常用温度传感器测量电路设计实验指导书
传感器实验指导书(a4) (1)

目录实验一电阻应变式传感器位移测量、温度补偿和性能比较 (4)实验二差动变压器的标定和振动测量 (9)实验三热电式传感器――热电偶 (11)实验四电容式传感器特性 (13)实验五光纤位移传感器――位移测量 (14)使用说明CSY10B传感器系统实验仪是用于检测仪表类课程教学实验的多功能教学仪器。
其特点是集被测体、各种传感器、信号激励源、处理电路和显示器于一体,可以组成一个完整的测试系统。
通过实验指导书所提供的数十种实验举例,能完成包含光、磁、电、温度、位移、振动、转速等内容的测试实验。
通过这些实验,实验者可对各种不同的传感器及测量电路原理和组成有直观的感性认识,并可在本仪器上举一反三开发出新的实验内容。
实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。
一、位于仪器顶部的实验工作台部分,左边是一副平行式悬臂梁和一个称重台。
悬臂梁梁上装有半导体式应变片。
称重台平行梁上梁的上表面和下梁的下表面对应地贴有八片应变片,受力工作片分别用符号和表示。
其中六片为金属箔式片(BHF-350)。
横向所贴的两片为温度补偿片,用符号和表示。
实验工作台右边是由装于机内的另一副平行梁带动的圆盘式工作台。
圆盘周围一圈安装有(依逆时针方向)电感式(差动变压器)、电容式、磁电式、霍尔式、电涡流式、压阻式等传感器。
电感式(差动变压器):由初级线圈Li和两个次级线圈L。
绕制而成的空心线圈,圆柱形铁氧体铁芯置于线圈中间,测量范围>10mm。
电容式:由装于圆盘上的一组动片和装于支架上的两组定片组成平行变面积式差动电容,线性范围≥3mm。
磁电式:由一组线圈和动铁(永久磁钢)组成,灵敏度0.4V/m/s。
霍尔式:半导体霍尔片置于两个半环形永久磁钢形成的梯度磁场中,线性范围≥3mm。
电涡流式:多股漆包线绕制的扁平线圈与金属涡流片组成的传感器,线性范围>1mm。
两副平行式悬臂梁顶端均装有置于激振线圈内的永久磁钢,右边圆盘式工作台由“激振I”带动,左边平行式悬臂梁由“激振II”带动。
温度传感器实验指导书

温度传感器实验1 实验目的:了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理;掌握热电偶的冷端补偿原理; 掌握热电偶的标定过程;了解各种温度传感器的性能特点并比较上述几种传感器的性能。
2 实验仪器:温度传感器实验模块 热电偶(K 型、E 型)CSY2001B 型传感器系统综合实验台(以下简称主机) 温控电加热炉 连接电缆万用表:VC9804A ,附表笔及测温探头 万用表:VC9806,附表笔3 实验原理:(1)热电偶测温原理由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。
(图10)图1中 T 为热端,To 为冷端,热电势)()(o AB AB t T E T E E -=本实验中选用两种热电偶镍铬—镍硅(K 分度)和镍铬—铜镍(E 分度)。
(2)热电偶标定以K 分度热电偶作为标准热电偶来校准E 分度热电偶,被校热电偶热电势与标准热电偶热电势的误差为图1 热电偶测温原理校分标标标测标分校测e S S e e e e -⋅-+=∆式中:e 校测——被校热电偶在标定点温度下测得的热电势平均值 e 标测——标准热电偶在标定点温度下测得的热电势平均值 e 标分——标准热电偶分度表上标定温度的热电势值 e 校分——被校热电偶标定温度下分度表上的热电势值。
S 标——标准热电偶的微分热电势 (3)热电偶冷端补偿图2 金属铂热电阻和热敏电阻温度曲线比较(7)集成温度传感器用集成工艺制成的双端电流型温度传感器,在一定的温度范围内按1μA/K的恒定比值输出与温度成正比的电流,通过对电流的测量即可得知温度值(K氏温度),经K氏-摄氏转换电路直接显示℃温度值。
4 实验步骤:(12)根据数据分别绘制K型热电偶和E型热电偶温度与热电势的关系曲线。
(13)将K型热电偶作为标准热电偶,计算被测热电偶E型热电偶的误差。
传感器实验指导书2023

传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。
二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。
电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。
电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。
压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。
磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。
传感器实验指导书_数字温度测量系统设计实验

数字温度测量系统设计
设计数字温度显示系统,要求用热敏电阻测量温度,设计转换电路将温度信息转换为电压信息,通过放大后,让电压与温度呈10N倍关系。
例如:温度27度,电压2.7V;或温度27度,电压270 mV等。
这样就可以把数字电压表当数字温度计来使用,完成温度的数字显示。
元器件清单如下:
热敏电阻1个(25度时的阻值为100K)
100K欧电阻若干
100K欧可调电阻若干
1K欧电阻若干
10K欧电阻若干
20K欧电阻若干
741/LM324运算放大器若干
(如果不用数字电压表,也可采用模数转换器、单片机及显示模块来完成温度的数字显示,有兴趣者可近一步设计硬件电路)。
验收要求:
1、硬件工作正常;
2、在20度~70度之间,每间隔5度测一次,至少测5组数据;
3、显示的温度误差不超过1度;
4、将调试好的电路板贴上姓名和测试数据上交。
本次实验占总实验成绩的比重较大,请同学们认真做好本次实验。
传感器实验指导书(实际版)

实验一 金属箔式应变片性能实验(一)金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK RR=∆式中RR∆为电阻丝电阻相对变化, K 为应变灵敏系数,ll ∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压41εEK U O =。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、士15V 电源、土4V 电源、万用表(自备)。
四、实验步骤:1.应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的1R 、2R 、3R 、4R 。
加热丝也接于模板上,可用万用表进行测量判别,Ω====3504321R R R R ,加热丝阻值为Ω50左右。
2.接入模板电源上15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器3W R 顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端i V 相连,调节实验模板上调零电位器4W R ,使数显表显示为零(数显表的切换开关打到2V 档)。
关闭主控箱电源。
3.将应变式传感器的其中一个应变片1R (模板左上方的1R )接入电桥作为一个桥臂与5R 、6R 、7R 接成直流电桥(5R 、6R 、7R 模块内已连接好),接好电桥调零电位器4W R ,接上桥路电源上4V (从主控箱引入)如图1—2所示。
检查接线无误后,合上主控箱电源开关。
调节1W R ,使数显表显示为零。
图1—2应变式传感器单臂电桥实验接线图4.在电子称上放置一只砝码,读取数显表数值,依次增加破码和读取相应的数显表值,直到500g (或200g )砝码加完。
传感器原理(实验指导书)

实验一热电偶测温实验一、实验目的:了解K型热电偶的特性与应用二、实验仪器:智能调节仪、PT100、K型热电偶、温度源、温度传感器实验模块。
三、实验原理:智能调节仪控制温度实验图45-21.在控制台上的“智能调节仪”单元中“输入”选择“Pt100”,并按图45-2接线。
2.将“+24V输出”经智能调节仪“继电器输出”,接加热器风扇电源,打开调节仪电源。
3.按住3秒以下,进入智能调节仪A菜单,仪表靠上的窗口显示“”,靠下窗口显示待设置的设定值。
当LOCK等于0或1时使能,设置温度的设定值,按“”可改变小数点位置,按或键可修改靠下窗口的设定值。
否则提示“”表示已加锁。
再按3秒以下,回到初始状态。
热电偶传感器的工作原理热电偶是一种使用最多的温度传感器,它的原理是基于1821年发现的塞贝克效应,即两种不同的导体或半导体A或B组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为T,另一端温度为T0,则回路中就有电流产生,见图50-1(a),即回路中存在电动势,该电动势被称为热电势。
图50-1(a)图50-1(b)两种不同导体或半导体的组合被称为热电偶。
当回路断开时,在断开处a,b之间便有一电动势E T,其极性和量值与回路中的热电势一致,见图50-1(b),并规定在冷端,当电流由A流向B时,称A为正极,B为负极。
实验表明,当E T较小时,热电势E T与温度差(T-T0)成正比,即E T=S AB(T-T0)(1)S AB为塞贝克系数,又称为热电势率,它是热电偶的最重要的特征量,其符号和大小取决于热电极材料的相对特性。
热电偶的基本定律:(1)均质导体定律由一种均质导体组成的闭合回路,不论导体的截面积和长度如何,也不论各处的温度分布如何,都不能产生热电势。
(2)中间导体定律用两种金属导体A,B组成热电偶测量时,在测温回路中必须通过连接导线接入仪表测量温差电势E AB(T,T0),而这些导体材料和热电偶导体A,B的材料往往并不相同。
常用温度传感器测量电路设计实验指导书解读
常用温度传感器测量电路设计实验指导书自动化工程学院常用温度传感器测量电路设计实验指导书一、实验目的:本实验要求设计并制作一个常用温度传感器测量电路,要求测量温度在常温~100℃之间,输出为电压信号。
该电路即可用于热电阻温度测量也可用于热电偶温度测量。
二、基本原理:温度测量过程原理:图1:温度测量过程原理温度测量过程原理如图1所示:信号采集:由热电偶或热电阻传感器负责将被测体的相关物理量转化为电信号。
信号处理部分:负责对信号进行放大,整形,降噪,标准化等处理。
输出显示部分:负责对处理后的各种信号进行可视化处理,便于人们直观的读出相关的物理量。
该部分可以是计算机或数码管或显示仪表等。
该实验只涉及信号采集,信号处理部分的相关电路设计,安装,调试等内容。
设计思路:温度检测电路总体设计思路:如图2所示,被测物体温度经过温度传感器元件以及相关转换电路转化为电压信号,经后续放大电路放大调节后输出,再用数字显示表头显示检测到的温度信号。
图2温度检测电路组成传感器部分:热电偶传感器:是将A和B二种不同金属材料的一端焊接而成如图3。
A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊称为自由端或参考端,也称冷端(接引线用来连接测量仪表接的一端处在温度T的两根导线C是同样的材料,可以与A和B不同种材料)。
T与T的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。
国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。
实验中用分度号为K的热电偶。
表1:K热电偶温度与输出电压的关系0000式中:E(t, t0)---热电偶测量端温度为t,参考端温度为t=0℃时的热电势值;E(t, t0')---热电偶测量温度t,参考端温度为t'不等于0℃时的热电势值;E(t0', t)---热电偶测量端温度为t',参考端温度为t=0℃时的热电势值。
实验十 热敏电阻传感器温度实验指导书
实验十热敏电阻传感器温度实验
一、实验目的
1、了解气敏传感器、湿敏传感器等常见环境测量检测传感器的原理及特性;
2、掌握放大器、频率转换等模拟电路设计方法;
3、掌握传感器调理电路的设计方法;
4、了解环境监测传感技术应用方法。
二、实验仪器
1、VCC
2、Ground
3、运算放大器741
4、普通电阻
5、电阻式温敏传感器MF11
6、直流电压表
7、示波器
8、电压探针
三、基本原理
用半导体材料制成的热敏电阻具有灵敏度高,可以应用于各领域的优点,热电偶一般测高温时线性较好,热敏电阻则用于200℃以下温度较为方便,本实验中所用热敏电阻为负温度系数。
温度变化时热敏电阻阻值的变化导致运放组成的压/阻变换电路的输出电压发生相应变化。
其原理图如图1所示。
图1 热敏传感器原理图
四、实验步骤
该MF11温敏传感器的电阻随着温度的变化而变化,该转换电路是将变化的电阻转化为变化的电压。
电路如图2所示:
图2 MF11转化电路
经过转换电路,输出电压范围为0~5V,由于电路传输需要,将输出电压转化为0~10V。
整体电路如下图3所示:
图3 MF11整体电路图
(3)调节温度,将温度与UO1对应的数据记录在下表1中。
表1 温敏传感器温度与UO1数据表
(4)绘制温度与输出电压关系曲线,说明其关系。
(5)设计电压转换电路,记录电压,测试设计电路是否满足要求,如下表2所示。
表2 温敏传感器实验数据表
五、实验报告
1、概述热敏传感器的工作原理及其温度特性;
2、搭建实验电路,记录实验数据,补充表1和表2内容,完成实验报告。
温度传感器—热电偶测温实验
温度传感器—热电偶测温实验一、实验原理:由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。
图1 热电偶测温系统图图1中T 为热端,To 为冷端,热电势Et=)T ()T (o AB AB本实验中选用两种热电偶镍铬—镍硅(K )和镍铬—铜镍(E )。
实验所需部件:K 、E 分度热电偶、温控电加热炉、214位数字电压表(自备) 二、实验步骤:1、观察热电偶结构(可旋开热电偶保护外套),了解温控电加热器工作原理。
温控器:作为热源的温度指示、控制、定温之用。
温度调节方式为时间比例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。
温度设定:拨动开关拨向“设定”位,调节设定电位器,仪表显示的温度值℃随之变化,调节至实验所需的温度时停止。
然后将拨动开关扳向“测量”侧,(注:首次设定温度不应过高,以免热惯性造成加热炉温度过冲)。
2、首先将温度设定在50℃左右,打开加热开关,热电偶插入电加热炉内,K 分度热电偶为标准热电偶,冷端接“测试”端,E 分度热电偶接“温控”端,注意热电偶极性不能接反,而且不能断偶,214位万用表置200mv 档,当钮子开关倒向“温控”时测E 分度热电偶的热电势,并记录电炉温度与热电势E 的关系。
3、因为热电偶冷端温度不为0℃,则需对所测的热电势值进行修正E (T ,To )=E(T,t 1)+E(T 1,T 0)实际电动势=测量所得电势 +温度修正电势查阅热电偶分度表,上述测量与计算结果对照。
4、继续将炉温提高到70℃、90℃、110℃和130℃,重复上述实验,观察热电偶的测温性能。
三、注意事项:加热炉温度请勿超过150℃,当加热开始,热电偶一定要插入炉内,否则炉温会失控,同样做其它温度实验时也需用热电偶来控制加热炉温度。
常用温度传感器测量电路设计实验指导书
110 4.508 4.549 4.590 4.632 4.673 4.714 4.755 4.796 4.837 4.878
120 4.919 4.960 5.001 5.042 5.083 5.124 5.164 5.205 5.246 5.287
130 5.327 5.368 5.409 5.450 5.490 5.531 5.571 5.612 5.652 5.693
设计思路:
温度检测电路总体设计思路:如图 2 所示,被测物体温度经过温度传感器元件
.
.
以及相关转换电路转化为电压信号,经后续放大电路放大调节后输出,再用数字 显示表头显示检测到的温度信号。
图 2 温度检测电路组成
传感器部分:
热电偶传感器:是将 A 和 B 二种不同金属材料的一端焊接而成如图 3。A 和 B 称为热电极,焊接的一端是接触热场的 T 端称为工作端或测量端,也称热端;未 焊接的一端处在温度 T0 称为自由端或参考端,也称冷端(接引线用来连接测量仪 表的两根导线 C 是同样的材料,可以与 A 和 B 不同种材料)。 T 与 T0 的温差愈 大,热电偶的输出电动势愈大;温差为 0 时,热电偶的输出电动势为 0;因此, 可以用测热电动势大小衡量温度的大小。国际上,将热电偶的 A、B 热电极材料 不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜康铜)等等,并且有相应的分度表即参考端温度为 0℃时的测量端温度与热电动 势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的 温度值。实验中用分度号为 K 的热电偶。
图 1:温度测量过程原理 温度测量过程原理如图 1 所示: 信号采集:由热电偶或热电阻传感器负责将被测体的相关物理量转化为电信号。 信号处理部分:负责对信号进行放大,整形,降噪,标准化等处理。 输出显示部分:负责对处理后的各种信号进行可视化处理,便于人们直观的读出 相关的物理量。该部分可以是计算机 或数码管 或显示仪表等 。 该实验只涉及信号采集,信号处理部分的相关电路设计,安装,调试等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用温度传感器测量电路设计实验指导书自动化工程学院常用温度传感器测量电路设计实验指导书一、实验目的:本实验要求设计并制作一个常用温度传感器测量电路,要求测量温度在常温~100℃之间,输出为电压信号。
该电路即可用于热电阻温度测量也可用于热电偶温度测量。
二、基本原理:温度测量过程原理:图1:温度测量过程温度测量过程原理如图1所示:信号采集:由热电偶或热电阻传感器负责将被测体的相关物理量转化为电信号。
信号处理部分:负责对信号进行放大,整形,降噪,标准化等处理。
输出显示部分:负责对处理后的各种信号进行可视化处理,便于人们直观的读出相关的物理量。
该部分可以是计算机或数码管或显示仪表等。
该实验只涉及信号采集,信号处理部分的相关电路设计,安装,调试等内容。
设计思路:温度检测电路总体设计思路:如图2所示,被测物体温度经过温度传感器元件以及相关转换电路转化为电压信号,经后续放大电路放大调节后输出,再用数字显示表头显示检测到的温度信号。
图2温度检测电路组成传感器部分:热电偶传感器:是将A和B二种不同金属材料的一端焊接而成如图3。
A 和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊接的一端处在温度T0称为自由端或参考端,也称冷端(接引线用来连接测量仪表的两根导线C是同样的材料,可以与A和B不同种材料)。
T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。
国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。
实验中用分度号为K的热电偶。
图3:热电偶示意图表1:K热电偶温度与输出电压的关系分度号:K (参考端温度为0℃)10 0.397 0.437 0.477 0.517 0.557 0.597 0.637 0.677 0.718 0.758 20 0.798 0.8380.879 0.919 0.960 1.000 1.041 1.081 1.122 1.162 30 1.203 1.244 1.285 1.325 1.3661.407 1.448 1.489 1.529 1.570 40 1.611 1.652 1.693 1.734 1.776 1.817 1.858 1.8991.949 1.981 502.022 2.064 2.105 2.146 2.188 2.229 2.270 2.312 2.353 2.394 602.436 2.477 2.519 2.560 2.601 2.643 2.684 2.726 2.767 2.809 70 2.850 2.892 2.9332.9753.016 3.058 3.100 3.141 3.183 3.224 80 3.266 3.307 3.349 3.390 3.432 3.4733.515 3.556 3.598 3.639 90 3.681 3.722 3.764 3.805 3.847 3.888 3.930 3.9714.0124.054 100 4.095 4.137 4.178 4.219 4.261 4.302 4.343 4.384 4.426 4.467 110 4.5084.549 4.590 4.632 4.673 4.714 4.755 4.796 4.837 4.878 120 4.919 4.9605.001 5.0425.083 5.124 5.164 5.205 5.246 5.287 130 5.327 5.368 5.409 5.450 5.490 5.531 5.571 5.612 5.652 5.693 140 5.733 5.774 5.814 5.855 5.895 5.936 5.9766.016 6.057 6.097 150计算公式:E(t, t0)=E(t, t0')+E(t0', t0)式中:E(t, t0)---热电偶测量端温度为t,参考端温度为t0=0℃时的热电势值;E(t, t0')---热电偶测量温度t,参考端温度为t0'不等于0℃时的热电势值;E(t0', t0)---热电偶测量端温度为t0',参考端温度为t0=0℃时的热电势值。
例:用一支分度号为K(镍铬-镍硅)热电偶测量温度源的温度,工作时的参考端温度(室温) t0'=20℃,而测得热电偶输出的热电势(经过放大器放大的信号,假设放大器的增益A=10)32.7mv,则E(t,t0')=32.7mV/10=3.27mV,那么热电偶测得温度源的温度是多少呢? 解:由表1 查得:E(t0', t0)=E(20,0)=0.798mV 已测得 E(t,t0')=32.7mV/10=3.27mV故 E(t, t0)=E(t, t0')+E(t0', t0)= 3.27mV+0.798mV=4.068mV热电偶测量温度源的温度可以从分度表中查出,与4.068mV所对应的温度是100℃。
铂电阻:是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷内构成,图4是铂热电阻的结构图。
在0~500℃以内,它的电阻Rt与温度t的关系为:Rt=Ro(1+At+Bt2),式中: Ro系温度为0℃时的电阻值(本实验的铂电阻Ro=100Ω)。
A=3.9684×10-3/℃,B=-5.847×10-7/℃2。
铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计)。
图4实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示,如图5所示。
图5热电阻信号转换原理图图中△V=V1-V2;V1=[R3/(R3+Rt)]Vc;V2=[R4/(R4+R1+RW1)]Vc;△V=V1-V2={[R3/(R3+Rt)]-[R4/(R4+R1+RW1)]}Vc;Pt100热电阻一般应用在冶金、化工行业及需要温度测量控制的设备上,适用于测量、控制<600℃的温度。
本实验由于受到温度源及安全上的限制,所做的实验温度值<100℃。
表2:Pt100 铂电阻分度表(t—Rt对应值)分度号:Pt100R o=100Ωα=0.003910温度(℃) 0123456789电阻值(Ω)0 100.00 100.40 100.79 101.19 101.59 101.98 102.38 102.78 103.17 103.57 10 103.96 104.36 104.75 105.15 105.54 105.94 106.33 106.73 107.12 107.52 20 107.91 108.31 108.70 109.10 109.49 109.88110.28 110.67 111.07 111.46 30 111.85 112.25 112.64 113.03113.43 113.82 114.21 114.60 115.00 115.39 40 115.78 116.17116.57 116.96 117.35 117.74 118.13 118.52 118.91 119.31 50 119.70 120.09 120.48 120.87 121.26 121.65 122.04 122.43122.82 123.21 60 123.60 123.99 124.38 124.77 125.16 125.55 125.94 126.33 126.72 127.10 70 127.49 127.88 128.27 128.66 129.05 129.44 129.82 130.21 130.60 130.99 80 131.37 131.76132.15 132.54 132.92 133.31 133.70 134.08 134.47 134.86 90 135.24 135.63 136.02 136.40 136.79 137.17 137.56 137.94 138.33 138.72 100 139.10 139.49 139.87 140.26 140.64 141.02 141.41 141.79 142.18 142.66 110 142.95 143.33 143.71 144.10 144.48 144.86 145.25 145.63 146.10 146.40 120 146.78 147.16 147.55 147.93 148.31 148.69 149.07 149.46 149.84 150.22 130 150.60 150.98 151.37 151.75 152.13 152.51 152.89 153.27 153.65 154.03 140 154.41 154.79 155.17 155.55 155.93 156.31 156.69 157.07 157.45 157.83 150 158.21 158.59 158.97 159.35 159.73 160.11 160.49 160.86 161.24 161.62 160162.00 162.38 162.76 163.13 163.51 163.89表2是该传感器在不同温度下的电阻值。
测量电桥在4V供电情况下温度为100℃时,电桥两端可获得约30mV电压。
信号处理部分:由于直接从传感器获得的信号一般都很微小,既难以直接精确测量,又不便直接处理。
因此,必须采用后续电路,将小信号转换成更大的电压信号或电流信号,以便于测量与处理。
差分放大电路我们采用差分放大电路对电压进行放大,我们先讨论简单的差动放大器,如图6所示,Vi1、 Vi2为输入,Vo为输出。
R1R2R3R4Vi1Vi2Vo-+图6 基本差动放大器输出电压Vo=-V i1+(1+)V i2本实验中运算放大器采用OP07芯片,OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。
由于OP07具有非常低的输入失调电压,同时具有输入偏置电流低和开环增益高的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
OP07管脚图如图7所示。
图7 op07管脚图OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接负电源或接地,5空脚 6为输出,7接正电源。
实验中采用的差分放大电路如图8所示.UU23247681U33247681图8 差分放大电路该电路由三个运算放大器组成,Vo1、Vo2和Vo分别为三运放的输出电压。