气动执行器工作原理修订版
气动执行器工作原理

-<1压缩空气从r 口(B)进入r缸卿活塞(GZ间中腔时・便两活塞分离向气缸两端方向移动•迫使两端的弹簧压缩・两端r腔的空r通过r 口(A)排出•冋时使两活塞(C)的齿条同步带动输出軸(D)(齿轮)逆时针方向旋转90度。
在压缩空经过电峨阀換向后・气缸的两活塞在弹簧的弹力下向屮间方向移动•中间气腔的空气从气口(B〉排出.冋时使苗活塞(C}的齿条冋步带动输出轴(D) {齿轮)顾时甘方向旋转90度-可以从两端调於微S角度•松动螺毎(E) 。
(E).锁紧螺母用内六角扳乎柠动调节嫖栓(円调整所需角反执行》的使用:便用本执行器时•先确定阀门的妞矩•水蒸r或非润滑的介质增加25%安全值:非润滑的干气介质增加60%安全ffb非润滑用r体输送的颗粒粉料介质增加100%安全值:对T•淸沾、无摩擦的润滑介质增加2只安全值.然启报据气源工作斥力•査找ffl矩表•可得到准确的执行器型号,选用双作用式GT例:r源乐力只有5bar,控制J-个需耍扭矩200Vmf^阀・介质为非润滑的水蒸厲・考虔到安全W 渎.增加25%零干250X・a ,首先按农査找气源压力5bar .然后沿该列垂直査找竽于或相近的扭矩数据・选272X. m 再沿该行向左査找其型号•选律GT130型。
选用单作用式(弹簧S位>GT-S例^气源压力只有Ibar •控制一个需®扭矩100X.□蝶阀•介两为非润滑的干燥气体.考堪到安全W素.增加60%第丁•160\上•首先按表査找弹簧e位终点得到相近扭矩166X. □,然后•气源压力扭矩应该大于弹寳复位扭矩・正好r源压力扭矩大196Va的终点妞矩[bar沿该行向左査找气源压力于弹賛a位扭矩・再沿该行向左査找其型号•选择GT160S型,弹賛数&10根・解剖图及零配件::控制系统接线图电«22OV AC J KDV 二 ;汽七*.三4气»处》三联件电»220V AC«24V PV HJ位开关盒Hfitasn — {0 4-0 SMpa)r动《行»外形及连接尺寸图:Al (CTE)0HtkC XdopthT•偉《悅w口SxS:N. m位气源乐力(MPa> 型环0・2 0.3 0.4 0.5 0・6 0.7 0・8 31.4 27.5 23.6 15.7 7.9 GT50 IL 8 19,6 5S,9 51.5 44.2 36,8 22.1 14.7 GT65 29.5 101 91 78 63 52 39 26GT-S单作用式输出扭矩表执行器的重量/容量/开或闭的时间。
气动执行机构工作原理

气动执行机构工作原理
气动执行机构工作原理是基于气动原理和控制技术的一种机电传动装置。
它通过控制压缩空气的流动方式,使得执行机构能够实现一定的运动或力的输出。
气动执行机构的工作原理可以简单描述为以下几个步骤:
1. 气源供气:气动执行机构的压缩空气是通过气源供应系统提供的。
气源一般包括空气压缩机、气体储气罐等。
气源供气时,通过调节阀门可以控制气源的压力大小。
2. 控制气流:控制气动执行机构的运动需要调控气流的流向和流量。
通常通过气控单元来实现,它包括气动阀门、电磁阀、气动开关等。
通过打开或关闭这些气控元件,可以改变气源的流向和流量。
3. 转换为机械运动:当气流进入气动执行机构内部时,它会作用于内部的活塞或薄膜等工作元件上。
通过气压的作用,活塞向前或向后运动,从而带动连杆、摩擦轮等机械部件实现运动。
4. 力的输出:根据不同的应用需求,气动执行机构可以输出不同的力或运动。
当气源压力足够高时,可以通过放大机构来增大力的输出。
同时,通过分别控制进气口和排气口的流量大小,也可以实现不同的速度和力的调控。
需要注意的是,气动执行机构的工作过程中,因为气源的压力和流量是通过控制元件来调控的,所以控制系统的稳定性和准
确性对其工作性能有着重要影响。
一个完善的气动执行机构应该具备控制方便、运动平稳、可靠性高等特点。
气动执行器工作原理

气动执行器工作原理气动执行器是用气压力驱动启闭或调整阀门的执行装置,又被称气动执行机构或气动装置,不过一般通俗的称之为气动头。
气动执行器有时还配备确定的辅佑襄助装置。
常用的有阀门定位器和手轮机构。
阀门定位器的作用是利用反馈原理来改善执行器的性能,使执行器能按掌控器的掌控信号,实现精准的定位。
手轮机构的作用是当掌控系统因停电、停气、掌控器无输出或执行机构失灵时,利用它可以直接操纵掌控阀,以维持生产的正常进行。
一、工作原理当压缩空气从A管咀进入气动执行器时,气体推动双活塞向两端(缸盖端)直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开。
此时气动执行阀两端的气体随B管咀排出。
反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中心直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭。
此时气动执行器中心的气体随A管咀排出。
以上为标准型的传动原理。
依据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。
单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。
A管咀进气为开启阀门,断气时靠弹簧力关闭阀门。
二、与电动执行器的区分1、从技术性能方面讲,气动执行器的优势紧要包括以下4个方面(1)工作环境适应性好,特别在易燃、易爆、多尘埃、强磁、辐射和振动等恶劣工作环境中,比液压、电子、电气掌控更优越。
(2)动作快速、反应快。
(3)负载大,可以适应高力矩输出的应用(不过,现在的电动执行器已经渐渐达到目前的气动负载水平了)。
(4)行程受阻或阀杆被扎住时电机简单受损。
2、电动执行器的优势紧要包括:(1)不需要对各种气动管线进行安装和维护。
(2)可以无需动力即保持负载,而气动执行器需要持续不断的压力供应。
(3)电动执行器没有“漏气”的不安全,牢靠性高,而空气的可压缩性使得气动执行器的稳定性稍差。
气动执行机构的工作原理

气动执行机构的工作原理
气动执行机构是一种使用气体压力来产生机械运动的装置。
其工作原理基于气体的压力传递和控制,包括以下几个关键步骤:
1. 压力供给:气动执行机构通过气源供给系统获得压缩空气或其它气体,一般由气压驱动器或空气压缩机提供。
2. 压力传输:气源供给的压缩气体通过管道或软管传输到气动执行机构中。
通常采用高压气体进入气室中,然后通过控制阀门进行流量控制。
3. 压力控制:通过控制阀门或其他调节装置,可以控制气体的流量和压力。
不同的控制方式和装置会产生不同的动作效果,如单向阀门、双向阀门、调节阀或比例阀等。
4. 动力转换:气动执行机构根据控制阀门的开闭程度和气流控制来转换气体能量为机械运动。
当气体压力进入气室时,推动活塞或膜片等机件运动,从而实现物体的推拉、转动等动作。
5. 反馈控制:有些气动执行机构需要定位或反馈控制,可以通过安装传感器、限位器或开关等装置来检测位置和运动。
这些信号可以与控制系统相连,使其能够控制和监测气动执行机构的运行状态。
总之,气动执行机构通过气源供给气体,并通过控制阀门调节气流,将气体能量转换为机械运动。
它们在自动化控制系统中被广泛应用,常见的应用包括气动缸、气动马达和气动阀门等。
气动执行器(电动执行器)工作原理

气动执行器(电动执行器)工作原理气动执行器与电动执行器都是用在阀门上的执行机构,我们很常见的电动球阀电动阀门电动蝶阀这些都是内置了电动执行器。
而气动球阀气动蝶阀气动阀门上呢?都是使用的气动执行器,所有我们能够很好的分辩阀门上使用的执行器,呵呵!下面我们就来详细的介绍动执行器(电动执行器)的工作原理。
气动执行机构采用活塞式气缸及曲臂转换结构,输出力矩大,体积精小。
执行机构采用全密封防水设计防护等级高。
气缸体采用进口镜面气缸,无油润滑、摩擦系数小、耐腐蚀、具有超强的耐用性及可靠性,所有传动轴承均采用边界自润滑轴承无油润滑,确保传动抽不磨损。
气动执行器在工作时,将空气由A工作孔输入,气缸内气压推动活塞向两边移动,输出轴逆时针旋转,带动阀门实现启闭操作。
压缩空气由B工作孔输入,气缸内气压推动活塞向中心靠拢,输出轴逆时针旋转,带动阀门实现启闭操作。
这就是气动执行器的工作原理,我可以看出气动执行器在工作时能够快速的使得气缸内的旋转。
下面我们对气动执行器与一个详细的介绍,在下面的介绍我们会从多角度的阐述。
气动执行器1、紧凑的双活塞齿轮齿条机构,灵活轻巧的双活塞连杆机构,角行程输出。
2、缸体材料为压铸铝合金(铝合金采用硬质阳极氧化耐磨、防腐蚀、寿命长)。
3、气源:过滤、干燥或加油润滑的洁净空气,最小压0.1 MPa,最大压力1MPa。
4、内表面的特殊处理保证最小摩擦及长久寿命。
5、采用低摩擦材料制成的滑动装置,避免了金属与金属的直接接触。
6、底面固定孔便于执行器与阀连接并使其对正,符合ISO5211/DIN3337标准。
气动执行器在工作时紧凑的双活塞齿轮齿条机构,灵活轻巧的双活塞连杆机构,角行程输出。
而缸体材料为压铸铝合金(铝合金采用硬质阳极氧化耐磨、防腐蚀、寿命长)。
气动执行器的内表面的特殊处理保证最小摩擦及长久寿命。
气动执行器供气孔符合NAMUR标准或符合NAMUR标准的转接板。
气动执行器行程调整:在0°、90°位置有±4°的可调范围。
气动执行器结构及原理

气缸结构与原理学习气动执行机构气动执行机构俗称又称气动执行器英文:Pneumatic actuator按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合;气动执行器是执行器中的一种类别;气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING 双作用;SPRING RETURN 单作用的开关动作只有开动作是气源驱动,而关动作是弹簧复位;气动执行机构简介气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式;活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆;拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上;齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用;齿轮齿条式:齿轮齿条:活塞式:气动执行机构的缺点控制精度较低,双作用的气动执行器,断气源后不能回到预设位置;单作用的气动执行器,断气源后可以依靠弹簧回到预设位置工作原理说明班当压缩空气从A管咀进入时,气体推动双活塞向两端缸盖端直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开;此时气动执行阀两端的气体随B管咀排出;反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭;此时气动执行器中间的气体随A管咀排出;以上为标准型的传动原理;根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门;单作用弹簧复位型气动执行器A管咀为进气口,B管咀为排气孔B管咀应安装消声器;A管咀进气为开启阀门,断气时靠弹簧力关闭阀门;特点紧凑的双活塞齿轮,齿条式结构,啮合精确,效率高,输出扭矩恒定;铝制缸体、活塞及端盖,与同规格结构的执行器相比重量最轻;缸体为挤压铝合金,并经硬质阳极氧化处理,内表面质地坚硬,强度,硬度高;采用低摩擦材料制成的滑动轴承,避免了金属间的相互直接接触,摩擦系数低,转动灵活,使用寿命长;气动执行器与安装、连接尺寸根据国际标准ISO5211、DIN3337和VDI/VDE3845进行设计,可与普通气动执行器互换;气源孔符合NAMUR 标准;气动执行器底部轴装配孔符合ISO5211标准成双四方形,便于带方杆的阀线性或45°转角安装;输出轴的顶部和顶部的孔符合NAMUR 标准;两端的调整螺钉可调整阀门的开启角度;相同规格的有双作用式、单作用式弹簧复位;可根据阀门需要选择方向,顺时针或逆时针旋转;根据用户需要安装、定位器开度指示、回信器、各种限位开关及手动操作装置;气动执行器分类执行器按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合;气动执行器是执行器中的一种类别;气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING 双作用;SPRING RETURN 单作用的开关动作只有开动作是气源驱动,而关动作时弹簧复位;1气动执行器的选型注:本文均以DA/SR系列气动执行机构为例,说明执行机构的选用这个参考资料的目的是帮助客户正确选择执行机构,在把气动/电动执行机构安装到阀门之前,必须考虑以下因素; 阀门的运行力矩加上生产厂家的推荐的安全系数/根据操作状况; 执行机构的气源压力或电源电压; 执行机构的类型双作用或者单作用弹簧复位以及一定气源下的输出力矩或额定电压下的输出力矩; 执行机构的转向以及故障模式故障开或故障关正确选择一个执行机构是非常重要的,如执行机构过大,阀杆可能受力过大;相反如执行机构过小,侧不能产生足够的力矩来充分操作阀门;一般地说,我们认为操作阀门所需的力矩来自阀门的金属部件如球芯,阀瓣和密封件阀座之间的磨擦;根据阀门使用场合,使用温度,操作频率,管道和压差,流动介质润滑、干燥、泥浆,许多因素均影响操作力矩球阀的结构原理基本上根据一个抛光球芯包括通道包夹在两个阀座这间上游和下游,球心的旋转对流体进行拦截或流过球芯,上游和下游的压差产生的力使球芯紧靠在下游阀座浮动球结构;这种情况下操作阀门的力矩是由球芯与阀座、阀杆与填料相互摩擦所决定的;如图1所示,力矩最大值发生在出现压差且球芯在关闭位置向打开方向旋转时蝶阀;蝶阀的结构原理基本上根据固定在轴心的蝶板;在关闭位置蝶板与阀座完全密封,当蝶板旋转绕着阀杆后与流体的流向平行时,阀门处于全开位置;相反当蝶板与流体的流向垂直时,阀门处于关闭位置;操作蝶阀的力矩是由蝶板与阀座、阀杆与填料之间的磨擦所决定的,同时压差作用在蝶板上的力也影响操作力矩如阀门在关闭时力矩最大,微小地旋转后,力矩将明显减小旋塞阀的结构原理是基本根据密封在锥形塞体里的塞子;在塞子的一个方向上有一个通道;随着塞子旋入阀座来实现阀门的开启和关闭;操作力矩通常不受流体的压力影响而是由开启和关闭过程中阀座和塞子之间的摩擦所决定的;阀门在关闭时力矩最大;由于有受压力的影响,在余下的操作中始终保持较高的力矩双作用执行机构的选用以DA系列气动执行机构为例齿轮条式执行机构的输出力矩是活塞压力气源压力所供乘上节圆半径力臂所得,如图4所示;且磨擦阻力小效率高;如图5所示,顺时针旋转和逆时针旋转时输出力矩都是线性的;在正常操作条件下,双作用执行机构的推荐安全系数为25-50% 单作用执行机构的选用以SR系列气动执行机构为例在弹簧复位的应用中,输出力矩是在两个不同的操作过程中所得,根据行程位置,每一次操作产生两个不同的力矩值;弹簧复位执行机构的输出力矩由力空气压力或弹簧作用力乘上力臂所得第一种状况:输出力矩是由空气压力进入中腔压缩弹簧后所得,称为"空气行程输出力矩"在这种情况下,气源压力迫使活塞从0度转向90度位置,由于弹簧压缩产生反作用力,力矩从起点时最大值逐渐递减直至到第二种状况:输出力矩是当中腔失气时弹簧恢复力作用在活塞上所得,称为"弹簧行程输出力矩"在这种情况下,由于弹簧的伸长,输出力矩从90度逐渐递减直0度如以上所述,单作用执行机构是根据在两种状况下产生一个平衡力矩的基础上设计而成的;如图11所示;在每种情况下,通过改变每边弹簧数量和气源压力的关系如每边2根弹簧和巴气源或反之,有可能获得不平衡力矩在弹簧复位应用中可获得两种状况:失气开启或失气关闭;在正常工作条件下,弹簧复位执行机构的推荐安全系数为25-50% 弹簧复位执行机构的选用示例同时见技术数据表:弹簧关失气球阀的力矩=80NM安全系数25%=80NM+25%=100NM气源压力=被选用的SY-SR执行机构是SR125-05,因为可产生下列数值:弹簧行程0o=弹簧行程90o=空气行程0o=空气行程90o=CCW逆时针方向压缩空气有A口输入, 使左右活塞向相反方向运动,输出轴逆时针方向运转,两活塞侧面的空气由B口排出;CW顺时针方向压缩空气有B口输入,使左右活塞向中心移动,输出轴顺时针方向转动,两活塞中间的空气由A口排出;CCW逆时针方向压缩空气有A口输入,使左右活塞向相反方向运动,输出轴逆时针方向转动,两活塞侧面空气由B口排出;CW顺时针方向失气时,由于弹簧的作用使两活塞向中心移动,输出轴顺时针方向转动,空气由A口排出订货须知气动执行器:双作用式,单作用式常闭式或常开式;阀门工作压力,使用介质及工作的环境温度,硬或软密封;电磁阀:双电控电磁阀,单电控电磁阀,使用电压,是否防爆;信号反馈:机械式开关,接近式开关,使用电压,输出电流信号,防爆型;定位器:气动定位器,电气定位器,电流信号,气压信号,电气转换器,防爆型;气源处理三联件;手动装置;特殊定制;附件应说明是国产还是进口;优质产品每一个执行器出厂前均经过测试和检验;每一个执行器都带有质量检验合格标签;每一个执行器都有标准NUMAR接口规格,及底孔安装尺寸;每一个执行器都用特殊的纸箱包装,带上产品标签及说明书;常见故障及检查、排除方法。
双作用气动执行器工作原理

双作用气动执行器工作原理
当气源压力从气口(2)进入气缸两活塞之间中腔时,使两活塞分离向气缸两端方向移动,两端气腔的空气通过气口(4)排出,同时使两活塞齿条同步带动输出轴 (齿轮)逆时针方向旋转。
反之气源压力从气口(4)进入气缸两端气腔时,使两活塞向气缸中间方向移动,中间气腔的空气通过气口(2)排出,同时使两活塞齿条同步带动输出轴(齿轮)顺时针方向旋转。
(如果把活塞相对反方向安装,输出轴即变为反向旋转)
单作用带弹簧复气动执行器工作原理
当气源压力从气口(2)进入气缸两活塞之间中腔时,使两活塞分离向气缸两端方向移动,迫使两端的弹簧压缩,两端气腔的空气通过气口(4)排出,同时使两活塞齿条同步带动输出轴(齿轮)逆时针方向旋转。
在气源压力经过电磁阀换向后,气缸的两活塞在弹簧的弹力下向中间方向移动,中间气腔的空气从气口(2)排出,同时使两活塞齿条同步带动输出轴(齿轮)顺时针方向旋转。
(如果把活塞相对反方向安装,弹簧复位时输出轴即变为反向旋转)
1。
气动执行器结构及原理

气缸结构与原理学习气动执行机构气动执行机构俗称气动头又称气动执行器(英文:Pneumatic actuator )执行器按其能源形式分为气动,电动与液动三大类,它们各有特点,适用于不同得场合。
气动执行器就是执行器中得一种类别。
气动执行器还可以分为单作用与双作用两种类型:执行器得开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。
SPRING RETURN (单作用)得开关动作只有开动作就是气源驱动,而关动作就是弹簧复位。
气动执行机构简介气动执行器得执行机构与调节机构就是统一得整体,其执行机构有薄膜式、活塞式、拨叉式与齿轮齿条式。
活塞式行程长,适用于要求有较大推力得场合;而薄膜式行程较小,只能直接带动阀杆。
拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门得扭矩曲线等特点,但就是不很美观;常用在大扭矩得阀门上。
齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高得生产过程中有广泛得应用。
齿轮齿条式:齿轮齿条:活塞式:编辑本段气动执行机构得缺点控制精度较低,双作用得气动执行器,断气源后不能回到预设位置。
单作用得气动执行器,断气源后可以依靠弹簧回到预设位置编辑本段工作原理说明班当压缩空气从A管咀进入气动执行器时,气体推动双活塞向两端(缸盖端)直线运动,活塞上得齿条带动旋转轴上得齿轮逆时针方向转动90度,阀门即被打开。
此时气动执行阀两端得气体随B管咀排出。
反之,当压缩空气从B官咀进入气动执行器得两端时,气体推动双塞向中间直线运动,活塞上得齿条带动旋转轴上得齿轮顺时针方向转动90度,阀门即被关闭。
此时气动执行器中间得气体随A管咀排出。
以上为标准型得传动原理。
根据用户需求,气动执行器可装置成与标准型相反得传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。
单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气动执行器工作原理修
订版
IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】
GT气动执行器 Pneumatic Actuators
下一页返回
主要特点及标准参数:
基本设计:气动双活塞执行器、型号GT双
作用式、型号GT-S单作用式(有弹簧返回)。
制造特点:超宽面齿条(活塞)小齿轮传动技
术、活塞及齿轮和壳体接触面有低磨擦材料制
成的滑动轴承衬套、导向。
单作用式有保险弹
簧座。
采用标准:执行器与阀门连接:四个或八个
螺栓孔符合标准DIN/ISO5211,轴装配孔符合
标准DIN3337。
可供选择的装配轴孔有多种形
状尺寸选择。
执行器与控制阀连接:GT/GT-S100~350符合
标准NAMUR或VDI/VDE3845,GT/GT-S040~90
通过转接板连接。
执行器与信号盒连接:符合VDI/VDE3845
零件材料:壳体:铝合金表面阳极化处理。
端盖:铝合金表面喷塑处理。
活塞/齿条:铝合金。
密封O型圈:丁睛橡胶=NBR70。
轴承垫圈/导环:塑料。
工作环境温度:—20°C+90°C。
回转角度:双作用式=90°单作用式=90°、标准执行器旋转轴角度从两端可调节-5°+5°。
输出扭矩:3~10000Nm
空气压力:2~8bar,最大10bar。
附件:电磁阀、电气定位器、限位开关、气源处理三联件(有减压器、过滤器、油雾器)手操机构。
工作原理:
双作用式
压缩空气从气口(B)进入气缸两活塞(C)之间中腔时,使两活塞分离向气缸两端方向移动,两端气腔的空气通过气口(A)排出,同时使两活塞(C)的齿条同步带动输出轴(D)(齿轮)逆时针方向旋转90度。
可以从两端调整微量角度,松动螺母(E)用内六角扳手拧动调节螺栓(F)调整所需角度 , 锁紧螺母(E)。
反之压缩空气则从气口(A)进入气缸两端气腔时,使两活塞向气缸中间方向移动,中间气腔的空气通过气口(B)排出,同时使两活塞(C)的齿条同步带动输出轴(D)(齿轮)顺时针方向旋转90度。
单作用式(弹簧复位)
压缩空气从气口(B)进入气缸两活塞(C)之间中腔时,使两活塞分离向气缸两端方向移动,迫使两端的弹簧压缩,两端气腔的空气通过气口(A)排出,同时使两活塞(C)的齿条同步带动输出轴(D)(齿轮)逆时针方向旋转90度。
在压缩空经过电磁阀换向后,气缸的两活塞在弹簧的弹力下向中间方向移动,中间气腔的空气从气口(B)排出,同时使两活塞(C)的齿条同步带动输出轴(D)(齿轮)顺时针方向旋转90度。
可以从两端调整微量角度,松动螺母(E)用内六角扳手拧动调节螺栓(F)调整所需角度, 锁
紧螺母(E)。
执行器的使用:
使用本执行器时,先确定阀门的扭矩,水蒸气或非润滑的介质增加25%安全值;非润滑的干气介质增加60%安全值;非润滑用气体输送的颗粒粉料介质增加100%安全值;对于清洁、无摩擦的润滑介质增加20%安全值、然后根据气源工作压力,查找扭矩表,可得到准确的执行器型号。
选用双作用式GT例:气源压力只有5bar,控制一个需要扭矩200N.m球阀,介质为非润滑的水蒸气,考虑到安全因素,增加25%等于250N.m ,首先按表查找气源压力5bar ,然后沿该列垂直查找等于或相近的扭矩数据,选272N.m ,再沿该行向左查找其型号,选择GT130型。
选用单作用式(弹簧复位)GT-S 例:气源压力只有4bar ,控制一个需要扭矩100N.m蝶阀,介质为非润滑的干燥气体,考虑到安全因素,增加60%等于160N.m ,首先按表查找弹簧复位终点得到相近扭矩166N.m ,然后沿该行向左查找气源压力
4bar的终点扭矩196N.m ,气源压力扭矩应该大于弹簧复位扭矩,正好气源压力扭矩大于弹簧复位扭矩,再沿该行向左查找其型号,选择GT160S型、弹簧数量10根。
解剖图及零配件:
控制系统接线图:
外形及连接尺寸图:
GT双作用式输出扭矩表单位 :N.m
气源压力(MPa)
型号
0.2 0.3 0.4 0.5 0.6 0.7 0.8
GT50 7.9 11.8 15.7 19.6 23.6 27.5 31.4
GT-S单作用式输出扭矩表单位 :N.m
执行器的重量/容量/开或闭的时间。