控制系统的复域数学模型

合集下载

现代控制理论 第九章 现代控制理论-控制系统的数学模型

现代控制理论 第九章 现代控制理论-控制系统的数学模型

1 C
∫ i (t )dt
= u c (t )
i (t ) | t = t 0 = i (t 0 )
u c (t ) | t = t 0 = u c (t 0 )
若将 i (t ) 和 u c (t ) 视为一组信息量,则这样一 组信息量就称为状态。这组信息量中的每个变 量均是该电路的状态变量。 状态:表征系统运动的信息和行为 状态 表征系统运动的信息和行为。 表征系统运动的信息和行为 状态变量:系统的状态变量就是确定系 统状态的最小一组变量。(或完全表征 系统运动状态的最小一 组变量。)
di dt
=
R x1 L
1 L
x2+ 1 u( t )
L
x
2
1 x c 1
y = x2 = u c (t )
写成矩阵— 写成矩阵—向量的形式为:
x
1
=
R L
1 L
x1
x
2
1 c
0
x2
+
1 L u( t )
0
y=
x1
0 1
x2
为状态向量
x 1 x2 T 令x =
则:
x=
R L
1 L
1 c
1 x+ L
状态方程 输出方程
一 、状态、状态变量和状态空间
R + u(t)
输入
L
+ + y C uc(t) _ 输出 _
i(t)
_
解:以 i(t) 作为中间变量,列写该回路的微分方程
di (t ) L + Ri (t ) + u c (t ) = u (t ) dt
求解这个微分方程组, 出现两个积分常数。 它们由初始条件

第二章控制系统的数学模型.

第二章控制系统的数学模型.

2.2.1传递函数的定义和性质
⑴ 定义 线性定常系统的传递函数,定义为初始条件为零时,输出 量的拉氏变换与输入量的拉氏变换之比,记为G(S),即:
C ( s) G( s) R( s)
(2-4)
注:所有初始条件为零,指的是原系统处于静止状态. 设线性定常系统的n阶线性常微分方程为
dn d n 1 d a0 n c(t ) a1 n 1 c(t ) an 1 c(t ) an c(t ) dt dt dt dm d m1 d b0 m r (t ) b1 m 1 r (t ) bm1 r (t ) bm r (t ) dt dt dt
F(t)
K
F(t) F2(t)
m
f
m
x(t)
F1(t) b)
x(t)
根据牛顿第二运动定律有:
d 2 x (t ) F (t ) F1 (t ) F2 (t ) m dt2
a)
图2-2 机械位移系统
(2-2) 7
式中:
F1 (t ) ——阻尼器阻力。其大小与运动速度成正比,方向 与运动方向相反,阻尼系数为f,即: dx (t ) F1 (t ) f dt F2 (t ) ——弹簧力。设为线性弹簧,根据虎克定律有:
F2 (t ) Kx(t )
K——弹簧刚度 联立以上三式并整理得:
d 2 x (t ) dx(t ) m f Kx (t ) F (t ) 2 dt dt
(2-3) 8
综上所述,列写元件微分方程的步骤可归纳如下: ① 根据元件的工作原理及其在控制系统中的作用,确定其 输入量和输出量; ② 分析元件工作中所遵循的物理规律或化学规律,列写相 应的微分方程; ③ 消去中间变量,得到输出量与输入量之间关系的微分方 程,便是元件时域的数学模型. 9

第二章_控制系统的数学模型

第二章_控制系统的数学模型
+
R
a
La
Ea
+
if -
i a (t ) U a (t )
m Mm
Jm fm
MC
dia ( t ) R a i a (t) E a dt E a C e m ( t ) u a La M m (t) M c (t) J m M m (t) C mi a (t) dm ( t ) f m m ( t ) dt
2.2 控制系统的复数域数学模型
1、传递函数的定义
在零初始条件下,线性定常系统输出量的拉普拉斯变 换与输入量的拉普拉斯变换之比,定义为线性定常系统 的传递函数。 即,
传递函数与输入、输出之间的关系,可用结构图表示:
若已知线性定常系统的微分方程为 dnc(t ) dn 1c(t ) dc(t ) a0 a1 a n 1 anc(t ) n n 1 dt dt dt m m 1 d r(t ) d r(t ) dr (t ) b0 b1 b m 1 b mr(t ) m m 1 dt dt dt
设 c(t)和r(t)及其各阶导数初始值均为零,对上 式取拉氏变换,得
(a0s a1s
n m
n 1
an 1s an )C(s)
(b 0s b1s
m 1
bm 1s bm )R(s)
则系统的传递函数为
C(s) b 0sm b1sm 1 bm 1s bm G (s ) R(s) a0sn a1sn 1 an 1s an
L[f (t )] e sF(s)
F ( s ) f ( 1 ) ( 0 ) ( 1 ) L[ f (t )dt ] , f (0) f (t )dt t 0 s s

控制系统的数学模型

控制系统的数学模型

第二章控制系统的数学模型第章控制系统的数学模2-1 1 数学模型数学模型本书中主要介绍的几种系统模型图型:信号流程图数学模型描述系统行为特性的数学表达式模方块图信号程图数学模型:微分方程传递函数频率特性一、数学模型:描述系统行为特性的数学表达式。

是对实际物理系统的一种数学抽象。

模型各有特点,使用时可灵活掌握。

若分析研究系统的动态特性,取其数学模型比较方便;若分析研究系统的内部结构情况,取其物理模型比较直观;若两者皆有,则取其图模型比较合理。

11——1.1. 控制系统的时域数学模型控制系统的时域数学模型微分方程r(t)——输入量c(t)c(t)a dc(t)a c(t)d a d a ++++L L dr(t)r(t)d r(t)db 其中,(i =0,1,2,…….n; j =0,1,2…….m) 均为实数,b a r(t)b b ++++=L L b (,,,;j ,,)实,j i2——定定常条输的变2.2.控制系统的复域数学模型控制系统的复域数学模型传递函数A. 定义:线性定常系统在初始条件为零时,输出量的拉氏变设:输入----r(t),输出----c(t),则传递函数:L[c(t)]G()式中C()L[(t)])s (C G(s)==式中:C(s)=L[c(t)]——输出量的拉氏变换式那么:C(s)=R(s)G(s)[R()G()][C()]()11[R(s)G(s)]L [C(s)]c(t)-1-1==推广到一般情况,系统时域数学模型——推广到般情况,系统时域数学模型微分方程:L L c(t)a a a a 011-n 1-n n n ++++r(t)b d b d d b -++++=L L b ()dt dtdt 011-m 1m m m L L R(s)b sR(s)b R(s)sb R(s)s b 01-1m m +++=a. 控制系统传递函数的一般表达形式:s −L L 传式011n n a s a s a a R(s)+++−b.b.表示成典型环节表达形式:111+++−s T s T s T s s R L )))()(21n υ∏∏i C )(s ωω;==11j l pnpnωωm 系统的稳态增益K =——系统的稳态增益;2m m m+=2n n nν++=c 零极点表达形式K C +++++L c. 表示成零、极点表达形式:)())(()(21m r z s z s z s s =−——νjp 系统的极点,个零极点。

自动控制原理-第二章 控制系统的数学模型

自动控制原理-第二章 控制系统的数学模型
dn dtn f ( t )
t
f (t)dt 0
t
f ( )d
n
ki .L[ f (t )]
i 1
sF (s) f (0 )
s2F (s) sf (0 ) f (0 )
snF (s) sn1 f (0 ) sn2 f (0 ) f (n1) (0 )
电枢回路方程为
La
dia (t) dt

Raia (t)

Ea (t)

ua (t)
电磁转矩方程 M m Cmia (t)
电动机轴上转矩平衡方程
Jm
dm (t)
dt

fmm (t)

Mm

MC
(t)
若以角速度 m 为输出量、电枢电压 ua 为输入量,
消去中间变量,直流电动机的微分方程为
(s2+s+1)Uc(s)= Ur(s)+0.1(s+2)
即 U S 1 U S 0.1S 2
C
S2 S 1 r
S2 S 1
通电瞬间, ur(t)=1 或 Ur(s)=L[ur(t)]=1/S
故 U S 1 1 0.1S 2
C
S2 S 1 S S2 S 1
再对上式两边求反拉氏变换:
u c
t

L1 U C
S


L1
S
2
1 S
1
1 S

S
2
1 S
1
=1+1.15e-0.5tSin(0.866t-120°)+ 0.2e-0.5tSin(0.866t+30°)

控制系统的数学模型及传递函数【可编辑全文】

控制系统的数学模型及传递函数【可编辑全文】

可编辑修改精选全文完整版控制系统的数学模型及传递函数2-1 拉普拉斯变换的数学方法拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。

一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。

f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。

2)当时,,M,a为实常数。

2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。

—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。

二、典型时间函数的拉氏变换在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。

1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见表2-1:拉氏变换对照表F(s) f(t)11(t)t三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。

2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有, 其中,当t<0时,f(t)=0,f(t-a)表f(t)延迟时间a. 证明:,令t-a=τ,则有上式=例:, 求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)由正向使的f(t)值。

自动控制原理第2版全篇

自动控制原理第2版全篇

=

- + - 其中:△称为系统特征式 △= 1 ∑La ∑LbLc ∑LdLeLf+…
—∑La 所有单独回路增益之和
∑L∑和dLLebLLf—c—所有所三有个互两不两接互触回不路接增益触乘回积路之增和益乘积之
Pk—从R(s)到C(s)的第k条前向通路传递函数
△k称为第k条前向通路的余子式 去掉第k条前向通路后所求的△
x0
(x x0 )
1 d 2 f (x)
2!
dx2
x0
(x x0 )2
忽略二阶以上各项,可写成
y
f
(x0 )
df (x)
dx x0
(x
x0 )
2、对于具有两个自变量的非线性函数,设输入 量 为x1(t)和x2(t) ,输出量为y(t) ,系统正常工作 点为y0= f(x10, x20) 。
注意:相加点和分支点一般不能变位
25
2.3.3闭环传递函数
1、给定输入单独作用下的系统闭环传递函数
(s) G1G2 G1G2 1 G1G2H 1 Gk
2、扰动输入单独作用下的闭环系统
n
(
s)
1
G2 G1G2
H
G2 1 Gk
3、误差传递函数:误差信号的拉氏变换与输入信 号的拉氏变换之比。
(1)给定输入单独作用下的闭环系统
Er
(
s)
1
1 G1G2
H
1 1 Gk
(2)扰动输入单独作用下的闭环系统
En
(
s)
1
G2 H G1G2
H
G2H 1 Gk
4)给定输入和扰动输入作用下的闭环系统的总的输
出量和偏差输出量

2.2 复数域数学模型

2.2 复数域数学模型

m1
m2
G(s)
K s
( js 1) ( k 2s2 2 k k s 1)
j 1
k 1
n1
n2
(Tis 1) (Tl2s2 2 lTl s 1)
i 1
l 1
22
2.2.2 传递函数极点和零点对输出的影响
传递函数的极点就是微分方程的特征根,极点决定了系统 自由运动的模态。
G(s) C(s) 6(s 3) , R(s) (s 1)(s 2)
1 RCs
U 1
r
(s)
RC RCs
1
uc
(0)
若uc(0)=0
Uc (s)
1 RCs
U 1
r
(s)

G(s) Uc(s) 1 1
Ur (s) RCs 1 Ts 1
式中 T=RC
4
1、定义
零初始条件下,输出量拉氏变换 输入量拉氏变换
r(t)—输入量, c(t)—输出量 R(s)=L[r(t)], C(s)=L[c(t)]
控制系统中常用的典型环节有:比例环节、惯性环节 、 微分环节、 积分环节和振荡环节等。
25
1. 比例环节(放大环节) 微分方程:C(t) Kr(t) 传递函数:G(s) K(增益、放大系数)
方框图: R(s) K C(s)
特点:输出量与输入量成正比,不失真也不延时。 举例:机械系统中略去弹性的杠杆、无弹性变形的杠杆、 放大器、分压器、齿轮、减速器等等,在一定条件下都可以 认为是比例环节。Leabharlann 26+ E
-
u(t)
+
(t) •
(s)
U (s)
K
电位器
G(s) U(s) K
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G(s) 1 S
特点: 输出量与输入量的积分成正比例,当输入消
失,输出具有记忆功能。
实例: 电动机角速度与角度间的传递函数,模拟计 算机中的积分器等。
5 振荡环节
G(s)
n 2
1
S 2 2n S n2 T 2S 2 2TS 1
式中 ξ-阻尼比
(0 1)
T 1
n
n-自然振荡角频率(无阻尼振荡角频率)
X c (s)
B1s 机K械1 系统传递函数
X r (s) (B1 B2 )s K1 K2
(R1
R2

)U
c
(1 C1
1 C2
)U
c

R1 U r
1 C1
U
r
5/18/2020 5:55:56 PM
3
(R1
R2 )SUc (s)
(1 C1
1 C2
)U c (s)
R1SU r (s)
1 C1
于是,由定义得系统传递函数为:
5/18/2020 5:55:56 PM
2
G(s)
C(s) R(s)
b0sm b1sm1 bm1s bm sn a1sn1 an1s an
M (s) N (s)
M (s) b0 s m b1s m1 bm1s bm N (s) sn a1sn1 an1s an
零点距极点的距离越远,该极点所产生的模 态所占比重越大
零点距极点的距离越近,该极点所产生的模 态所占比重越小
5/18/2020 5:55:56 PM
7
2.2.3典型环节及其传递函数 任何一个复杂系统都是由有限个典型环节组合而成的。 典型环节通常分为以下六种:
1 比例环节
G(s) K
式中 K-增益
c(t)
an1
d dt
c(t)
anc(t )
b0
dm dtm
r(t)
b1
d m1 dt m1
r(t)
bm1
d dt
r(t)
bm r (t )
式中c(t)是系统输出量,r(t)是系统输入量,和是 与系统结构和参数有关的常系数。
设r(t)和c(t)及其各阶系数在t=0是的值均为零, 即零初始条件,则对上式中各项分别求拉氏变换, 并令C(s)=L[c(t)],R(s)=L[r(t)],可得s的代数方 程为: [sn a1sn1 an1s an]C(s) [b0sm b1sm1 bm1s am]R(s)
i 1
(i 1,2,,m) Z i为传递函数的零点
N (s)
n
(S Pj ) ( j 1,2,,n) Pj 为传递函数的极点
j 1
极点是微分方程的特征跟,因此,决定了所描述系
统自由运动的模态。
5/18/2020 5:55:56 PM
6
-1.33
-0.5
-2
z2 -1
z1
图2-7 传递函S
1 C1
U r (s)
(R1R2 )S
(1 C1
1 C2
)
电系统的传递函数
2.2.2 传递函数性质
性质1 传递函数是复变量s的有理真分式函数, m≤n,且所 具有复变量函数的所有性质。
性质2
G(s)取决于系统或元件的结构和参数,与输入量的 形式(幅度与大小)无关。
R(s)
G(s)
C(s)
图2-6
5/18/2020 5:55:56 PM
4
性质3
G(s)虽然描述了输出与输入之间的关系,但它不提供任何该系统的 物理结构。因为许多不同的物理系统具有完全相同的传递函数。
性质4 性质5
如果G(s)已知,那么可以研究系统在各种输入信号作用 下的输出响应。
如果系统的G(s)未知,可以给系统加上已知的输入,研 究其输出,从而得出传递函数,一旦建立G(s)可以给出 该系统动态特性的完整描述,与其它物理描述不同。
传递函数数学模型是(表示)输出变量和输入变量微 分方程的运算模型
性质 传递函数与微分方程之间有关系。
6
G(s)
C (s) R(s)
如果将 S d dt
5/18/2020 5:55:56 PM
置换 传递函数 微分方程 5
性质 传递函数的极点和零点对输出的影响
7
m
G(s)
M (s)
K*
(S Zi )
特点:环节中有两个独立的储能元件,并可进行能量交换,其 输出出现振荡。
实例:RLC电路的输出与输入电压间的传递函数。
5/18/2020 5:55:56 PM
10
2.2.4典型元部件的传递函数
电位器-将线位移或角位移变换为电压量的装置。
图2-8 电位器
单个电位器用作为信号变换装置。
3 微分环节
理想微分 G(s) KS
一阶微分 G(s) S 1 二阶微分 G(s) 2S 2 2 S 1
特点: 输出量正比输入量变化的速度,能预示输入 信号的变化趋势。
实例: 测速发电机输出电压与输入角度间的传递函数
即为微分环节。 5/18/2020 5:55:56 PM
9
4 积分环节
特点:输入输出量成比例,无失真和时间延迟。 实例:电子放大器,齿轮,电阻(电位器),感应式 变送器等。
2 惯性环节
1
G(s)
TS 1
5/18/2020 5:55:56 PM
8
式中 T-时间常数
特点:含一个储能元件,对突变的输入, 其输出不能立即复现,输出无振荡。
实例:图2-4所示的RC网络,直流伺服电动机的 传递函数也包含这一环节。
定义:线性定常系统的传递函数,定义为零初使条件下, 系统输出量的拉氏变换与输入量的拉氏变换之比。
传递函数
输出信号的拉氏变换 输入信号的拉氏变换零初始条件
C(s) R(s)
5/18/2020 5:55:56 PM
1
设线性定常系统由下述n阶线性常微分方程描述:
dn dtn
c(t)
a1
d n1 dt n1

求例2-4机械系统与电路系统的传递函数Xc(s和) Uc (s)
解:
Xr (s)
U r (s)


(B1 B2 ) X c (K1 K2 ) X c B1 X c K1X r
(B1 B2 )SXc (s) (K1 K2 ) X c (s) B1SX r (s) K1X r (s)
2.2 控制系统的复域数学模型 2.2.1 传递函数
是在用拉氏变换求解线性常微分方程的过程中引申出来的 概念。
微分方程是在时域中描述系统动态性能的数学模型,在给 定外作用和初始条件下,解微分方程可以得到系统的输出 响应。系统结构和参数变化时分析较麻烦。
用拉氏变化法求解微分方程时,可以得到控制系统在复数 域的数学模型-传递函数。
相关文档
最新文档