传感器原理及应用实验指导解读

合集下载

传感器原理与应用实验指导书

传感器原理与应用实验指导书

《传感器原理与应用》实验指导书朱蕴璞王芳编写孔德仁审定南京理工大学实验须知1. 传感器实验仪是贵重实验设备请在每个实验前认真阅读实验指导书,尤其是每个实验最后的实验注意事项。

2. 实验仪器电源的开关原则:连接测量线路,确认准确无误后,开启仪器电源;实验完毕,关闭仪器电源,拆除测量线路。

3. 稳压电源不可对地短路。

4. 实验过程中,心要细、动作要轻,不可有强制性机械动作出现。

5 •实验严格按操作规程进行,否则,出现损坏责任自负。

6.实验完毕,请一切恢复到实验前的状态,然后离开实验室。

实验一传感器静态标定实验......... ••••••A5实验二应变式传感器特性实验.............................. -10实验三电感式、涡流式、电容式、霍尔式位移传感器特性实验••…实验四重量测量实验(选做) (25)实验五转速测量实验29实验六温度实验34实验一传感器静态标定实验(注:“压力传感器的静态标定及特性指标的求取”与“光纤位移传感器静态标定及特性指标求取“两实验取 其1。

)压力传感器的静态标定及特性指标的求取1、 实验目的掌握压力传感器静态标左的基本方法以及压力传感器的静态特性指标的求取。

2、 实验内容(1) 组建压力测试系统:(2) 学习压力测试系统的标立过程; (3) 计算压力测试系统静态特性指标。

3、 实验原理及方法活塞压力计r 被标传感器(电阻应变仪)数字万用表图1压力传感器标左系统原理图2压力传感器标左系统构成4、实验仪器设备活塞压力计一台,数字万用表一只,动态电阻应变仪一台,压力表一只。

5、实验步骤(1) 反复排除活塞压力计油腔内的空气,最后将压力泵手轮摇岀。

(2) 把压力传感器装在活塞压力计的联接螺帽上,关闭油杯。

指示。

手轮;准压力值由压力表(3)传感器输岀接入可调零的桥盒,电桥输出接入数字万用表。

当输岀量很小,无法直接用万用表测得时, 可先将传感器接入动态电阻应变仪桥盒(注意电桥的连接),桥盒的另一端连线接应变仪输入(选择一个通道):将应变仪专用电源接好:电阻应变仪电压输出接数字万用表。

传感器的原理与应用物理实验报告

传感器的原理与应用物理实验报告

传感器的原理与应用物理实验报告实验目的掌握传感器的基本原理,并通过实验了解传感器在物理应用中的具体应用。

实验器材和试剂•传感器模块•Arduino开发板•Jumper wires•电脑或笔记本电脑实验原理传感器是一种能够感知、判断和响应外界物理量的装置。

它能够将感受到的物理量转换为可被电子设备识别的信号,并通过算法进行处理。

本实验主要介绍两种常见的传感器:温度传感器和光敏传感器。

温度传感器温度传感器是一种可以测量环境温度的传感器。

它采用了温度和电阻之间的线性关系,通过测量电阻值的变化来反映所测量物体的温度。

常用的温度传感器有NTC(Negative Temperature Coefficient)和PTC(Positive Temperature Coefficient)两种类型。

光敏传感器光敏传感器是一种可以感知环境中光照强度的传感器。

它可以将光的能量转化为电能,并输出相应的电压信号。

根据工作原理的不同,光敏传感器分为光敏电阻和光电二极管两种。

实验步骤1.将Arduino开发板与电脑连接,并通过Arduino IDE软件编写代码。

2.将温度传感器模块连接到Arduino开发板的数字引脚。

3.编写代码,读取从温度传感器传输的数据,并将其转换为实际温度值。

4.将光敏传感器模块连接到Arduino开发板的模拟引脚。

5.编写代码,读取从光敏传感器传输的数据,并将其转换为实际光照强度。

6.运行代码,观察温度和光照强度的变化,并记录数据。

7.根据记录的数据,分析温度和光照强度之间的关系。

实验结果与分析通过实验我们得到了一组温度和光照强度的数据。

通过分析这些数据,我们可以得出温度和光照强度之间的关系。

例如,随着温度的升高,光照强度可能会增加或减少。

这个关系可以被用来设计和控制一些具有温度敏感性的系统,如温室控制系统或温度调节器。

实验总结通过本实验,我们了解了传感器的基本原理,并学会了如何使用传感器进行物理实验。

传感器原理及应用实验指导书解读

传感器原理及应用实验指导书解读

电工电子实验中心实验指导书传感器原理及应用实验教程目录目录实验一应变片直流全桥的应用—电子秤实验................................................. - 1 -实验二差动变压器测位移实验....................................................................... - 9 -实验三霍尔传感器测位移和转速实验.......................................................... - 15 -实验四电涡流传感器测位移和振动实验 ...................................................... - 19 -实验五光电传感器控制电机转速实验.......................................................... - 25 -实验六K热电偶测温性能实验..................................................................... - 29 -实验七气敏传感器实验 ............................................................................... - 36 -实验八湿敏传感器实验 ............................................................................... - 38 -附录A CSY-2000型传感器与检测技术实验台说明书 ................................. - 41 -附录B 智能调节器简介................................................................................ - 44 -实验一应变片直流全桥的应用—电子秤实验一、实验目的了解应变直流全桥的应用及电路的标定。

感应传感器的原理及应用实验

感应传感器的原理及应用实验

感应传感器的原理及应用实验1. 感应传感器的基本原理感应传感器是一种能够感知环境中某种物理量并将其转化为电信号输出的装置。

感应传感器根据其工作原理可分为多种类型,包括光电传感器、温度传感器、压力传感器、加速度传感器等等。

这些传感器的主要原理基于电磁感应、光电效应、热敏效应、压电效应等。

1.1 电磁感应原理电磁感应是指通过磁场的作用产生感应电动势的现象。

感应传感器利用电磁感应原理可以测量磁场的强度、方向等信息。

常见的磁场感应传感器包括磁石、霍尔传感器等。

1.2 光电效应原理光电效应是指光照射到某些特定材料表面时,会产生电子的释放或迁移的现象。

光电传感器利用光电效应原理可以将光能转化为电能,并实现光强、光频率等的测量。

常见的光电传感器包括光敏电阻、光电二极管、光电转换器等。

1.3 热敏效应原理热敏效应是指材料受热时,其电阻、电容、电压等电学性能会发生变化的现象。

热敏传感器利用热敏效应原理可以实现温度的测量。

常见的热敏传感器包括热敏电阻、温度传感器等。

1.4 压电效应原理压电效应是指压电材料在受力或施加电场时会产生电荷的现象。

压电传感器利用压电效应原理可以将压力、力、加速度等物理量转化为电信号输出。

常见的压电传感器包括压电传感器、加速度传感器等。

2. 感应传感器的应用实验2.1 光电传感器实验实验原理利用光敏电阻的光电效应原理,通过测量光照射下光敏电阻的电阻值,实现光强的测量。

实验步骤1.准备实验材料:光敏电阻、电阻箱、电压源、万用表等。

2.搭建电路:将光敏电阻与电阻箱和电压源连接,接入万用表测量电阻值。

3.调节电压源的输出电压,观察光敏电阻的电阻值随光照强度的变化。

4.记录实验数据,绘制光强与电阻值的关系图。

实验结果根据实验数据和光强与电阻值的关系图,可以得到光敏电阻的灵敏度和光强之间的函数关系,从而实现对光强的测量。

2.2 温度传感器实验实验原理利用热敏电阻的热敏效应原理,通过测量热敏电阻的电阻值,实现温度的测量。

传感器原理及应用实验报告的

传感器原理及应用实验报告的

传感器原理及应用实验报告的传感器原理及应用实验报告1. 引言传感器是一种能够将物理量转化为可测量的电信号的装置,广泛应用于各个领域,如工业控制、医疗监护、环境监测等。

本实验旨在探究传感器的工作原理,并通过一系列的应用示例,展示传感器在实际应用中的优势和价值。

2. 传感器的工作原理传感器的工作原理基于不同的物理原理,常见的有电阻、电容、磁性、光电等原理。

以电阻式传感器为例,其基本原理是通过测量感应电阻的变化来获得目标物理量的信息。

当被测量物理量发生变化时,传感器内部的电路会产生相应的变化,这种变化可以通过电压、电流等形式的输出信号来实现。

3. 传感器的分类与应用3.1 光电传感器光电传感器利用光敏元件(如光电二极管、光电三极管等)对光信号进行感知,并将其转化为电信号。

光电传感器广泛应用于工业自动化控制、安防监控、光电测距等领域。

3.2 压力传感器压力传感器通过测量物体受到的外部压力,将其转化为电信号。

压力传感器在汽车制造、气体检测、医疗器械等领域有着重要的应用。

3.3 温度传感器温度传感器通过测量物体的温度变化,将其转化为电信号。

温度传感器广泛应用于气象观测、温控设备、冷链物流等领域。

3.4 加速度传感器加速度传感器用于测量物体的加速度或振动状态,常见于汽车安全系统、运动监测、智能手机等设备中。

3.5 湿度传感器湿度传感器用于测量空气中的湿度水分含量,广泛应用于农业、气象观测、室内环境监测等领域。

4. 传感器应用实例4.1 工业领域在工业自动化领域,传感器起着至关重要的作用。

通过使用温度传感器和压力传感器,可以实现对生产过程中温度和压力的监测与控制,提升生产效率和质量。

4.2 医疗监护传感器在医疗监护领域也广泛应用。

心电传感器可以实时监测患者的心电图数据;血氧传感器可以测量血氧饱和度;体温传感器可以监测患者体温的变化,及时发现异常情况。

4.3 环境监测传感器在环境监测领域具有重要作用。

空气质量传感器可以检测空气中的恶劣气体浓度;水质传感器可以监测水质的污染程度;土壤湿度传感器可以及时监测土壤的湿度状况。

传感器原理及应用实验

传感器原理及应用实验

传感器原理及应用实验
传感器是一种能够感知和测量环境变量的装置或设备,它能够将环境中的物理量转换为电信号或其他方便处理的形式。

传感器原理及应用的实验是为了研究和验证某种传感器的工作原理以及应用场景。

在实验中,我们通常会使用模拟传感器或数字传感器来进行测量和控制。

模拟传感器是指将物理量转换为模拟电压或电流信号的传感器,如温度传感器、压力传感器等。

数字传感器是指将物理量转换为数字信号的传感器,如光电传感器、加速度传感器等。

实验的第一步通常是准备实验装置和所需材料,如传感器、电源、电路板等。

接下来,我们需要按照实验步骤连接电路,并将传感器与电路板相连接。

在实验过程中,我们需要根据传感器的工作原理合理地选择信号放大电路、滤波电路等辅助电路。

同时,对于数字传感器,我们还需要使用单片机或其他数字处理器对信号进行处理和分析。

实验中,我们可以通过改变环境条件或操控实验装置来模拟不同的应用场景。

例如,在温度传感器实验中,可以通过改变热源的温度来观察传感器输出的电信号变化;在光电传感器实验中,可以调节光源的强度或改变测试物体与光源之间的距离来观察传感器的反应。

进行实验后,我们可以通过观察和记录传感器输出的电信号或其他相应数据来分析传感器的性能,并根据实验结果来判断传
感器的可行性、精度和稳定性。

在实验结束后,如果有必要,我们还可以根据实验结果对传感器进行调整和优化,以适应更广泛的应用场景。

传感器的原理及应用实验对于探索和理解传感器的工作原理和应用具有重要意义。

通过实验,我们可以深入了解传感器的特性和性能,为传感器应用领域的研究和开发提供实验数据和依据。

传感器原理与应用实验报告

传感器原理与应用实验报告

传感器原理与应用实验报告实验名称:传感器原理与应用实验实验目的:1. 了解传感器的基本原理;2. 学习传感器的应用。

实验器材:1. Arduino开发板;2. 温度传感器;3. 光敏传感器;4. 气体传感器;5. 电位器。

实验原理:传感器是一种能够感知或测量特定物理量的装置,它能够将感知到的物理量转化为电信号输出。

传感器的工作原理根据不同的物理量而有所不同,常见的传感器包括温度传感器、光敏传感器、气体传感器等。

温度传感器是一种能够测量温度的传感器,它利用温度对电阻值的影响来测量温度。

常见的温度传感器有热敏电阻和热电偶等。

光敏传感器是一种能够感知光强的传感器,它利用光敏元件对光的敏感性来测量光强。

常见的光敏传感器有光敏电阻和光电二极管等。

气体传感器是一种能够检测、测量和监测气体浓度和组成的传感器。

常见的气体传感器有气敏电阻和气敏传感器等。

电位器是一种能够调节电阻值的装置,它通过改变电阻值来改变电路中的电流或电压。

实验步骤:1. 将温度传感器连接到Arduino开发板的模拟输入引脚;2. 将光敏传感器连接到Arduino开发板的模拟输入引脚;3. 将气体传感器连接到Arduino开发板的模拟输入引脚;4. 将电位器连接到Arduino开发板的模拟输入引脚;5. 编写Arduino代码,读取传感器的电信号,并将其转换为温度、光强、气体浓度等物理量;6. 将物理量通过串口输出或显示到LCD屏幕上。

实验结果:通过实验,我们成功地读取了温度传感器、光敏传感器、气体传感器和电位器的电信号,并将其转换为相应的物理量。

实验结果显示,温度传感器测得的温度为25℃,光敏传感器测得的光强为100 lux,气体传感器测得的气体浓度为200 ppm,电位器调节后的电阻值为500欧姆。

实验总结:通过本实验,我们深入了解了传感器的工作原理和应用。

传感器在现代科技中起着重要的作用,广泛应用于环境监测、工业自动化、智能家居等领域。

《传感器原理及应用》实验指导书

《传感器原理及应用》实验指导书
3、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R仁R3,R2=R4,而R1MR2时,是否可以组成全桥:(1)可以(2)不可以。
实验二 压阻式压力传感器的压力测量实验
一、实验目的:了解扩散硅压阻式压力传感器测量压力的原理和方法。
二、基本原理:扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。在压力作用下, 根据半导体的压阻效应, 基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我 们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压 力变化。
五、思考题:
试设计利用£的变化测谷物湿度的传感器原理及结构?能否叙述一下 在设计中应考虑哪些因素?
实验六 转速的测量

一、实验目的:了解磁电式传感器测量转速的原理。
二、基本原理:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线 圈中感应电势e=-d©/dt发生变化,因此当转盘上嵌入N个磁棒时,每 转一周线圈感应电势产生N次的变化,通过放大、整形和计数的电路即可 以测量转速。
三、实验设备:震动台、压电传感器、检波、移相、低通滤波器模板、压电 式传感器实验模板、双线示波器。
四、实验方法和要求:
1、压电传感器已装在震动台面上。
2、将低频震荡器信号接入到台面三源板震动源的激励插孔。
3、将压电传感器输出两端插入到压电传感器实验模板两输入端, 与传 感器外壳相连的接线端接地,另一端接R1。将压电传感情实验模 板电路输出端Vol接R6。将压电传感器实验模板电路输出端V02接入低通滤波器输入端Vi,低通滤波器输出Vo与示波器相连。
2、开启电源, 调节测微头使霍尔片在磁钢中间位置并使数显表指示为 零。
3、测微头向轴向方向推进,每转动0.2mm记下一个输出电压读数, 直到读数近似不变。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《传感器原理及应用》实验指导书自动控制技术教研室编者:张春芳王海荣实验一金属箔式应变片----单臂、半臂、全桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂、半臂、全电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为:ΔR/R电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部件受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压Uο1=Ekє/4。

在半桥性能实验中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。

当应变片阻值和应变量相同时,其桥路输出电压Uο2=Ekє/2。

在全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻力值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uο3=Ekє。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、实验设备:应变式传感器实验模板、应变式传感器、砝码、数显表、±15V、±4V直流电源、万用表。

四、实验方法和要求:1、根据电子电路知识,实验前设计出实验电路连线图。

2、独力完成实验电路连线。

3、找出这三种电桥输出电压与加负载重量之间的关系,并作出V o=F(m)的关系曲线。

4、分析、计算三种不同桥路的系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)。

五、思考题1、单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。

2、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边(2)邻边。

3、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

实验二压阻式压力传感器的压力测量实验一、实验目的:了解扩散硅压阻式压力传感器测量压力的原理和方法。

二、基本原理:扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。

在压力作用下,根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压力变化。

三、实验设备:压力源、压力表、压阻式压力传感器、压力传感器实验模板、流量计、三通连接导管、数显单元、直流稳压源±4V、±15V。

四、实验方法和要求:1、根据电子电路知识完成电路连接,主控箱内的气源部分、压缩泵、储气箱、流量计在主控箱内部已接好。

将标准压力表放置传感器支架上,三通连接管中硬管一端插入主控板上的气源快速插座中(注意管子拉出时请用双指按住气源插座边缘往内压,则硬管可轻松拉出)。

其余两根软导管分别与标准表和压力传感器接通。

将传感器引线插头插入实验模板的插座中。

2、先松开流量计下端进气口调气阀的旋钮,开通流量计。

3、合上主控箱上的气源开关,启动压缩泵,此时可看到流量计中的滚珠浮子在向上浮起悬于玻璃管中。

4、逐步关小流量计旋钮,使标准压力表指示某一刻度,观察数显表显示电压的正、负,若为负值则对调传感器气咀接法。

5、仔细地逐步由小到大调节流量计旋钮,使压力显示在4—14KP之间,每上升1KP分别读取压力表读数,记下相应的数显表值。

6、计算本系统的灵敏度和非线性误差。

五、思考题:如果本实验装置要成为一个压力计,则必须对其进行标定,如何标定?实验三压电式传感器测震动实验一、实验目的:了解压电式传感器的测量震动的原理和方法。

二、基本原理:压电式传感器由惯性量块和受压的压电片等组成。

(仔细观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的震动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。

三、实验设备:震动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板、双线示波器。

四、实验方法和要求:1、压电传感器已装在震动台面上。

2、将低频震荡器信号接入到台面三源板震动源的激励插孔。

3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。

将压电传感情实验模板电路输出端V o1接R6。

将压电传感器实验模板电路输出端V02接入低通滤波器输入端V i,低通滤波器输出V o与示波器相连。

4、合上主控箱电源开关,调节低频震荡器的频率和幅度旋钮使震动台震动,记录示波器波形。

5、改变低频震荡器的频率,记录输出波形变化。

6、用示波器的两个通道同时记录低通滤波器输入端和输出端波形。

7、求出压电传感器的振动方程。

五、思考题:根据压电传感器的振动方程,是否能得到其速度和加速度方程。

实验四差动变压器的性能实验一、实验目的:差动变压器的工作原理和特性。

二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段和三段式,本实验是三段式结构。

当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。

其输出电势反映出被测体的移动量。

三、实验设备:差动变压器实验模板、测微头、双线示波器、差动变压器、音频信号源(音频震荡器)、直流电源、万用表。

四、实验方法和要求:1、将差动变压器装在差动变压器实验模板上。

2、将传感器引线插头插入实验模板的插座中,接好外围电路,音频震荡器信号必须从主控箱中的L v端子输出,调节音频震荡器的频率,输出频率为4—5KHZ(可用主控箱的频率表输入Fin来检测)。

调节输出幅度为峰-峰值V p-p=2V(可用示波器检测)3、旋转测微头,使示波器第二通道显示的波形峰-峰值V p-p最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向位移为负,从V p-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压V p-p值,至少记录一个周期的数据。

在实验过程中,注意左、右位移时,初、次级波形的相位关系。

4、在实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。

画出输出电压峰值V op-p—位移X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。

五、思考题:1、用差动变压器测量较高频率的振幅,可以吗?差动变压器测量频率的上限受什么影响?2、试分析差动变压器与一般电源变压器的异同?实验五位移传感器特性实验-霍尔式、电涡流式、电容式(一)霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:根据霍尔效应,霍尔电势Uн=KнIB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。

三、实验设备:霍尔传感器实验模板、霍尔传感器、直流电源、测微头、数显单元。

四、实验方法和要求:1、将霍尔传感器安装于实验模板的支架上。

再将传感器引线插头接入实验模板的插座中,完成实验电路的连线。

2、开启电源,调节测微头使霍尔片在磁钢中间位置并使数显表指示为零。

3、测微头向轴向方向推进,每转动0.2mm记下一个输出电压读数,直到读数近似不变。

4、作出V—X曲线,计算不同线性范围时的灵敏度和非线性误差。

五、思考题:本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?(二)电涡流传感器位移实验一、实验目的:了解电涡流传感器测量位移的工作原理和特性。

二、基本原理:通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

三、实验设备:电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。

四、实验方法和要求:1、将电涡流传感器安装在实验模板的支架上。

2、观察传感器结构,这是一个平绕扁线圈。

3、将电涡流传感器输出线接入实验模板标有L的两端插孔中,作为震荡器的一个元件。

4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。

5、用连接导线从主控台接入±15V直流电源接到模板上标有+15V的插孔中。

6、使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm读一个数,直到输出电压几乎不变为止。

7、画出V—X曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,试计算量程为1mm、3mm及5mm时的灵敏度和线性度(可以用端基法或拟合直线法)。

六、思考题:1、电涡流传感器的量程与哪些因素有关?2、电涡流传感器进行非接触位移测量时,如何根据量程选用传感器。

(三)电容式传感器的位移实验一、实验目的:了解电容式传感器结构及其特点。

二、基本原理:利用平板电容C=εA/d和其它结构的关系式,通过相应的结构和测量电路可以选择ε、A、d三个参数中,保持两个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变),测微小位移(d 变)和测量液位(A变)等多种电容传感器。

三、实验设备:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压电源。

四、实验方法和要求:1、将电容传感器装于电容传感器实验模板上,将传感器引线插头插入实验模板的插座中。

2、将电容传感器实验模板的输出端V o1与数显表单元V i相接,R w调节到中间位置。

3、接入±15V电源,旋转测微头推进电容传感器动极板位置,每间隔0.2mm记下位移X与输出电压值。

4、计算电容传感器的系统灵敏度S和非线性误差δf。

五、思考题:试设计利用ε的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素?实验六转速的测量-磁电式、光电式、霍尔式(一) 磁电式转速传感器测速实验一、实验目的:了解磁电式传感器测量转速的原理。

二、基本原理:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势е=–dφ/dt发生变化,因此当转盘上嵌入N个磁棒时,每转一周线圈感应电势产生Ν次的变化,通过放大、整形和计数的电路即可以测量转速。

三、实验设备:磁电式传感器、数显单源测速档、直流电源2—24V。

四、实验方法和要求:1、根据磁电式传感器原理,独立完成实验电路的连线。

磁电式传感器端面离转动盘面2mm左右,并且将磁电传感器中心对准磁钢中心。

2、使转速电机带动转盘旋转,将转速电源从5V起,每增加5V电压记录一组转速数椐。

3、作出转速与转速电压关系曲线。

相关文档
最新文档