fluent实例
fluent 案例

fluent 案例
- 电池仿真计算:该案例使用Fluent中的电池仿真模块,基于前期实验获取的数据,根据NTGK模型模拟稳定的充放电过程。
计算原理是需要提供不同倍率下的DOD与电压曲线。
- 动网格实例:动网格模型可以用来模拟由于流域边界运动引起流域形状随时间变化的流动情况,如汽车发动机中的气缸运动、阀门的开启与关闭、机翼的运动、飞机投弹等。
- 离心泵空化:利用Fluent中的Mixture多相流模型仿真计算离心泵内的空化情况。
案例描述为离心泵入口总压0.6MPa,出口静压0.2MPa,叶轮旋转速度1200RPM。
流体域内介质为液态水,其在当前工作条件下饱和蒸汽压为3540Pa。
- 板式换热器CFD仿真:本案例在ANSYS2019R3中演示了如何利用Fluent进行板式换热器CFD仿真。
首先在SpaceClaim中建立几何模型,并进行命名边界条件,接着导入Fluent Meshing进行网格划分,然后利用Fluent进行求解,最后在CFD-POST中进行后处理。
这些案例展示了Fluent在不同领域的应用,如果你对其中某个案例感兴趣,可以继续向我提问。
Fluent经典实例分析

一年一度的毕业设计就要到来了,CAE软件依然是流体专业众多学子毕设的拦路虎,为了使各高校流体同学顺利完成毕业设计以及有志于在流体行业有一番作为的青年才俊迅速掌握一门技能,从而更好地适应职场需求,北京经纬云图仿真科技有限公司感谢各位同行的支持和厚爱,特组织各方面CAE软件专家长期进行免费在线网络培训,诚邀您的参与!特此声明:本公司的所有培训将主要以工程实例为基础进行,让您真正的学到知识,懂得原理,而不仅仅是简单的软件操作。
最重要的一点是为了回馈广大同仁们,本公司的培训完全免费,机不可失失不再来啊!主办单位:北京经纬云图仿真科技有限公司培训时间:每周五晚8:00---9:30培训方式:在线免费网络培训培训2000人QQ群:281194860(参与培训请加入,注明:FLUENT培训)培训内容:见附录附录:1,基础流动计算以AICD装置为例,说明利用fluent进行基础的流动模拟的步骤,包括计算设置和简单的后处理2,两相流Mix模型应用以某烟雾报警器为例,利用mix两相流模型,预测烟雾报警器内部的烟雾浓度分布3,空化问题以某拉瓦尔喷管型的空化装置为例,利用mix两相流模型和空化模型,计算装置内的水的空化情况4,水的蒸发和凝结以某水蒸气动力装置为例,利用mix两相流模型和蒸发凝结模型(fluent自带蒸发凝结模型和udf编程),并利用瞬态计算的方法,得到装置的瞬时流场分布和水凝结情况5,湿空气的露点问题以某实验装置为例,说明露点问题与蒸发凝结问题的本质区别,利用mix两相流模型和udf 露点模型,计算过冷空气中的水析出的问题,并与理论结果进行对比6,萃取问题(溶液间传质问题)以某反应塔的一层为例,利用mix两相流模型、组分输运模型和udf传质模型,计算甲苯的萃取过程,以及利用瞬态计算的方法,得到脉动进口条件对于萃取过程的影响7,水中气泡上升以某鱼缸中通过气泡的模型为例,利用vof两相流模型和udf气泡源,利用瞬态计算的方法,得到水中的连续气泡上升的流动动画8,融化、蒸发联合作用问题以低压力环境中的固态铝加热为例,利用vof两相流模型、融化凝固模型、蒸发凝结模型和udf加热源,利用瞬态计算的方法,计算铝融化后的液面形状9,粒子冲蚀问题以某钻井装置为例,利用DPM模型和粒子冲蚀模型,计算在钻井的过程中,钻头以及装置各部分的磨损情况10,高温粒子喷涂问题以某高温粒子喷涂装置为例,利用DPM模型和粒子融化、蒸发模型,计算在高温喷涂的过程中,不同半径粒子的运动轨迹,和粒子的融化、蒸发情况11,二维齿轮动网格以某二维齿轮泵为例,利用动网格模型中的刚体运动模型,模拟齿轮泵的啮合工作过程12,Six dof动网格问题以三维空间中小球斜射入水的问题为例,利用动网格模型和six dof模型,模拟小球从空气中斜射入水过程中的运动和受力情况13,流热耦合问题以某水泵的相关部件为例,利用流热耦合方法和udf热源,模拟水泵工作过程中的摩擦生热问题,以及冷却问题14,电磁搅拌问题以带有电磁搅拌的坩埚为例,利用udf体积力源项和mix两相流模型的方法,模拟电磁搅拌对于坩埚内合金金属的浓度分布的影响15,多孔介质问题以某带有多孔漏斗装置的化学反应塔为例,首先对多孔漏斗进行直接数值模拟得到多孔介质的属性参数,然后利用多孔介质和组分输运模型进行计算,得到反应塔内部各组分的浓度分布。
Fluent工程应用实例

第五章工程应用实例5.1 圆柱绕流数值模拟一、问题描述把一个圆柱体放在静止的流体中,然后流体以很低的速度(雷诺数很小)绕流圆柱体。
此时流动与理想流体绕流圆柱一样,流体在前驻点速度为零,而后沿圆柱体两侧流动,流动在圆柱体的前半部分是降压,速度逐渐增大到最大值,而后半部分是升压,速度逐渐下降,到后驻点重新等于零。
增大来流速度(雷诺数增大),圆柱体后半部分的压强梯度增加,以致引起边界层的分离。
随着来流速度的不断增加,圆柱体后半部分边界层中的流体微团受到更大的阻滞,分离点一直向前移动。
当雷诺数(Re)增大到40左右时,在圆柱体的后面便会产生一对旋转方向相反的对称旋涡。
当雷诺数超过40后,对称旋涡不断增长且出现摆动,到雷诺数大约等于60时,这对不稳定的旋涡分裂,最后形成有规则的、旋转方向相反的交替旋涡,这就是卡门涡街。
本节将模拟一直径为2cm的圆柱在雷诺数Re为200时卡门涡阶脱落情况。
本节涉及以下内容:1、二维结构化网格的划分;2、非稳态计算;3、动画设置;4、后处理:压力云图、速度矢量图;5、数据保存二、GAMBIT建模第1步:创建点操作:点击——,如图1。
在X,Y,Z上分别输入流体域的边界点的值。
在这里取x最小值为-6,最大值为20,y的最小值为-4,最大值为4。
对于二维圆柱的创建只需要输入圆心坐标和不在同一条直线上的二个点坐标值即可。
创建完成后如图2所示。
为了帮助画结构化网格,我们需要在圆柱外面加上一个长为4的正方形,取四个点(-2,2),(-2,-2),(2,-2),(2,2)以及点(-2,4),(-2,-4),(2,4),(2,-4)。
点创建完成后如图2所示。
图1 GAMBIT工具栏图2 点创建完成第2步由点创线操作:点击—右键单击会出现下拉菜单,在下拉菜单中选择,打开“Creat Full Circle”对话框如图3所示。
图3 创建圆对话框按照提示在Center 后选择圆心点,在End-Point 后面选择圆周上的两个点,点击Apply。
Fluent例子

FLUENT傻瓜操作软件平台:FLUENT6.2.16计算类型:三维定常叶轮涡壳耦合计算说明:没有考虑泵腔中的流动和容积损失。
导入mesh格式网格文件选择你要导入的文件检查check如下图所示,观测数据与您的模型是否一致,检查是否有负体积存在,存在负体积的网格一般很难收敛。
面网格显示光顺网格Grid--Check点击Smooth和Swap,直到0 remaining iteration 和number faces s。
设置单位Grid--Scale,一般都转换为mm设定转速单位Define-Unit选择湍流模型Define--Models--Viscous不考虑传热,不需要对能量方程进行设置,直接默认。
对于不可压流体,solver不需要设置,直接使用默认的隐式求解。
Model项只需要对湍流模型进行设他的全部默认。
设定流体属性Define--Materials--Fluent Database软件平台:FLUENT6.2.16设定边界条件1.叶轮内流体运用动静参考系解决运行叶轮和泵体间的动静耦合问题。
叶轮内流体设置为旋转坐标系,设置转速n,比如n=3500rpm,2900rpm等。
运动方向运用右手法则判定。
2.涡壳(泵体)内流体涡壳内流体设置为静止。
3.叶轮进口一般来说,定流量,计算扬程的情况,进口采用速度进口。
设置如下图。
3.叶轮出口叶轮出口通常采用自由出流条件,存在明显回流影响收敛的情况下,一般采用压力出口。
3.叶片表面设置为wall,相对于叶轮为静止。
可以设置表明粗糙度。
交接面设置Define--Grid interface松弛因子设置Solve--Control--Solution一般来说,采用默认值。
若难收敛,或者收敛不理想,可以把松弛因子调小。
一般采用一阶计算收敛后,再调整为二阶计算,这样收敛相对理想一些。
残差监控Solve--Monitors--Residual设置收敛精度,一般设置为1e-06.为了准确判定收敛,对于定场计算,给定速度进口时,监控进口和出口总压,当进口和出口总压恒定时,认为已经收敛。
workbench fluent例子

workbench fluent例子1. I need a workbench to finish this project.(我需要一个工作台来完成这个项目。
)2. The workbench is cluttered with tools and materials.(工作台上堆满了工具和材料。
)3. He built the workbench himself out of sturdy wood.(他用坚固的木材自己建造了工作台。
)4. The workbench is adjustable, so it can be used for different tasks.(工作台可以调节,因此可以用于不同的任务。
)5. She spent hours working at the workbench, perfecting her craft.(她花了几个小时在工作台上工作,完善她的手艺。
)6. The workbench has a built-in vice for holding objects in place.(工作台有一个内置的夹子,可以将物体固定在位。
)7. He keeps his tools organized on the shelves above the workbench.(他把他的工具放在工作台上方的架子上进行整理。
)8. The carpenter hammered away at his workbench, shaping the wood into a beautiful piece of furniture.(木匠在他的工作台上锤打着木头,将其塑造成一件美丽的家具。
)9. She used the workbench to create a stunning painting that was later displayed in an art gallery.(她用工作台创造了一幅令人惊叹的画作,后来在艺术馆里展出。
fluent案例

fluent案例咱今儿个就来说说小明的故事,那可真是个超级励志的Fluent(流利说英语)案例。
小明以前啊,那英语说得是磕磕巴巴,就像个刚学走路的小娃娃,走两步就摔一跤。
每次上英语课回答问题,那声音小得跟蚊子哼哼似的,而且语法错误一箩筐。
什么单复数啊,时态啊,在他脑袋里就像一团乱麻。
有一天,小明决定要改变这个状况。
他就下载了这个Fluent的软件。
刚开始的时候,他觉得那些练习就像一座座大山,看着都头疼。
但是呢,Fluent这个软件特别友好,就像一个超级耐心的英语老师。
比如说里面的口语练习,有各种各样有趣的话题。
像什么“如果你能拥有一种超能力,你想要啥?”这种话题一下子就把小明的兴趣勾起来了。
他不再觉得学英语是一件枯燥的事儿。
而且软件会给他的发音打分,这就像一场小小的比赛,他就想着每次都要比上一次得分高。
还有啊,Fluent里的课程设置得很合理。
它不是一股脑地把一堆知识塞给你,而是循序渐进的。
就像搭积木一样,一块一块稳稳地往上垒。
小明从最基础的单词发音开始练起,然后慢慢过渡到简单的句子,再到复杂的对话。
随着时间的推移,小明就像变了个人似的。
他每天都花个把小时在Fluent上练习。
过了几个月,奇迹就发生了。
在学校的英语演讲比赛里,他居然大大方方地站在台上,用流利的英语演讲,那发音标准得就像个小老外。
同学们都惊呆了,老师也对他刮目相看。
从那以后,小明可就更自信了。
他和外教聊天的时候也能谈笑风生,不再是以前那个半天憋不出一句话的他了。
Fluent就像是一把神奇的钥匙,打开了小明英语流利说的大门,让他在英语的世界里自由驰骋。
这就是小明的Fluent案例,怎么样,是不是很鼓舞人呢?。
fluent仿真案例

fluent仿真案例Fluent仿真是一种广泛应用于工程领域的计算流体力学(CFD)软件。
它通过对流动、传热和化学反应等物理过程进行数值模拟,可以帮助工程师们更好地理解和优化各种设备和系统的性能。
下面将列举一些使用Fluent仿真的案例,以展示其在不同领域的应用。
1. 汽车空气动力学优化Fluent仿真可以对汽车外形进行流体力学分析,优化车身设计,降低风阻系数,提高车辆的燃油效率和稳定性。
2. 建筑空调系统设计通过Fluent仿真,可以模拟建筑内部空气流动和热传递,优化空调系统的设计和布局,提高室内空气质量,节约能源消耗。
3. 风力发电机翼型设计Fluent仿真可以模拟风力发电机翼型在风中的流动情况,优化翼型的气动性能,提高风力发电机的发电效率。
4. 燃烧室设计Fluent仿真可以模拟燃烧室内的燃烧过程,优化燃烧室的结构和燃料喷射方式,提高燃烧效率和减少污染物排放。
5. 石油钻井流体力学分析Fluent仿真可以模拟油井中流体的流动和压力变化,帮助工程师们优化钻井参数,提高钻井效率和安全性。
6. 医疗器械设计通过Fluent仿真,可以模拟医疗器械与人体组织的相互作用,优化器械的设计和材料选择,提高治疗效果和患者的舒适度。
7. 液压系统优化Fluent仿真可以模拟液压系统中液体的流动和压力变化,优化管路设计和阀门选择,提高液压系统的效率和响应速度。
8. 船舶流体力学分析通过Fluent仿真,可以模拟船舶在水中的流动情况,优化船体设计和推进系统,提高船舶的航行性能和燃油经济性。
9. 食品加工设备设计Fluent仿真可以模拟食品加工设备内部的流动和传热过程,优化设备的设计和操作参数,提高加工效率和产品质量。
10. 太阳能光伏板优化Fluent仿真可以模拟太阳能光伏板在不同光照条件下的温度分布和功率输出,优化光伏板的设计和散热方式,提高太阳能转换效率。
通过以上案例的描述,可以看出Fluent仿真在多个领域的应用广泛而深入。
fluent 土木案例

fluent 土木案例Fluent土木案例Fluent是一款流体力学模拟软件,可用于模拟各种流体现象,包括空气、水、油等。
在土木工程领域,Fluent可以用于模拟建筑物风荷载、水力学问题等。
本文将介绍一个Fluent在土木工程领域的应用案例。
案例背景:某城市的一座高层建筑在建设过程中出现了风荷载过大的问题。
建筑物位于城市中心,周围有许多高楼大厦,风场非常复杂。
为了解决这个问题,工程师们使用了Fluent进行数值模拟分析。
分析过程:1. 建立模型首先,工程师们需要建立一个建筑物的三维模型。
他们使用了CAD软件绘制了该建筑物的平面图和立面图,并将其导入到Fluent中进行三维重构。
由于该建筑物比较复杂,需要花费一定时间来完成三维重构。
2. 设定边界条件在模型建立完成后,工程师们需要设定边界条件。
由于该建筑物位于城市中心,周围有许多高楼大厦和道路,在设定边界条件时需要考虑这些因素。
工程师们将周围建筑物和道路的影响考虑在内,并设置了适当的边界条件。
3. 进行数值模拟在设定好边界条件后,工程师们开始进行数值模拟。
他们使用了Fluent中的风场模块,对建筑物受到的风荷载进行了模拟分析。
由于该建筑物高度较大,需要考虑不同高度处的风荷载情况。
4. 分析结果经过数值模拟分析,工程师们得出了该建筑物在不同风速下的受力情况。
他们发现,在某些风速下,该建筑物受到的风荷载超过了设计标准,存在安全隐患。
5. 优化方案根据分析结果,工程师们提出了一些优化方案。
他们通过增加建筑物表面的细节设计、改变建筑物形状等方式来减小风荷载。
然后再次使用Fluent进行数值模拟分析,并得出最终方案。
6. 结果验证最后,工程师们对最终方案进行了实验验证,并发现其有效性得到证实。
他们成功地解决了该建筑物在施工过程中遇到的风荷载过大的问题。
总结:通过Fluent的数值模拟分析,工程师们成功地解决了该建筑物在施工过程中遇到的风荷载过大的问题。
Fluent为土木工程领域提供了一种高效、准确、可靠的分析方法,为工程师们提供了有力的帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷热水混合器内的三维流动与换热问题
问题描述:冷水与热水分别自混合器的两侧沿水平切向方向流入,在容器内混合后经过下部渐缩通道流入等径的出流管,最后流入大气,混合器简图见下图所示。
一.利用gambit建立混合器计算模型
步骤1:启动gambit并选定求解器(fluent5/6)
步骤2:创建混合器主体大圆柱
图1圆柱体设置对话框图2混合器主体
步骤3:设置混合器的切向入流管
1.创建小圆柱
图3小圆柱设置对话框图4创建的小圆柱体及混合器主体2将入流管移到混合器中部的边缘
图5移动复制对话框图6将入流管移到混合器主体的边缘上3.将小入流管以Z轴为轴旋转1800复制
图7旋转复制对话框图8将入流管旋转复制后的混合器
步骤4:去掉小圆柱与大圆柱相交的多余部分,并将三个圆柱联接成一个整体
图9体积列表框图10合并体积后的混合器
步骤5:创建混合器下部的圆锥台
图11锥台设置对话框图12创建锥台后的混合器
步骤6:创建出流小管
1.创建出流小圆管
图13出流小管设置对话框图14创建出流小管后的混合器2.将其移动并与锥台相接
图15移动小出流圆管设置对话框图16移动小出流圆管后的混合器步骤7将混合器上部、渐缩部分和下部出流小管组合为一个整体
图17体积列表框图18合并体积后的混合器
步骤8:混合内区域划分网格
图19网格设置对话框
图20划分好的表面网格图步骤9检查网格划分情况
图21网格检查设置对话框
图22最差网格形状及其质量
步骤10设置边界类型
图23边界类型设置对话框
步骤11msh文件的输出
二.利用fluent3D求解器进行求解步骤1启动fluent并选择求解器3D
步骤2检查网格并定义长度单位
1.读入网格文件(下图为读入的图示)2.确定单位长度为cm
图24长度单位设置对话框3.检查网格
4.显示网格
图25显示网格设置对话框
图26显示网格图
步骤2创建计算模型
1.设置求解器
图27求解器设置对话框2.启动能量方程
图28能量方程设置对话框2.使用ε
k湍流模型
-
图29湍流模型设置对话框
步骤3设置流体的材料属性
图30材料属性设置对话框
图31流体材料库对话框步骤4设置边界条件
图32边界条件设置对话框
图33速度边界设置对话框2.设置入口2的边界条件
图34速度入口2的设置对话框
图35出口边界设置对话框步骤5:求解初始化
图36初始化设置对话框
步骤6:设置监视器
图37监视器设置对话框
步骤7:保存case和data文件步骤8:求解计算
图38迭代计算设置对话框
图39残差曲线图
图40出口速度监控图
三.计算结果的后处理步骤1:创建等(坐标)值面
1.创建一个z=4cm的平面,命名为surf-1
2.创建一个x=0的平面,命名为surf-2
图41等值面设置对话框
步骤2:绘制温度与压强分布图
1.绘制温度分布图
图42水平面上的温度分布图2.绘制壁面上的温度分布
图43壁面上的温度分布图
3.绘制垂直平面surf-2上的压力分布
图44竖直面上的温度分布图步骤3:绘制速度矢量
1.显示在surf-1上的速度矢量
图45水平面上的速度矢量图2..显示在surf-2上的速度矢量图
图46竖直面上的速度矢量图。