圆锥曲线的焦点弦问题(特征梯形)

合集下载

圆锥曲线中点弦直角弦焦点弦三大弦案

圆锥曲线中点弦直角弦焦点弦三大弦案

圆锥曲线中点弦直角弦焦点弦三大弦案一、用“点差法”解圆锥曲线的中点弦问题我们可以使用“点差法”来解决圆锥曲线的中点弦问题,即将弦的端点坐标代入圆锥曲线方程并作差,得到一个关于弦的中点和斜率的式子,从而减少运算量。

例1:对于椭圆x^2/4+y^2/2=1,如果AB是不平行于对称轴的弦,M是其中点,那么我们可以使用点差法证明K_AB=-2b^2/2a^2.例2:对于双曲线x^2/4-y^2/9=1,如果AB是不平行于对称轴的弦,M是其中点,那么我们可以使用点差法证明K_AB=2b^2/2a^2.二、直角弦对于椭圆x^2/8+y^2/4=1上的点P(2,2),我们可以通过作两条互相垂直的XXX和PB来求直线AB的方程。

例2:对于双曲线-x^2/4+y^2/1=1的顶点M(2,0),如果过M作两条互相垂直的直线与椭圆x^2/8+y^2/4=1相交于A、B 两点,我们需要判断直线AB是否过定点。

例3:对于抛物线y^2=2x上的点M(2,2),我们可以通过作两条互相垂直的弦MP和MQ来求直线AB过的定点。

例4:对于椭圆x^2/84+y^2/36=1,如果OA垂直OB,且直线AB的斜率为1,我们需要求直线AB的方程。

三、焦点弦1、对于抛物线y=x^2上的点P,如果线段PF1垂直于F1F2且PF1=8,我们需要求过P且倾斜角为θ的直线与抛物线的交点。

2、对于椭圆x^2/9+y^2/4=1,如果点P(3,0)在其上,且线段F1P和F2P的长度之和为10,我们需要求离心率。

3、对于双曲线x^2/16-y^2/9=1,如果其右焦点为(5,0),且过点P(1,2)且斜率为k的直线与双曲线交于两点,我们需要求离心率。

4、对于椭圆x^2/16+y^2/9=1,如果其左、右焦点分别为(-3,0)和(3,0),过点P(0,2)的直线与椭圆交于A、B两点,且A、B关于点M(0,-2)对称,我们需要求四边形面积的最小值。

练:1、对于椭圆x^2/4+y^2/2=1,如果点P在其上,且PF1垂直于F1F2且PF1=4,PF2=3,我们需要求椭圆的标准方程和直线l的方程。

圆锥曲线中直角梯形的应用

圆锥曲线中直角梯形的应用

圆锥曲线中直角梯形的应用
曾凡荃;刘财香
【期刊名称】《数理化解题研究:高中版》
【年(卷),期】2013(000)008
【摘要】圆锥曲线的"焦点弦"是高考的热点,配合准线构成一个直角梯形称为"焦准梯形",灵活运用这个梯形的性质在一些问题的解题过程中,可以大大简化运算过程,同时可以激发学生的学习兴趣,提高创造性思维能力,例1在椭圆x~2/4+
y★2/3=1中,F为右焦点,AB是过F的弦,若AF=BF/2,求直线AB的方程.分析通常方法是方程组方法,解题过程运算量大,这个学生当然要掌握,
【总页数】1页(P21-21)
【作者】曾凡荃;刘财香
【作者单位】江西省赣州市赣南师院附属中学,341000
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.大螺距直角梯形螺纹车铣加工宏程序的应用 [J], 董兆鹏;柏长友;杨浩
2.圆锥曲线中焦直角梯形的若干性质 [J], 罗永高
3.直角梯形在圆锥曲线中的应用 [J], 江民杰
4.直角梯形的一个不等式及其应用 [J], 孙伟奇
5.圆锥曲线的焦点弦直角梯形 [J], 丁玲
因版权原因,仅展示原文概要,查看原文内容请购买。

一类圆锥曲线关于焦点弦问题的新解法

一类圆锥曲线关于焦点弦问题的新解法
* ] " !! ! !! ! " ! 方法 技巧 ! ! ! 与 维 ! " !思 !! !" !
中 学数学
= % % ^年第 =期
一 类 圆 锥 曲 线 关于 焦 点 弦 问 题 的 新 解 法
# $ % % # % 西 北师范 大学 数学 与信 息科 学学 院 王立 新
本 文介 绍 了 圆 锥 曲 线 的 焦 点 弦 & 或焦半 径’ 与离 心率 的一 条 新关 系式 及其 推 论 ( 并说 明了 其在 解高考 题中 的应 用 ) 定理 设点 +是 离心 率为 , 焦点 在 -轴 上 的圆 ( 锥曲线的 一个焦点( 过焦 点 + 的弦 与 -轴 的夹 角为 . ( / 为 焦点 + 到 其对 应 准 线的 距离 ( 为 该圆 锥 曲线 0 的焦 半径 ( 则有 , 1 图* 0 & 6’ /2 0 3 4 5 . 成立 ( 其中 7 若该 圆锥 曲线 为椭 圆 ( 当 定点 + 为左 & * ’ 焦点 时 ( 式 取8 号( 当 定点 + 为右 焦点 & 6’ 9: 时( 式取 8 号< & 6’ ;: 若该 圆锥 曲线 为双 曲线 ( 当定 点 + 为 & = ’ 右焦 点时 ( 式取 8 号( 当定 点 +为 左焦 & 6’ 9: 点时 ( 式 取8 号< & 6’ ;: 若该 圆锥 曲 线为 抛物 线 ( 当开 口 向右 & $ ’ 时( 式取 8 号( 当开 口向 左 时 ( 式 & 6’ 9: & 6’ 取8 号) ;: 证明 留给读 者 ) 推论 > 设点 + 是 离 心率 为 , 焦 点在 ( 轴上 的圆 锥曲 线的 一个 焦点 ( 过 +的 弦 ? @与 则两 焦半 径 ? -轴的 夹角为 . ( +与 + @之 比为 A 1 略证 * 9, 3 4 5 . ) * ;, 3 4 5 . , 1 0 /9 0 3 4 5 .

圆锥曲线焦点弦的一个性质及其应用举例

圆锥曲线焦点弦的一个性质及其应用举例

圆锥曲线焦点弦的一个性质及其应用举例22性质 ⑴过 椭圆 x2 + y2 =1(a >b >0)焦点 F 的直 线交椭圆 于 A 、B 两点 ,设 abAF p, BF =q 。

若 A 、B 两点在双曲线的同一支上(此时称 AB 为双曲线的同支焦点弦)AF p, BF =q , 11 则 + = pq 2a b 2 2 = e 2d 0 ,其中d = b c 2是焦准距,cce= 是离心率。

a⑵过双曲线 22x 2 y 2 122 ab(a > 0,b > 0) 焦点 F 的直线交双曲线于 A 、 B 两点,设1 12 b 2则 + = ,其中 d 0 = 是焦准距; p q ed 0 c若 A 、B 两点分别位于双曲线的左支和右支上 时称 AB 为双曲线的异支焦点弦),则1 - 1pqe 2d 0 ,其中d 0 b 2c 是焦准距, ce= 是离心率。

a(抛物线的类似性质,本文从略) 证明:(只证性质⑴ , 性质⑵的证明从略) 由对称性,不妨取 F 为右焦点。

设右准线 l 与 x 轴交于点 D ,过 A 作 AG ⊥l 于 G ,过 B 作 BH ⊥l 于点 H ,则 AG ∥FD ∥ BH ;且由椭圆的第二定义知, |AG|= AF p,|BH|= BF q。

e e e e令|FE|= m ,|ED|= n ,故由 mq,n = pmnpq p = p+q,q =。

∴e(p q)e e因此, b2 m +n = ? c 2pq b2e(p q) 。

c2∴p q 2c2。

又 ec,从而1 1 p q 2a2= 2 ,其中d0= b就是焦准距。

证毕。

pqeb 2a p q pqb 2ed 0 c[ 说明 ] ①在上述证明过程中出现的“ m = n ”, “即 |FE|=|ED| ”,亦即 E 为线段 FD 的中点(如图 1) 这是椭圆焦点弦的另一条性质。

双曲线与抛物线也则 m +n =|FD|=FEBF,AGBA,BH GB =AB可得:②如图 1,若设∠ AFD =θ,并分别过 A 、F 作 FD 和 BH 的垂线,则可证: p= ba+ ccos θ2ab2; 从 而 得 焦 点 弦 长 公 式 : |AB| = p + q= 2 2 2 q =1 - e cos θa -c cos θ22d0e2,其中d 0 就是焦准距 b。

圆锥曲线焦点弦长公式(极坐标参数方程)

圆锥曲线焦点弦长公式(极坐标参数方程)

圆锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。

由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。

本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e,通径长为H ,则(1)当焦点在x 轴上时,弦AB 的长|cos 1|||22αe HAB -=; (2)当焦点在y 轴上时,弦AB 的长|sin 1|||22αe HAB -=。

推论:(1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22cos 1||e HAB -=;当A 、B 不在双曲线的一支上时,1cos ||22-=αe HAB ;当圆锥曲线是抛物线时,α2sin ||HAB =. (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22sin 1||e HAB -=;当A 、B 不在双曲线的一支上时,1sin ||22-=αe HAB ;当圆锥曲线是抛物线时,α2cos ||HAB =.典题妙解下面以部分高考题为例说明上述结论在解题中的妙用。

例1(06湖南文第21题)已知椭圆134221=+y x C :,抛物线px m y 22=-)((p >0),且1C 、2C 的公共弦AB 过椭圆1C 的右焦点。

(Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.例2(07全国Ⅰ文第22题)已知椭圆12322=+y x 的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且BD AC ⊥,垂足为P 。

圆锥曲线焦点弦的八大结论

圆锥曲线焦点弦的八大结论

圆锥曲线焦点弦的八大结论圆锥曲线是几何学中的一类重要的曲线,包括圆、椭圆、双曲线和抛物线。

在圆锥曲线的研究中,焦点和弦是两个重要的概念,它们之间有着许多有趣的关系。

本文将介绍圆锥曲线焦点弦的八大结论。

一、椭圆的焦点弦椭圆有两个焦点,分别为F1和F2。

对于任意一条经过椭圆两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2上;2. 焦点到弦的距离之和等于弦长,即AF1 + BF2 = AB;3. 焦点到弦的距离之差等于弦段所在直线与椭圆长轴的距离之差,即AF1 - BF2 = PM - PN,其中P和N分别为弦AB的两个端点在椭圆上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与椭圆焦点连线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为椭圆长轴的中点;5. 弦中点M到椭圆两个焦点的距离之差等于弦段所在直线与椭圆长轴的距离之差,即MF1 - MF2 = PM - PN;6. 弦端点P和N到椭圆两个焦点的距离之差相等,即PF1 - PF2 = NF1 - NF2;7. 椭圆的两个焦点到弦的距离之积等于椭圆长轴的平方减去弦长的平方,即AF1·BF2 = AC - AB,其中AC为椭圆长轴的长度;8. 弦段所在直线与椭圆中心连线的斜率等于椭圆长轴和短轴的比值,即PG/PM = b/a,其中a和b分别为椭圆长轴和短轴的长度。

二、双曲线的焦点弦双曲线有两个焦点,分别为F1和F2。

对于任意一条经过双曲线两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2的延长线上;2. 焦点到弦的距离之差等于弦长,即AF1 - BF2 = AB;3. 焦点到弦的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即AF1 + BF2 = PM + PN,其中P和N分别为弦AB的两个端点在双曲线上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与双曲线渐近线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为双曲线渐近线的中点;5. 弦中点M到双曲线两个焦点的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即MF1 + MF2 = PM + PN;6. 弦端点P和N到双曲线两个焦点的距离之差相等,即PF1 - PF2 = NF2 - NF1;7. 双曲线的两个焦点到弦的距离之积等于双曲线的常数c的平方减去弦长的平方,即AF1·BF2 = c - AB,其中c为双曲线的常数;8. 弦段所在直线与双曲线中心连线的斜率等于双曲线焦点之间的距离和双曲线渐近线的斜率之和的倒数,即PG/PM = (F1F2/c) + (c/PN)。

圆锥曲线中焦直角梯形的若干性质

圆锥曲线中焦直角梯形的若干性质

点 共线 性 质 2 焦 直 角 梯 形 A D 中 , ^ 的 倾 BC 若 B
茸、 D 所 围 成 的 四 边 形 称 之 为 圆 锥 曲 线 的 焦 直 角 梯 C、 形 . 称 为 焦 直 角 梯 形 .如 图 l 焦 直 角 梯 形 A C 简 , B D 中 、 然 有 lA 显 Fl= Pl D } l F l l c l 其 中 A , B = , e 离心 宰. 为 性 质 1 焦 直 角 梯 形 A C 中, 为 焦点 , B D
2 )项 数 为 奇 数 项 的 等 差 数 列 , 数 项 之 和 为 奇

但口 2+口 . 口 2 l+口 L ,



即若 等 差 数列有 奇 数项 , 偶 数 其
项 之 和 与 奇数 项 之 和 的 比是 某 相邻 两 自然数 之 比.
而上侧中 , = 2 6不能 玎 分成 两 个 相 邻 自然 丽 7
1 BFl:
. l一
证 明
3)
△ AFD
延 长 D 交 F
则 lA Fl
。 。
, F I IB
EF f CB 。
}C l l BF l n
_ = ^ i …s= ÷ , 『 ( ’ 即 a^ 一
同 理 可 证 为 钝 角 时 也 成 立
AD
I EP 。l





{AF l
现错 误.
数 之 比 , 此 原 题 目设 计 不 合 理 . 因

般地 , 于等差数列 { 对
, 有 2 若 n+1项 , 则
s 一5 =。 +且 々 _ n-
; 有2 若 n项 , s 一5 则 _

圆锥曲线大题—弦长问题-含解析

圆锥曲线大题—弦长问题-含解析

第02章弦长问题经过第一章的学习, 本章部分题目会跳步(实际考试一定要把完整过程写上去), 对于不知道硬解公式的人来说是跟不上的, 但是对于掌握硬解公式的人来说解题效率会有很大提升!通过前面的学习, 相信你已经对硬解定理有了一定的了解和掌握, 在圆雉曲线中弦长问题的计算也是比较烦琐的, 本章目的是通过练习能够熟练使用弦长公式, 并不要求死记硬背, 跟随着我们的脚步, 慢慢熟练掌握这个公式即可, 相信掌握之后能够大大减少你的计算时间!首先推导一下弦长公式. 由{x2a2+y2b2=1Ax+By+C=0ε=a2A2+b2B2消y得(a2A2+b2B2)x2+(2a2AC)x+a2(C2−b2B2)=0εx2+βx+μ=0Δx=β2−4εμ=4a2b2B2(ε−C2)由弦长公式AB=√1+k2√(x1+x2)2−4x1x2有AB =√1+A2B2√β2ε2−4εμε⋅ε=√1+A2B2√β2−4εμε2=√1+A2B2√Δxε2=√1+A2B2√4a2b2B2|ε−C2|ε2=√A2+B22ab√∣ε−C2Φ|ε|=2ab⋅√A2+B2⋅√∣ε−C2T|ε|所以【注】这个公式的绝对值对于椭圆来说是不必要的,对于双曲线来说是必要的. 在练习题中如果急需弦长, 只需看着上面的方程组来默写弦长即可. 我们先借助一些简单的题目来熟悉一下弦长公式.【例 1】过椭圆 x 26+y 22=1 的布焦点且斜率为 1 的直线 l 与椭圆交于 A 、B 两点, 求 线段 AB 的长度.解 :法一:一般解法.吻知右焦点坐标为 (2,0), 设直线 l 的方程为 y =x −2, 联立方程组有{x 26+y 22=1x −y −2=0消去 y 并整理得 2x 2−6x +3=0.设 A (x 1,y 1),B (x 2,y 2), 故x 1+x 2=3, x 1x 2=32则|AB|=√1+k 2|x 1−x 2|=√6法二: 套公式解法.公式: AB =2ab⋅√A 2+B 2⋅√|ε−C 2||ε| (对照使用,熟悉该式, 建议保留原始数据去 计算).这里说明一下:并不是让大家做题直接套公式,首先联立方程的标准书写流程大家都是会的,当熟悉了硬解定理之后,联立方程的步骤就相当于默写,弦长公式也是可以跳过前面的流程邺写的,这对提高解题效率是很有帮助的.其实圆雉曲线联立的计算流程都是千篇一律的,当熟悉了硬解公式后,解题的重心就偏向于分析解题思路而不是限于计算,也就是节省计算时间来分析题日思路.下面的解题过程会适当跳步.【例2】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的焦距为2,离心率为√22.(1)求椭圆C 的标准方程.(2)经过椭圆的左焦点F 1作倾斜角为60∘的直线l ,直线l 与椭圆交于A 、B 两点,求线段AB 的长.解:(1){2c =2c a =√22⇒x 22+y 2=1.a 2=b 2+c 2(2)过椭圆的左焦点F 1(−1,0),倾斜角为60∘的直线l 的方程为y =√3(x +1).公式:AB =2ab⋅√Λ2+B 2⋅√|ε−C 2||ε|.{x 22+y 21=1√3x −y +√3=0AB =2√2×√1×√√32+12√7−√322×√32+1=8√27例1、例2正常计算也是十分简单的,因为不含用字母表示的末知量,接下来我们看看带用字母表示的末知量的情况.【例3】已知椭圆G:x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,长轴长为4,过点(m,0)作圆x 2+y 2=1的切线l 交椭圆G 于A 、B 两点.(1)求椭圆G 的方程.(2)将|AB|表示为m 的函数,并求|AB|的最大值.解:(1)由题意可得{c a =√322a =4a 2=c 2+b 2⇒x 24+y 2=1. (2)法一:设切线l 的方程为ty =x −m,|m|⩾1. 由√t 2+1=1,得m 2=t 2+1.联立{ιy =x −m x 2+4y 2=4,得 (t 2+1)y 2+2tmy +m 2−4=0由Δ>0,可得4+t 2>m 2,所以y 1+y 2=−2tm t 2+4,y 1y 2=m 2−4t 2+4|AB|=√(1+t 2)[(y 1+y 2)2−4y 1y 2]=1√3|m|m 2+3=1√3|m|+3|m|⩽2 当务仅当|m|=√3时取等号.此时|AB|取得最大值2.法二:使用公式计算.公式:AB =2ab⋅√A 2+B 2⋅√|ε−C 2||ε|. 由{x 24+y 21=1x −ty −m =0,得 AB =2√4×√1×√1+t 2√4+ι2−m 24+t 2由相切可得|m|√1+t 2=1⇒t 2=m 2−1所以 AB =2√4×√1×√1+t 2√4+t 2−m 24+t 2=4√3|m|m 2+3=4√3|m|+3|m|后面同法一一样,不再慗述.【例4】设椭圆E:x 2a 2+y 2b 2=1(a >b >0)过M(2,√2)、N(√6,1)两点,O 为坐标原点.(1)求椭圆E 的方程.(2)是否存在圆心在原点的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A 、B ,且OΛ⊥OB , 若存在,写出该圆的方程,并求出|AB|的范围;若不存在,说明理由.解:(1)因为椭圆E:x 2a 2+y 2b 2=1(a >b >0)过M(2,√2)、N(√6,1)两点,所以{4a 2+2b 2=16a 2+1b 2=1 解得a 2=8,b 2=4所以椭圆E 的方程:x 28+y 24=1.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A 、B ,且OA ⊥OB ,设A (x 1,y 1),B (x 2,y 2),该圆的切线方程为x =ky +m .由{x 28+y 24=1x −ky −m =0消x 得,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,;消y 得,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.所以x 1x 2=,,,,,,,,,,,,,,;,y 1y 2= ,,,,,,,,,,,,,,;Δ>0⇒,,,,,,,,,,,,,.因为OA ⊥OB ,所以x 1x 2+y 1y 2=8(m 2−4k 2)+4(m 2−8)8+4k 2=0 所以(8+4)m 2=8×4(1+k 2)⇒m 2=83(1+k 2) 因为直线y =kx +m 为圆心在原点的圆的一条切线,所以圆的半径为r =√1+k 2=√8×48+4=2√63(应用公式r =√a 2b 2a 2+b 2) 所以所求的圆为x 2+y 2=83. 由弦长公式有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:探究抛物线中的焦点弦问题
【学习目标】:
探讨解决抛物线中有关焦点弦问题的思想方法.
【问题探究】:
抛物线定义:平面内与一个定点F 的距离和一条定直线l 距离相等的点的轨迹.
问题一:已知过抛物线2
2(0)y px p =>的焦点F 的直线 交抛物线于1122(,),(,)A x y B x y 两点,则?AB = (1):12AB x x p =++ (2):m i n AB
问题二、已知过抛物线22(0)y px p =>的焦点F 的直线 交抛物线于,A B 两点,'
',A B 为,A B 在准线上的射影, 则'
'
?A FB ∠= (3):'
'
90A FB ∠=
(4):以Q 为圆心,以''
A B 为直径的圆切AB 于F 点
(x 1,y 1)
(x 2,y 2)
x
y


(x 1,y 1)
(x 2,y 2)
x
y
F´B´
A´Q
问题三、已知过抛物线2
2(0)y px p =>的焦点F 的直线
交抛物线于,A B 两点,''
,A B 为,A B 在准线上的射影, 则以,A B 为直径的圆与准线的位置关系?
(5):以P 为圆心,以AB 为直径的圆切''A B 于Q 点 (6):90AQB ∠
=
问题四、已知过抛物线2
2(0)y px p =>的焦点F 的直线 交抛物线于1122(,),(,)A x y B x y 两点,则1212?,?x x y y == (7):22
121
2,4
p x x yy p ==-
问题五、已知过抛物线22(0)y px p =>的焦点F 的直线
交抛物线于1122(,),(,)A x y B x y 两点,则11
?AF BF
+= (8):112A F B F p
+=
(x 1,y 1)
(x 2,y 2)
x
y

A´Q
P
(x 1,y 1)
(x 2,y 2)
x
y
(x 1,y 1)
(x 2,y 2)
x
y
例1、过抛物线2
4y x =的焦点做直线交抛物线于1122(,),(,)A x y B x y 两点,如果
126x x +=,那么AB =
变式:过抛物线2
4y x =的焦点做直线交抛物线于,A B 两点,如果8AB =,O 为坐标原点,则OAB ∆的重心的横坐标是
例2、直线l 经过抛物线2
2(0)y px p =>的焦点F ,且与抛物线交于,A B 两点,由,A B 分别向准线引垂线'
'
,AA BB ,垂足分别为'
'
,A B ,如果''A B a =,Q 为''
A B 的中点, 则QF = (用a 表示)
变式:直线l 经过抛物线2
2(0)y px p =>的焦点F ,且与抛物线交于,A B 两点,由,A B 分别向准线引垂线'
'
,AA BB ,垂足分别为'
'
,A B ,如果,AR a BF b ==,Q 为''
A B 的中点, 则QF = (用,a b 表示)
例3、设坐标原点为O ,过焦点的直线l 交抛物线2
4y x =于,A B 两点,则OA OB ⋅=
例4、过抛物线2
2
(0)y ax a =>的焦点F 作一直线交抛物线于,P Q 两点,若线段PF 与FQ 的长分别是,p q ,则
11
p q
+=
小结:
(1)抛物线中的焦点弦问题很多都可以转化为这个 直角梯形中的问题,在解决这类问题时注意对这个梯形 的运用;
(2)万变不离其宗,解决问题的关键仍然是抛物线定义.
(x 1,y 1)
(x 2,y 2)
x
y

A´。

相关文档
最新文档