等优点,而且地球上核聚变物质储量远远多于核裂变物质储量。
实现受控核聚变。
聚变的原理:他们是利用加速器或其它方法使原子核相互碰撞, 从而得到或失去能量。
要实现受控核聚变,必须满足两个基本条件,一是必须将燃料加热到很高的热核反应温度;二是,必须在足够时间长时间内将高温高密度等离子体约束在一起。
Lawson 判据限定了实现核聚变的具体条件,即受约束的等离子体必须达到一定的密度n 、温度T 及约束时间τ。
对氘氚反应,)/(109.3311mm s n ⨯≥τ,T 约为K 810。
有两种方法,实现受控核聚变。
一是磁约束聚变(Magnectic Confinement Fusion ,MCF ),就是利用磁场将带电离子约束住,使之发生聚变的反应。
二是激光驱动惯性约束聚变,就是基于氢弹原理,即利用高能激光驱动器在极短时间将巨变燃料小球(靶丸)加热、压缩到高温、高密度,使之在中心“点火”,点燃后继核反应实现受控核聚变,从而获得干净聚变能源。
聚变过程可分为四个阶段:一、强激光束快速加热氘氚靶丸表面,形成等离子体烧蚀层;二、驱动器的能量以激光或X 光形式迅速传递给烧蚀体,使之加热并迅速膨胀;当壳体外部向外扩张时,根据动量守恒定理,剩余部分则向中心挤压,反向压缩燃料;三、向心聚爆将靶丸压缩至一定程度,使氘氚燃料达到高温、高密度状态,在靶丸中心形成热点;四、热核燃烧在被压缩的燃料内部蔓延,使主体燃料发生聚变反应,产生数倍的能量增益,从而产生大量的聚变能输出。
现在的惯性约束核聚变存在以下问题:一、激光和离子束功率没有达到足够大;二、激光必须照射均匀,小球壳本身厚薄均匀;三、目前的爆炸方法有待改进。
ICF 研究进展自从60年代初激光器问世以后,中、美、日、前苏联等国即着手激光驱动ICF 研究,多年来ICF 研究已在世界范围内取得了重要进展。
惯性约束核聚变

惯性约束核聚变原理与反应堆技术1. 惯性约束基本原理核能可分为裂变能与聚变能。
目前,核电站通过受控释放裂变能实现发电,而受控核聚变仍处于研究阶段。
实现受控核聚变反应主要有两种途径:磁约束和惯性约束。
后者即以下内容讨论的主题。
惯性约束(ICF),即利用高能驱动器在极短时间内将聚变燃料小球(靶丸)加热压缩到高温、高密,使之在中心“点火”,实现受控核聚变。
以氢弹的爆炸为例,位于其中心的原子弹的爆炸在极短时间内将氢弹中的热核装料迅速加热和压缩到高温、高密,引起燃料的聚变燃烧。
由于这一过程非常短暂,在燃料膨胀但因自身惯性还没有来得及飞散之前,聚变反应就已经发生。
这种未对燃料等离子体采取任何约束措施,只依靠本身惯性保持顺利完成核聚变就是惯性约束核聚变。
但氢弹的爆炸是不可控的,激光器代替原子弹点燃热核反应使ICF成为可控核聚变。
激光的能量能在时间和空间上进行高度的集中,因此能在焦点上得到非常高的功率密度。
现在惯性约束核聚变研究所用的激光器多数是钕玻璃激光器。
而粒子束作为惯性约束核聚变的驱动器,原理与激光一样,只不过它是以粒子束来代替激光。
所以想采用粒子束,是因为它的能量转换效率比之激光要高出一个量级。
2. 反应堆相关(1)能量流程该系统中,假设驱动器输出的能量为E D,其效率为D,它通过反应室壁上的入射通道击中靶丸。
靶丸聚变反应,产生相当于驱动束能Q倍的能量E f。
再经反应室增值层的能量倍增(增值系数为M),并以热能的形式输出。
发电机的热点转换效率为T,发电机发出的毛电能为E g,其中一部分输入电网,另一部分再循环。
整个反应堆系统的效率为s,其定义为:s=纯电能输出/聚变反应的热能输出系统效率可表示为:s=E g(1-)/ME f=T(1-)[(MQ+1)E D+(1/D-1) E D]/ME f(2) ICF聚变堆涉及的问题1> 从理论上了解靶丸的能量吸收、反射、能量输运、压缩、不稳定性、点火和聚变燃烧等物理学。
核聚变最简单的实现方式

核聚变最简单的实现方式
核聚变是一种能源生产方式,它通过将轻元素聚合成重元素来释放能量。
虽然科学家已经在多个领域进行了核聚变的研究,但是目前还没有找到一种稳定可靠的实现方式。
不过,有一种最简单的核聚变实现方式,那就是通过对两种氢同位素——氘和氚——进行加热和压缩,使它们融合成氦,同时释放出巨大的能量。
这种方式被称为惯性约束聚变。
惯性约束聚变利用激光或其他能量源来加热和压缩氘和氚,使它们在空间中靠近到足以发生核聚变。
这种方式的优势在于,相对于其他核聚变技术,它需要的设备和材料都比较简单和便宜,能够在实验室中实现。
此外,惯性约束聚变也不会产生放射性废物。
虽然惯性约束聚变已经被成功应用于实验室中,但是要想将其作为商业能源生产方式,还需要进一步的研究和发展。
不过,这种最简单的核聚变实现方式已经为我们提供了一个探索核聚变能源的途径。
- 1 -。
惯性约束核聚变

惯性约束核聚变
核聚变是一种用来获取大量的能量的可持续的技术。
然而,因为
核聚变反应本身的技术复杂性和可靠性方面的问题,一些人质疑它是
否真的可行。
为了治疗目前存在的问题,近年来,特别是在聚变研究中,研究人员和工程师着重研究了惯性约束核聚变技术。
惯性约束核聚变是指给于聚变堆中反应区采用“惯性约束”,将
聚变堆内的反应物暂时阻塞,阻止辐射和胶子等污染物进入聚变堆外部,然后将反应物介质移到聚变反应堆的控制区域。
使用此技术的主
要原因是,聚变反应可以在聚变反应堆的控制区域进行有效的控制和
监控,从而有效地控制聚变反应的安全性和可靠性,并且可以将聚变
反应本身的产生能量集中在反应堆的控制区域中。
这种技术的优点是,其可以改善聚变堆的可控性,使聚变反应更
加稳定,从而可以减少聚变过程中发生的隐患,降低发生事故的风险。
此外,这种技术还可以减少核聚变反应中的放射性污染,可以减少大
量的弃物的产生,大大提高了聚变反应的可持续性。
不仅有操作安全性和持续性的优势,惯性约束核聚变还有一种节
约能源的优点,换言之,它可以让更少的能量被消耗,从而获得更多
的能量。
因此,通过使用这种技术,还可以使聚变反应较为高效,使
工程师能够轻松地获得聚变反应原料,从而有效地帮助人类节省资源。
从以上可以看出,惯性约束核聚变技术就是一种可将核聚变反应
有效地控制的技术,是获取大量的能量的可持续的技术。
由于它具备
操作安全性、持续性和节约能源等优点,所以已被广泛应用于聚变研
究领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
激光惯性约束核聚变 Inertial Confmement Fusion ICF
3. 原理:
• 等离子体超高温膨胀,需要一定的时间。(克服惯性加速以及膨胀分 离)如果能在这超短时间之内即完成聚变反应,问题将迎刃而解。 • 激光具有功率高,脉冲短的优势,在等离子体来不及飞散之前,即完 成加热、聚合燃烧等全过程聚变反应。
(余波等,神光Ⅲ主机双束组激光间接驱动內爆实验研究,强激光与粒子束,2015.9)
结论:神光Ⅲ装置性能稳定,设计符合要求。我国ICF研究进 入快车道。
9
激光惯性约束核聚变 Inertial Confmement Fusion ICF
10
3
激光惯性约束核聚变 Inertial Confmement Fusion ICF
1972年,美国LLNL实验室提出强激光束氘、氚气体的微 球靶进行内爆压缩的概念。
4
激光惯性约束核聚变 Inertial Confmement Fusion ICF
5
激光惯性约束核聚变 Inertial Confmement Fusion ICF
脉冲激光器在科研领域的应用
激光惯性约束核聚变 Inertial Confmement Fusion ICF
1. 物理基础
1
激光惯性约束核聚变 Inertial Confmement Fusion ICF
2. 限 1亿度左右的温度 B. 足够高的粒子密度,并维持一定时间。 (n*t=10^14 s/cm3 )
7
激光惯性约束核聚变 Inertial Confmement Fusion ICF
5.激光器
1985年至1988年间,美国“百人队长”计划,利用地下核爆辐射的X射 线辐射氘、氚靶丸,实现 10—100 倍能量增益并与 LASNEX 程序计算 对比,明确了需要有百万焦耳级的驱动能量才能满足点火要求。
8
激光惯性约束核聚变 Inertial Confmement Fusion ICF
我国ICF激光器神光Ⅲ进展:
2015年8月基本建成,钕玻璃激光装置,6个束组,共计48束, 三倍频激光能量180KJ / 10ns(美国1.8MJ / 192束、法国 1.8MJ/240 束)波长:351nm 实验:初次实验获得最高耦合辐射温度229eV,最高中子产额 9.7*10^8.
4.现状:
英国广播公司:2013年,可控核聚变实验已经取得了具有里程碑 意义的突破:输出能量超出输入能量。在 9月底,美国利弗莫尔国家 实验室的国家点火装置(National Ignition Facility)利用192束高能激光 聚焦到氢燃料球上,创造高温高压以点燃核聚变反应。
6
激光惯性约束核聚变 Inertial Confmement Fusion ICF 激光器基本参数: 波段:350nm; 脉宽:ns量级 脉冲能量:192束,总脉冲能量超过2MJ